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Abstract

The modeling of spatial discontinuities for problems such as surface recovery, segmen-
tation, image reconstruction, and optical flow has been intensely studied in computer vision.
While “line-process” models of discontinuitieshave received a great deal of attention, there has
been recent interest in the use of robust statistical techniques to account for discontinuities. This
paper unifies the two approaches. To achieve this we generalize the notion of a “line process”
to that of an analog “outlier process” and show how a problem formulated in terms of outlier
processes can be viewed in terms of robust statistics. We also characterize a class of robust sta-
tistical problems for which an equivalent outlier-process formulation exists and give a straight-
forward method for converting a robust estimation problem into an outlier-process formulation.
We show how prior assumptions about the spatial structure of outliers can be expressed as con-
straints on the recovered analog outlier processes and how traditional continuation methods can
be extended to the explicit outlier-process formulation. These results indicate that the outlier-
processes approach provides a general framework which subsumes the traditional line-process
approaches as well as a wide class of robust estimation problems. Examples in surface recon-
struction, image segmentation, and optical flow are presented to illustrate the use of outlier pro-
cesses and to show how the relationship between outlier processes and robust statistics can be
exploited. An appendix provides a catalog of common robust error norms and their equivalent
outlier-process formulations.
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1 Introduction

The modeling of spatial discontinuities for problems such as surface recovery, segmentation, image

reconstruction, and optical flow has been intensely studied. In particular “line-process” models of

discontinuities have been popular due, in part, to their intuitive and physical appeal, as well as their

ability to model spatial properties of discontinuities. More recently, the use of robust statistics in

computer vision has become popular and, at first glance, it is not at all clear that line-process ap-

proaches and robust statistics have anything in common. The goal of this paper is to show that they

are closely related and that, by bringing this relationship to light, each approach can benefit from

the other. Moreover, we propose a framework based on analog or binary “outlier processes” which

subsumes traditional line process approaches and a wide class of robust estimation approaches. In

doing so we clarify, unify, and extend previous work on line processes and robust statistics, we pro-

vide new tools for modeling discontinuities, and we provide new computational tools for solving

optimization problems involving discontinuities and noise.

We first generalize the notion of a “line process” to that of an “outlier process” and show that a

problem formulated in terms of outlier processes can be viewed in terms of robust statistics. While

line processes have been used to account for spatial discontinuities, outlier processes are intended

to be more general and can also be used to cope with gross measurement errors encountered in

problems like stereo and optical flow. The main contribution of this paper is to characterize a class

of robust statistical problems for which an equivalent outlier-process formulation exists and derive

a straightforward mechanism for converting the robust estimation problem to the outlier-process

problem. The resulting formulation, with explicit outlier processes, is more general than the original

robust estimation problem. The mechanism has been used to recover outlier process formulations

for common robust estimators including those based on Huber’s minimax [Huber, 1981], Andrews’

sine [Andrews et al., 1972], Tukey’s biweight [Beaton and Tukey, 1974], and Hampel’s three-part

redescending M-estimator [Hampel et al., 1986].

A number of authors have noted the similarity between traditional line processes and outlier

rejection in robust statistics [Förstner, 1989; Geiger and Pereira, 1992; Geiger and Yuille, 1991;

Geman and Reynolds, 1992] and that there are a number of ways to convert a problem posed in

terms of line processes into a particular type of robust estimation problem. To make the connection

1



complete, however, we must be able to go in the other direction: that is from a robust estimation

problem to a line-, or outlier-, process problem. The mechanism presented here completes this con-

nection.

This relationship is of more than just theoretical interest. In converting from a line-process prob-

lem to a robust estimation problem the ability to explicitly model the spatial organization of the

line processes is lost. What is gained is typically an efficient optimization scheme such as Grad-

uate Non-Convexity (GNC) [Blake and Zisserman, 1987] or deterministic annealing [Geiger and

Girosi, 1991]. We show that the relationship between line-processes and robust statistics can be

exploited to have the best of both worlds. By applying our mechanism to a particular class of func-

tions (like the GNC and mean-field functions) we can recover analog outlier processes that retain

the continuation parameters present in the original function. This means that standard continuation

methods can be used to optimize problems involving these explicit outlier processes. Moreover, be-

cause the processes are explicit, we can reintroduce the spatial coherence constraints on the outliers

which typically must be dropped to derive efficient continuation methods.

In the following section we review previous work on regularization with discontinuities, appli-

cations of robust statistics in computer vision, and attempts to bring the approaches together. Sec-

tions 3 and 4 provide brief introductions to line processes and robust statistics respectively. Section

5 unifies the line process and robust estimation approaches. Some practical benefits of the explicit

relationship are described in Section 6 where we show how spatial interactions can be added to the

recovered outlier process and how continuation methods can be extended to these formulations with

explicit spatial organization constraints. Section 7 provides two sets of examples that illustrate the

relationship between robust statistics and outlier processes with examples chosen from image re-

construction and optical flow estimation. In Appendix A, we provide a catalog of common robust

error norms found in both the computer vision and robust statistics literature along with their outlier

processes formulations.
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2 Previous Work

Line Processes in Early Vision

Many problems in early vision are ill-posed [Hadamard, 1923] in that they are underconstrained

and sensitive to noise, thus making it difficult, or impossible, to find unique solutions. It is com-

mon to regularize these problems by introducing additional constraints that encode prior assump-

tions, thereby reducing the class of admissible solutions [Bertero et al., 1988; Marroquin et al.,

1987]. In particular, it is common in recovery problems to introduce a spatial coherence assump-

tion which expresses prior knowledge about surfaces in the scene. The common assumption of

spatial smoothness is frequently violated in problems involving image segmentation, surface re-

covery, optical flow, stereo, and image restoration. Performing regularization in cases where the

data is spatially discontinuous has received a great deal of attention [Blake and Zisserman, 1987;

Geman and Geman, 1984; Marroquin et al., 1987; Mumford and Shah, 1985; Terzopoulos, 1986].

