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ABSTRACT

Although vortex analysis and detection have been extensively in-
vestigated in the past, none of the existing techniques are able to
provide fully robust and reliable identification results. Local vortex
detection methods are popular as they are efficient and easy to im-
plement, and produce binary outputs based on a user-specified, hard
threshold. However, vortices are global features, which present
challenges for local detectors. On the other hand, global detec-
tors are computationally intensive and require considerable user in-
put. In this work, we propose a consensus-based uncertainty model
and introduce spatial proximity to enhance vortex detection results
obtained using point-based methods. We use four existing local
vortex detectors and convert their outputs into fuzzy possibility val-
ues using a sigmoid-based soft-thresholding approach. We apply a
majority voting scheme that enables us to identify candidate vortex
regions with a higher degree of confidence. Then, we introduce spa-
tial proximity- based analysis to discern the final vortical regions.
Thus, by using spatial proximity coupled with fuzzy inputs, we pro-
pose a novel uncertainty analysis approach for vortex detection. We
use expert’s input to better estimate the system parameters and re-
sults from two real-world data sets demonstrate the efficacy of our
method.

1 INTRODUCTION

Detection and visualization of flow features in data generated from
computational simulations have been important research topics.
Along with other flow features, vortices, or eddies, have attracted
a great deal of attention from visualization and application re-
searchers. In the past few decades, researchers have analyzed
vortex-like structures in the flow and have developed numerous
techniques each with its own degree of accuracy. A number of these
detectors are point-based and are called local detectors. These de-
tectors classify points in the field by assigning membership to either
the class vortex or the class non-vortex based on a local point-wise
criterion. Typically, they use a hard-threshold for the classification
purposes and the determination of an optimal threshold is necessary
for robust detection [6, 11, 37]. On the other hand, non-local vortex
detection schemes analyze a region and classify it based on the ab-
sence or presence of a vortex. The use of streamlines is very preva-
lent in this class of detection algorithms. Generally, these algo-
rithms require significant user intervention to perform well. A good

*e-mail: biswas.36@osu.edu

fe-mail:dst@cavs.msstate.edu

*e-mail: he.495@buckeyemail.osu.edu

$e-mail: contact.qdeng @ gmail.com

e-mail: chenchu@cse.ohio-state.edu

le-mail: hwshen@cse.ohio-state.edu
**e-mail: raghu@cse.ohio-state.edu
fe-mail: anand @cise.ufl.edu

Mississippi State University

Wenbin He*
The Ohio State University

Raghu Machiraju™*
The Ohio State University

Qi Deng?®
University of Florida

Anand Rangarajan’™
University of Florida

survey of vortex detection techniques can be found in [20]. Despite
these efforts, there does not exist a robust and reliable method that
detects vortex structures. Further, the accuracy of different detec-
tors varies from data set to data set and, with the continued growth
of the size and complexity of simulation data, the need for a bet-
ter automated vortex analysis and detection scheme is paramount.
We propose an approach that leverages the strengths of individual
local detectors while exploiting global information to optimize the
performance of the chosen detectors.

Modeling uncertainty has gained popularity in the past decade
and has found applications in flow visualization. For vortex detec-
tion, analysis was previously conducted using probabilistic meth-
ods assuming the data contained uncertainty [24]. However, in our
work we propose to analyze the uncertainty that arises from the dif-
ferences in the performance of existing vortex detection schemes,
which act as inconsistent oracles. That is, there exists a mis-
match among the regions identified as vortices by different detec-
tors. Moreover, the threshold values used by these different detec-
tors provide a reference related to the degree of confidence of the
prediction. If the output from a detector is very close to its theoret-
ical threshold, then the prediction contains more uncertainty. This
observation enables us to model this uncertainty as a fuzzy mem-
bership problem for the vortex and non-vortex classes in the flow
field. A second characteristic that we exploit is locality. A vortex is
defined as a contiguous region within the domain. A study of vorti-
cal features reveals that a point has a higher chance of being part of
a vortex if it is located near pre-identified regions of a vortex while
a point that is not located near a vortex is much less likely to be part
of a vortex. In essence, we seek confidence from the co-occurrence
of similar events and classified points and further improve the per-
formance of local detectors with more global information.

In this work, we introduce a novel vortex analysis workflow that
enables the users to analyze and extract vortices with more accu-
racy and robustness. We use four existing local vortex detection
techniques as the basis of identification process. For each of the
detectors, we apply a logistic function that converts the output of
each detector to a fuzzy possibility value in the range of O to 1.
Using the method of entropy maximization, we allow for parame-
ters to be automatically selected for this conversion. The possibil-
ity values generated at this stage are used for a voting scheme to
identify the regions of a candidate vortex structure with higher de-
gree of certainty. Utilizing the property of spatial locality, uncertain
points are then classified into either vortex and non-vortex classes.
In our workflow, a domain expert provides her/his input by mark-
ing a small number of sample points, which are used for estimating
the parameters of the system based on global information. To the
best of our knowledge, our approach is the first attempt to incor-
porate spatial locality with uncertainty analysis for the detection of
vortical features.

Our contributions are threefold:

1. We introduce a new approach towards modeling the uncer-
tainty of the existing vortex detectors by using their threshold
values to create a fuzzy input-based system.



2. We present a consensus based voting method to identify vor-
tex regions with a higher degree of confidence and segregate
the different certainty levels for different spatial regions.

3. We introduce the use of spatial proximity into the vortex de-
tection framework. Different vortex clusters are identified and
a distance-based criterion is used to assign the final vortex
points in the system.

2 RELATED WORK

Vortex detection algorithms are generally classified as one of two
types, either local or global, depending on the neighborhood of the
data upon which the classification is based [33]. Many of the lo-
cal vortex detectors are based on the Jacobian of the velocity field
and classify individual points of the domain as vortex based on a
point-wise criterion. The Q-criterion [17], the A;-method [18], the
A-criterion [7], and the I, method [14] are examples of local de-
tectors that only look the Jacobian of the velocity field to decide
vortical flows. Although Schafhitzel er al. [31] argued that the A,
method is more reliable and effective in comparison to other meth-
ods, its performance varies from data set to data set [36] and all of
the methods produce false positives and false negatives. Roth and
Peikert [29] presented the parallel vectors operator to locate vortex
core lines. To capture the slowly rotating vortices, they used the
second derivative of the velocity field. Other approaches have also
been proposed for the extraction based on parallel vectors [26, 28].

Global methods generally use streamlines/pathlines to detect
vortical regions. Sadarjoen er al. [30] used the winding angle
method to detect vortices using streamlines. Jiang et al. [19] pro-
posed another streamline-based method whereby they analyzed the
geometry of the streamlines to identify the vortex core regions.
Banks and Singer [2] proposed a predictor-corrector method for
the extraction of vortex core lines. Haller [15] proposed an ob-
jective definition for a vortex that is applicable in a rotating refer-
ence frame. It is similar to the Q-criterion except that it incorpo-
rates global information via a Lagrangian analysis. Pagendarm et
al. [25] calculated certain local geometric properties of streamlines
and then employed a model vortex to estimate the curvature density
field. The curvature density field was then visualized using isosur-
faces to identify vortex core regions. In a recent work, Kohler et al.
[22] proposed a semi-automatic method for vortex detection using
line predicates and the A,-method to visualize blood flow.

Analysis and quantification of uncertainty in flow visualization
have received much interest in the last decade. Otto and Theisel
proposed a method [24] to analyze vortices in the scenario where
the underlying data set contains uncertainty. Assuming that the un-
certainty follows a Gaussian distribution, they used Gaussian fitting
in the neighborhood of a point and used a Monte-Carlo sampling
approach to approximate the vortex detector methods at a given
point. Burger et al. [5] previously used fuzzy sets for more in-
tuitive visual exploration of different vortex detection methods but
they did not provide a framework that combined the vortex detec-
tors. In our work, instead of assuming the uncertainty is manifest in
the data set, we propose to explore the uncertainty that arises from
the use of multiple vortex detectors and their output values.

Machine learning-based methods [16] are gaining popularity for
solving many graphics and visualization related problems [13, 21,
23, 37]. Recently Zhang et al. [37] employed the Adaptive Boost-
ing [12] approach to assign weights to the different vortex detection
schemes and showed improvement in the error rates at the expense
of more false positives. In our work, instead of assigning weights
to the individual detectors, we propose to assign equal weights and
introduce a distance-based criterion to further improve the results.

3 VORTEX DETECTION TECHNIQUES
3.1 Global Streamline Method

Global methods for vortex detection generally attempt to find a co-
herent region in the field with closed or spiraling streamlines in a
reference frame moving with the vortex. An intuitive, streamline-
based definition of a vortex was provided by Robinson [27] as: “A
vortex exists when instantaneous streamlines mapped onto a plane
normal to the vortex core exhibit a roughly circular or spiral pat-
tern, when viewed from a reference frame moving with the center
of the vortex.” This definition encapsulates the inherently global
nature of a vortex. Unfortunately, it is self-referential and difficult
to describe algorithmically. Determining the appropriate reference
frame moving with the vortex is a non-trivial issue [35]. Addi-
tionally, seeding the streamlines at the correct location is of utmost
importance. Analysis of the geometric properties of a streamline
[19, 25] or computation of the winding angle [30] are two exam-
ples of streamline-based vortex detection methods.

3.2 Local Vortex Detectors

Local vortex detectors evaluate a function at each point of the field
and generate a numerical value. This local field value is used to
decide whether the point is a member of a vortex region with the
aid of a threshold function. Different local detectors have dis-
parate threshold functions and the choice of the threshold plays an
important role [6, 37, 11] in determining the efficacy of a given
vortex detection algorithm. Most local vortex detectors are based
on the velocity gradient tensor J, where J = \/v. For this reason,
these detectors are Galilean invariant or invariant under translation
[20]. The estimated velocity gradient tensor is used to compute the
rate-of-strain tensor S = %(J +JT) and the rate-of-rotation tensor

R= %(J —JT).The four most popular local detectors include the
Q-criterion, Ay, A-criterion, and I';. After generating values at each
point, a function L can be defined for each of these detectors with
L:R — B, where B € {0,1}. The function L is used for labeling
the flow field points with 1 as a vortex label and O as a non-vortex
label. This function depends on the threshold of the detectors and
their operating characteristics.

The Q-criterion was proposed by Hunt ez al. [17]. It identifies
a vortex by finding the regions where the vorticity of the field ex-
ceeds the rate of strain, i.e., rotation dominates deformation. In ad-
dition, the pressure in this region needs to be lower than the ambient
pressure implying the presence of a rotation-induced pressure mini-
mum. Thus, the Q-criterion is computed as Q = %(H RI>=|IS|?.
The corresponding labeling function Ly is defined as:

I, ifx>0
Lolx) = {0, ifx<0" M

Jeong and Hussain [18] proposed the A, method for vortex de-
tection by extracting a connected region wherein the matrix 2 4 R?
has two negative eigenvalues. If the second largest eigenvalue of
this matrix at a given point in the field is negative, then this point is
located in a region with a rotation-induced pressure minimum and
belongs to a vortex core region. Following this method, the labeling
function is defined as:

1, ifx<O0
LM@y_{o ifx>0" @

Chong et al. [7] defined the A-criterion for vortex detection using
critical point theory. In this definition, a vortex core is identified
as a region where the Jacobian J has complex eigenvalues, which
would produce periodic trajectories in the region near the critical

point. The A-criterion is defined as A = (%P)2 + (%Q)3 where P =
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Figure 1: A schematic view of the different stages of our system.

Det(J) and Q = M The labeling function for this method
is defined as:
1, ifx>0
L =<’ . 3
A(x) {07 ifx<0 (3)

Graftieaux et al. [14] proposed the I, method for detecting the
vortex boundary. This method identifies the regions where rota-
tion dominates strain by looking at the maximum eigenvalues of
the rotation tensor and strain rate tensor. This method can be im-
plemented by considering the ratio || 7| / || 1 || where || r || and
|| ¢t || denote the maximum eigenvalues of the rotation tensor ma-
trix R and the strain rate tensor S respectively. The labeling function
is given as follows:

1, ifx>1
Lr, () = {o, ifx<1 @

4 SYSTEM OVERVIEW

It is our assertion that Robinson’s definition, i.e., the notion of a
swirling flow, is the most fundamental description of a vortex. In
fact, as previously noted by Pagendarm [25], most vortex detec-
tion methods employ proxy variables that are easily defined from
a mathematical perspective and have some level of correlation, al-
beit not perfect [31, 36], with the occurrence of a vortex. It is not
our intent to debate the relative merits of the different techniques.
Our goal is to improve the robustness of the vortex detection pro-
cess by combining several existing, computationally-efficient local
vortex detectors into a more robust detector that incorporates global
information through a distance function that is based on the expert
labels. To achieve this, we initially compute a set of vortex detec-
tors from the input data set. In our interpretation, the signs and
values of each of the different existing vortex detectors represent
different degree of vortexness for a point. We convert their outputs
to a fuzzy value from 0 (certain non-vortex) to 1 (certain vortex) us-
ing a sigmoid function. This fuzzy conversion allows us to combine
these vortex detectors by applying a majority vote which, in turn,
identifies the regions of the data set that are more likely to be part of
a vortex. In the next stage of the pipeline, the remaining uncertain
points are classified according to their proximity from the vortex
regions, which are detected from majority voting, and a distance-
based fall-off scheme is applied to adjust their vortexness values for
final classification. In this generic framework, there are two param-
eters that need to be tuned. We work closely with a domain expert
who provides her/his inputs that are used for estimating these pa-
rameters. This enables us to incorporate global domain knowledge
into our system with increased robustness and accuracy. Figure 1
represents a schematic view of the different stages of the pipeline.

5 ALGORITHM
5.1 Fuzzy Initiation of the Vortex Detectors

In the vortex detection problem, if a pointwise detector’s output
is close to its theoretical threshold value, then the classification is
generally more uncertain compared to the case where the value is
further away from the threshold. This is represented schematically
in Figure 2a with ¢4 as the threshold value. The hard-thresholding
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(a) Certain and Uncertain re-  (b) Uncertainty in the output
gions after hard-thresholding is modeled using a sigmoid
around th. curve.

Figure 2: Uncertainty in vortex detection and modeling via sigmoid
curve.

of the pointwise detectors ignores this property and generates bi-
nary O or 1 as an output where 0 denotes non-vortex regions and
1 denotes the presence of a vortex. To incorporate the uncertainty
that is inherent to these vortex detectors, instead of generating hard-
thresholded O or 1 output from the existing detectors, it is more
desired to generate fuzzy outputs in the interval [0, 1] such that it
represents the vortexness of the point given the detector.

Previously Burger et al. [5] chose a linear mapping function to
compute the vortexness. In our work, we use the sigmoid function
F which is given as:

1

= 1 + e—alx—th) ®)

F(x)
where the parameter ¢/ denotes the point of maximum uncertainty:
when x = th, F(x) = 0.5. The parameter a represents the fall-off
rate or the steepness of the sigmoid curve. We use a sigmoid func-
tion for the following reasons: 1) The sigmoid function is more
general approach compared to linear mapping. Further, the sigmoid
function can be used to imitate the linear mapping through proper
choice of the parameters. 2) Classification problems are inherently
sigmoidal. To illustrate this point, let us consider two classes Ci
(vortex class) and C, (non-vortex class) and an observation x (out-
put of a vortex detector), the posterior probability of classification
p(C1|x) can be written [4] following the Bayesian approach as:

p(x|C1)p(Cy) 1

= 6
ACOP(CH +plCnC)  Tres ©

p(Cilx) = P

pIC)p(Cr)
p(x|C)p(Cr)
p(Cy|x) follows a sigmoid or S-shaped distribution with a steepness
factor a as shown in Figure 2b.

For vortex detection, the sigmoid function F can be applied to
the outputs of the individual vortex detectors to convert them to
fuzzy vortexness values. After the fuzzy conversion, values closer
to 1 indicate a higher possibility to be part of a vortex. If the output
value is close to 0, then it is more likely to be marked as non-vortex.
The values around 0.5 are the uncertain values. Figure 2b shows a
schematic view of this conversion. Given a collection of vortex
detectors, we assign one fuzzy conversion function F' to each indi-
vidual detectors by tuning the parameters th and a as discussed in
the next section, Section 5.2.

where the value of a is defined as a = In . In Equation 6,

5.2 Parameter Selection Using Information Theory

The fuzzy conversion function F(x) consists of two parameters, th
and a, as shown in Equation 5. Since each individual vortex detec-
tor is assigned a function F(x) to convert to the fuzzy output, the
parameters of F(x) also depend on the properties of the individual
detector. Since the output of F(x) is most uncertain when x = th,
the value of th is set to the theoretical threshold value of that vor-
tex detector which is known for each detector as described earlier.
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Figure 3: Change in the distribution due to entropy maximization.

This describes the property that the pointwise detectors are most
uncertain around their theoretical threshold.

The steepness parameter a has two components: the sign and the
magnitude. Since the negative values for some of the detectors are
more likely to be a vortex (e.g., Ap) whereas for others, the positive
values (e.g., Q-criterion) represent vortex regions, the sign of a is
chosen to make all the detectors consistent after fuzzy conversion.
The sign is determined by using the function S as follows:

S(@) = {+, if L(x) =1, Vx> th -

—, ifL(x)=0, Vx>1th

where for a given vortex detector, L is the previously defined label-
ing function, t/ is corresponding theoretical threshold and x € R.
After determining the sign, the magnitude of @ must be deter-
mined. If |a| = 0, then after the fuzzy conversion of the vortex
detector, the histogram of the resulting vortexness values shows a
very high peak near 0.5. This reflects that, after fuzzy conversion,
all the values of the vortex detector have mapped to the uncertain
0.5 in the fuzzy scale. Similarly, if |a| is very large, then the re-
sulting histogram of vortexness values reduces to two peaks, at 0
(certain non-vortex) and 1 (certain vortex), representing the hard-
thresholding scheme. We strive for a value of the steepness factor a
that generates a vortexness value distribution that is between these
two extremes such that the converted fuzzy vortexness values are
well separable. This conversion will represent the confidence of
the vortex detector and to achieve a well-distributed histogram af-
ter fuzzy conversion, we apply the notion of entropy maximization
[3, 8]. For a random variable X, if p(x) denotes the probability of
occurrence of an observation x € X, then entropy H(X) is defined

H(X)=-Y p(x)logp(x). ®)
xeX

An increase in the entropy value for a random variable generally
signifies that the values of the variable are well distributed in the dif-
ferent bins of its histogram. In our entropy maximization method,
the parameter a is chosen such that it maximizes the entropy of the
distribution of resulting fuzzy vortexness values of the detector af-
ter the application of the sigmoid function. Figure 3 shows results
from rearward facing step data set [1], which is described in more
detail in Section 6.2. In this example, the application of entropy
maximization changes the unimodal distribution of detector values
into a distribution with three peaks. Instead of simply applying en-
tropy maximization, we use the parameter value that maximizes the
product of entropy and the rate of change of entropy to reduce the
points mapped to the values 0 and 1. This enhances the separa-
tion of data points based on the transformed values in the following
stages and thus increasing the efficiency of the algorithm.

5.3 Learning From Multiple Oracles

Since the individual vortex detectors can be inconsistent in their
identification of a vortex, they can be treated as the imperfect ora-
cles of our vortex detection system. It has been shown [32, 34, 37]

that the use of multiple detectors instead of a single detector, pro-
vides a higher level of reliability for vortex detection and visualiza-
tion. After converting the outputs of the individual vortex detectors
to represent their fuzzy confidence levels, we propose to aggregate
their prediction in a manner similar to the fuzzy “AND” operation to
quantify the agreement among themselves. To implement this fuzzy
“AND” operation given four vortex detectors, we apply a majority
vote algorithm as :

4
L, if ¥ Greater(x;,thyig) >3
i=1
o 4
f(x1,x0,x3,x4) = 0, if ¥ Greater(thiyy,xi) >3 " ©)

i=1
—1, Otherwise

Here, thy;g, and thy,, are two threshold values such that 0.0 <
thiow < thyign < 1.0 and Greater is a boolean comparison opera-
tor which is defined as:

1, ifa>b

. 10
0, ifa<b (10)

Greater(a,b) = {

Here thy,,, denotes the threshold above which the points can be
marked as vortex with a high degree of certainty. Similarly, th,,,,
denotes the threshold value below which the points can be marked
as non-vortex with higher confidence. The values falling between
these two thresholds are considered uncertain points that need fur-
ther attention. Thus, Equation 9 defines a majority voting scheme
based on these two parameters. For a given point, if at least three of
the four detectors assign a vortexness value greater than thy;,y,, then
this point is marked with 1. Similarly, if three out of four detectors
provide a value less than t/,,,, then this point is initially marked
with 0. The rest of the uncertain points are assigned the label —1
and these points are then further processed according to their prox-
imity from the already detected certain vortex points as discussed
in Section 5.4. The estimation of the thresholds thyg, and thy,,, is
discussed in Section 5.5.

5.4 Knowledge Enhancement Through Spatial Proxim-
ity

Analysis of individual data points alone, to determine their likeli-
hood of being part of a vortex, limits the effectiveness of the detec-
tion process. We propose that the incorporation of spatial locality
into the pointwise vortex detectors may enhance the capabilities of
the detector by making it less localized. If it is certain that one point
is part of a vortical flow, then the likelihood of its neighbors being
in a vortical flow also increases. On the contrary, if it is known
that a point is surely a non-vortex, then its neighbors also become
more likely to be non-vortex. This spatial locality feature can be
incorporated into our system as follows. After identifying the more
certain candidate vortex regions with the oracles as shown in Sec-
tion 5.3, we first perform spatial clustering of these points. Thus,
we have in effect identified salient points near the vortex core. The
clustering is performed using a “region fill” approach in which each
point labeled as a vortex starts as an individual cluster, which is then
merged with the neighboring clusters and, in turn, grown into even
larger clusters. Next, we analyze the remaining uncertain points
based on these clusters. After the identification of the clusters, we
take advantage of the spatial locality for the uncertain points that
have the label —1. For each of these points, we determine the near-
est vortex cluster and calculate the distance d from that cluster. The
vortexness values of these uncertain points are readjusted according
to a distance based decay function, D.

amn
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Figure 4: Incorporation of spatial proximity. (a) Certain (red) and
uncertain (blue) points detected after majority voting. (b) Spatial
clustering of certain points. (c¢) Uncertain points are classified ac-
cording to their distance from their nearest certain vortex cluster.

Decay is modeled as an inverse square function. The proportional-
ity constant K is dependent on the data and is estimated using do-
main expert’s input for higher accuracy as discussed in Section 5.5.
Suppose, x4y, denotes the average vortexness value of an uncertain
point calculated from the four vortex detectors. Now, for all the un-
certain points, Xay, is adjusted based on distance and these uncertain
points are finally classified according to the previous high-threshold
t hhigh .

L if g # (14+ K) > thyg,

12
0, Otherwise (12)

f(dvxavg) = {

Figure 4 illustrates this stage of the framework. The individual cer-
tain vortex points (marked in red) of Figure 4a are spatially clus-
tered in Figure 4b. The uncertain points (marked in blue) are then
recalculated for their vortexness according to their distance from
the nearest cluster as shown in Figure 4c.

5.5 System Integration with Domain Expert’s Input

In this section, we integrate the different components of our system
and elaborate the role of the domain expert. We worked closely
with a domain expert (also a co-author for this work) who em-
ployed a global streamline method to generate the labels for points
in the field which will be used to quantitatively measure and com-
pare our proposed method with the existing ones. Our approach
is similar to the one described in [37] that is based on Robinson’s
definition of a vortex [27] and the observation that a Galilean trans-
formation to an appropriate reference frame is necessary for un-
steady flows with moving vortices [35]. The domain expert uses
a manual vortex detection process whereby a set of streamlines is
generated from seed points placed by the expert. Since streamlines
are not Galilean invariant, the domain expert must adjust the local
reference frame [35] in an iterative process to make sure that the
swirling nature of the streamlines is accurately captured. The goal
of the expert is to select a set of parameters that produce a coherent
set of streamlines. To aid in this process, the domain expert initially
uses a point based detector, such as the A, method to generate iso-
surfaces that identify the candidate vortical regions in the field. The
domain expert then employs a “point picking interface” by which
he can select regularly-shaped regions in the field to explore fur-
ther with streamlines. If the domain expert observes a coherent set
of swirling streamlines, then he changes the view point such that
the vortex axis is aligned with the view plane normal. Then these
spatial three-dimensional points are marked with 1 for vortex and
0 for non-vortex. Further refinement can be obtained by picking
individual points and changing their labels.

With the expert labels available, we now integrate all the dif-
ferent components of our system in this section. For a given data
set, the four vortex detectors- Q-criterion, A, method, A criterion,
and I'>- are first calculated. These outputs are converted to fuzzy
values by using the sigmoid functions that maximize the product
of entropy and rate of change of entropy of their histograms as de-
scribed in Sections 5.1 and 5.2. Then majority voting is applied
based on the two thresholds: 7hy;g, and thy,,. The low threshold

thy,, 18 set to 0.25 for all the experiments. For increased accuracy,
the high threshold thy,;g, is estimated from a small fraction of the
domain expert’s labels. At this stage, a small number of samples
(typically 10%) are randomly chosen and thy,), is selected such
that the false positives are minimized given these random samples.
The data points are now marked with certain O or 1 labels and un-
certain —1 labels. In the next stage of our pipeline, the certain
1 values are spatially clustered. Then all of the uncertain —1 data
points are separated and their distances from the nearest vortex clus-
ter are computed. Based on these nearest distances, the uncertain
points are classified. The proportionality constant K in Equation
11 is also estimated from the same set of samples drawn from the
domain expert’s labels such that the final error rate and the true pos-
itive rates are higher than each individual detector’s performance.
Finally, the remainder of the domain expert’s labels are used as a
basis of comparison for generating results to quantitatively assess
the effectiveness of the different vortex detection methods.

6 RESULTS

The experiments were conducted on a Linux machine with 2.40
GHz Intel core i7 CPU, 8 GB of RAM and an NVIDIA Geforce GT
650M GPU with 2GB texture memory. For generating comparative
results, we use the labels generated by the domain expert as a basis
of comparison for the below mentioned data sets. The following
metrics are used for quantitative comparison among different vortex
detection techniques:

ErrorRate = (Pr +Np)/(T +N)
TruePositiveRate = Pr /(T +N)
TrueNegativeRate = Ny /(T +N)
FalsePositiveRate = Pr /(T +N)
FalseNegativeRate = Ng /(T +N) (13)

where Pr denotes the true positive count, Ny denotes the true neg-
ative count, Pr is the false positive count, Nr is the false negative
count, T is the total vortex count in expert labels and N is the total
non-vortex points in expert labels. The parameters of our system,
high threshold /), and distance based constant K, are tuned using
random samples (10%) from the expert labels with the performance
of the algorithms measured on the rest of the labeled points.

6.1 Tapered Cylinder

Our method is first applied to the Tapered Cylinder data set [9],
which describes an unsteady, three-dimensional, incompressible,
laminar, viscous flow around a cylinder with its axis oriented per-
pendicular to the primary flow. It should be noted that, since the
cylinder extends across the entire domain, there are no tip effects
present in the simulation.

We compare our proposed method with the four existing vortex
detection algorithms used as oracles for our system : Q-criterion, A,
method, A criterion, and I'; method. Figure Sa shows comparative
results for the time step 12200 of this data set with Y-axis showing
the percentage count of the data points. It is readily visible that, for
this time step, our proposed method significantly increases the true
positive rate and reduces the total error rate. It is also observed that
the true negative rate is better than any of the four existing detectors
and false positive and false negative rates are consequently reduced.
Figure 5d represents an example where the domain expert used the
global streamline method to generate the labels for this time step.
Here, the red spheres indicate the expert’s vortex labels and stream-
lines were seeded in the region after adjusting the reference frame.
For more details about the streamlines and selection of reference
frame, we refer the interested readers to the supplemental material.
Our improved error rate confirms that our method produces more
consistent with the domain expert’s labelings. Experiments were
further conducted on other time steps, which are far apart in the
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Figure 6: Results for the Rearward Facing Step data set. (a) Quantitative comparison results. (b)-(d) Domain expert’s labeled points in three

regions of the data set.

temporal domain. Figure 5b and Figure 5c show the results ob-
tained from 12780 and 15490 respectively. In each of these time
steps, our proposed method provides improved results for all types
of errors. Examples of the domain expert’s labelings are shown in
Figure Se and 5f for time steps 12780 and 15490 respectively. The
results show a good agreement with the domain expert’s markings
which in turn shows more robust result generated by our method.
The false positive rates of the points that were decided by spatial
proximity criteria are 0.09, 0.05 and 0.11 respectively for the time
steps 12200, 12780 and 15490. In Figure 5g, the volume render-
ing of the final prediction field generated from our algorithm for
the time step 12200 is shown. Here the vortex regions of higher
confidence are suitably highlighted by setting the transfer function.

6.2 Rearward Facing Step

‘We now apply our method to a data set that models the unsteady, in-
compressible, turbulent flow over a rearward facing step. The flow
enters the domain from the lower left in the positive x direction,
encounters the step, and is separated. The region of separated flow
is highly turbulent and contains vortices. In this case, the axis of a
given vortex may have significant curvature and its orientation with
respect to the primary flow may vary widely from other nearby vor-
tices. The flow conditions were chosen to match the experimental
data obtained by Driver and Seegmiller[10]. Details concerning the
numerical simulation are reported in Alam et al. [1].

Figure 6a shows a comparison of the four vortex detectors and
our proposed method to provide a complete quantitative analysis.
As can be seen from this plot, the overall true positive rate is slightly

(a) (b)
Figure 7: Results for the Rearward Facing Step data set. (a) Volume
rendering from our algorithm generated prediction field. (b) Isosur-
face from the prediction field showing the vortical regions detected
from our algorithm.

better than the existing detectors, since the total number of vortex
points is smaller in this data set, but the major performance gain is
achieved in the true negative rate. Our proposed method was able to
eliminate most of the false positive labels and thereby significantly
reduce the total error rate. Figure 6b, Figure 6¢ and Figure 6d show
three regions in the data set where the domain expert extracted the
voritcal motion by adjusting the correct reference frame (more de-
tails provided in the supplemental material). Here, the red spheres
indicate the expert’s vortex labels. Figure 6a shows that our results
conform to the domain expert’s labels and was able to identify the
vortices with improved accuracy. For this data set, the false posi-
tive rate of the points that were classified by the spatial proximity
criteria was 0.12, which is close to the overall false positive rate
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Figure 8: Comparison results for the Tapered Cylinder data set. (a) Comparison with different modifications of our proposed algorithm from
time step 15490. (b) Comparison with AdaBoost from time step 12210. (¢) Comparison with AdaBoost from time step 12240.

as shown in Figure 6a. Figure 7a shows the volume rendering of
the resulting possibility field of a region of this data set with the
transfer function shown below that emphasizes the vortex regions
of higher confidence. We note that the bottom part of the data set is
more turbulent. Finally we show the isosurface generated from our
prediction field in Figure 7b depicting the detected vortex regions.

7 COMPARISON AND DISCUSSION

In this section, we compare the results of our proposed framework
with other techniques that benefit from the labels generated by the
domain expert. In Figure 8a, the four different scenarios are pre-
sented from time step 15490 of the Tapered Cylinder data set. In
this figure, one set of results is taken after generating the optimized
hard-threshold [37] of an existing detector, namely the A, method as
itis widely used given its reliability compared to the other pointwise
metrics. “Opt-Lambda2” depicts this optimized threshold selection
in the figure with “Lambda2” as the theoretical hard-thresholded A,
example. Next, we modify our proposed algorithm and, instead of
using a consensus of four existing detectors, we use A, as the only
input to our system, keeping all the other stages of our proposed
method the same. This situation is shown as “lambda2-our” in Fig-
ure 8a. For comparison purposes, our complete proposed algorithm
is also shown in the figure and is labelled as “Our”. The results
show that the use of an optimized threshold improves the error rate
but at the expense of a reduced true positive rate. Both “lambda2-
our” and “Our” outperform “Lambda2” and “Opt-lambda2”, which
suggests that the use of spatial locality information is an important
factor for effective detection of vortices. The comparison of “Our”
and “lambda2-our” shows that consensus from four oracles is better
than trusting just one, especially when all of the oracles are fallible
and the best oracle for a given data set is not known a priori. The
exclusive use of any of the other three existing metrics instead of
A, produces similar results.

Next we compare our method with the AdaBoost method, which
was recently proposed by Zhang et al. [37]. This AdaBoost method
also uses multiple vortex detectors as their input and tries to opti-
mize the performance using samples from domain expert. To con-
duct the experiment, we selected the previously mentioned 12210
time step from the tapered cylinder data set. In the Figure 8b, “Our”
denotes the method proposed in this paper and “AdaBoost” is the
method proposed in [37]. To estimate the system parameters for
both the methods, 10% of the domain expert’s markings from the
data were used and the results were generated. Also, to test the re-
liability and sensitivity of the two methods, we conducted another
set of experiments in which we used 10% of the domain expert’s
markings selected only from time step 12210 to tune the system pa-
rameters and applied the estimated parameters to the later time step
12240. Here we assume that the time-varying flow field properties
will be changing slowly over the time interval and the parameters
estimated from the previous step should be applicable to the next
with only a slightly increased error rate. The results for these are
indicated by “Our” and “AdaBoost” in Figure 8c. From Figure 8b

and 8c, it can be observed that even if the parameters are tuned at
each time step or if the parameters are estimated from an initial time
step and re-applied to a later time step, our method outperforms the
AdaBoost method.

We now discuss the performance of different components in our
proposed framework as shown in Table 1. Here, TC refers to Ta-
pered Cylinder data set and RFS denotes the Rearward Facing Step
data set. In the first column, we present the time taken to gener-
ate the four vortex detection methods from the curvilinear grid data
sets. The time taken at this stage depends on the data size and com-
plexity of the gradient computation. The next stage denotes the
mutual information maximization stage that is used to convert the
four vortex oracles to fuzzy input. We used the fininsearch function
provided by Matlab at this stage. The next column shows the major-
ity voting scheme which polls the four oracles to decide the certain
region. The last column presents the time for distance computation
of the uncertain points from the more certain vortex regions. This
stage uses the NVIDIA Thrust library to exploit GPUs for efficient
distance computation. The computation time of this stage depends
on the data size and the number of uncertain points together with
the more certain clusters. Using fininsearch, this stage requires four
to five iterations for our case.

Table 1: Running time for different components of the framework.

Vortex Data | Mutual Information | Majority Vote | Cluster Distance
Generation Maximization Scheme Computation
(Sec.) (Sec.) (Sec.) (Sec.)
TC 33.8 4.5 0.007 24.5
RFS 61.3 83 0.021 71.7

8 LIMITATIONS AND FUTURE WORK

Our system produces improved results when applied on two differ-
ent data sets. There still remain some issues and future improve-
ment possibilities. The first concern is the reliance on the domain
expert’s labels to optimize the system parameters. Currently, for a
given data set, we have used labels from a single expert. If there
are multiple experts providing their labels, then we will need to for-
mulate a strategy to combine the experts’ labels. We keep this as a
part of our future work. Also, the process of generating the labels
involves manual work from the domain expert and we intend to al-
leviate this problem by designing more improved systems that can
make domain expert’s work easier by automatically determining the
appropriate reference frame, which is a non-trivial research topic.
Finally, we currently process all the time steps individually and we
do not use the fact that detecting vortices from later time step can
benefit from the results at a previous time step. As a next step,
we want to extend our work to track the vortex features over time
and analyze how they evolve. Eventually, we want to incorporate
our proposed distance-based feature in machine learning methods
to enhance the accuracy of the vortex detection process.



9 CONCLUSION

In this work, we propose a novel vortex analysis framework that
examines the uncertainty contained in four existing local vortex de-
tection methods and combines them to perform the vortex analysis
and detection in a more robust way. Since there are multiple vor-
tex detectors available to us, we use these detectors as the inputs
to our system and model the uncertainty of their predictions us-
ing a sigmoid function to convert the outputs of these detectors to
a possibility value range of 0 and 1. These possibility values de-
note the certainty that a point will be classified as a part of a vortex
region. We apply a voting algorithm to classify the more certain
vortex regions and cluster these regions based on their spatial loca-
tions. Next we introduce the use of spatial proximity and classify
the remaining points as vortex or non-vortex based on their dis-
tance from the closest vortex cluster. We worked closely with a
domain expert and used the data marked by the expert to compare
our method with other existing methods. We applied our method
on multiple data sets and time steps and showed that the accuracy
can be improved by systematically analyzing these flow structures.
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