Geman and Geman [1984] introduced the notion of a binary “line process” for modeling spatial

discontinuities in image brightness. Working in the framework of Markov random fields (MRFs),

they formulated constraints on the local spatial organization of discontinuities. These constraints,

defined as “clique energies”, were designed to prefer physically plausible configurations of discon-

tinuities; for example, enforcing continuation. This simple and powerful idea has been applied to

many problems that require the recovery of piecewise smooth regions; these include image restora-

tion [Chou and Brown, 1990; Geman and Reynolds, 1992; Geman and Geman, 1984] texture seg-

mentation [Derin and Elliott, 1987; Geman et al., 1990], medical image reconstruction [Geman

and McClure, 1987; Hebert and Leahy, 1989; Lee et al., 1993], surface recovery from depth data

[Marroquin et al., 1987], and dense optical flow estimation [Black and Anandan, 1991; Konrad and

Dubois, 1988; Murray and Buxton, 1987; Tian and Shah, 1992]. Note that while restoration and

medical image reconstruction problems involve blurring via point spread functions, surface recon-

struction problems do not. Furthermore, texture segmentation and optical flow problems involve

hypothesis testing and brightness constancy energy terms respectively. However, the recovery of

piecewise smooth regions using regularization with line processes is common to all of these prob-

lems. Unfortunately, the introduction of line processes results in a non-convex optimization prob-

lem which Geman and Geman solved using an expensive stochastic minimization procedure.
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If no spatial constraints are imposed on discontinuities, Blake and Zisserman [1987] showed

that the binary line processes can be eliminated from the optimization problem by minimizing over

them. The result is an objective function containing an energy functional, or � -function, which en-

forces spatial smoothness as long as neighboring points are “similar enough”. Beyond some thresh-

old however, spatial smoothness is no longer enforced. This is the notion of a “weak constraint” as

introduced by Hinton [1978].

The weak constraint approach still requires minimizing a non-convex objective function, but

Blake and Zisserman showed how their � -function could be approximated by the introduction of

a “continuation parameter” which can be used to adjust the “shape” of the function. Using this

parameter, they devised a continuation method called Graduated Non-Convexity (GNC) in which

the continuation parameter is adjusted to construct a convex approximation to the original objective

function; this approximation is readily minimized. They construct a sequence of increasingly good

approximations to the original objective function and minimize each beginning with the previous

solution.

Other continuation methods have been described by Leclerc [1989] and by Geiger and Girosi

[1991] who derive their � -function using a mean-field approximation to the stochastic MRF model.

These continuation methods are in the same vein as various “scale-space” and diffusion approaches

[Perona and Malik, 1990; Shah, 1991]. In other related work, it has been shown that these weak-

continuity approaches can be implemented in hardware using analog resistive networks [Harris

et al., 1990].

Robust Statistics in Early Vision

Separately, the field of robust statistics [Hampel et al., 1986; Huber, 1981] has developed methods

to address the fact that the parametric models of classical statistics are often approximations of the

phenomena being modeled. In particular, the field addresses how to handle outliers, or gross errors,

that do not conform to the statistical assumptions. While most of the work in computer vision has

focused on developing optimal strategies for exact parametric models, there is a growing realization

that we must be able to cope with situations for which our models were not designed.

Many robust statistical techniques have been applied to standard problems in computer vision

[Meer et al., 1991; Robust Workshop, 1990; Schunck, 1990]. There are robust approaches for per-
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forming local image smoothing [Besl et al., 1988], classification [Chen and Schunck, 1990], sur-

face reconstruction [Sinha and Schunck, 1992], segmentation [Meer et al., 1990], pose estimation

[Kumar and Hanson, 1990], edge detection [Lui et al., 1990], structure from motion or stereo [Tiru-

malai et al., 1990; Weng and Cohen, 1990], and optical flow estimation [Black and Anandan, 1991;

Black and Anandan, 1993b; Schunck, 1989]. Only recently have robust techniques been applied to

problems of regularization with discontinuities.

Shulman and Hervé [1989] point out that spatial discontinuities can be viewed as outliers and

they formulate the regularization of optical flow using Huber’s minimax robust estimator [Huber,

1981]. In doing so, they derive a convex optimization problem. Regularization with discontinuities

has also been performed using robust error norms with redescending influence functions [Black

and Anandan, 1991; Black, 1992; Black and Anandan, 1993b]. These error-norms result in a non-

convex optimization problem but have better outlier rejection properties than Huber’s estimator.

Unifying the Approaches

Recently, a number of authors have taken steps towards unifying line-process approaches, robust

estimation, and continuation methods. Geiger and Yuille [1991] formulate the image segmentation

problem with a binary data process to account for gross measurement errors and use mean-field

techniques [Geiger and Girosi, 1991] to integrate out both the data and line processes. They point

out that the resulting objective function has the same form as robust estimation techniques but they

do not formalize the relationship between the approaches.

Geman and Reynolds [1992] provide another piece of the puzzle. They introduce analog line

processes with penalty functions and show how minimizing over the analog processes produces par-

ticular error norms (or � -functions); this generalizes the approach of Blake and Zisserman [1987].

They also specify conditions on a � -function that must be satisfied if it is to have an equivalent

line-process formulation. We provide a constructive proof of these conditions and make explicit

the mechanism for recovering the analog process. We also extend their results to include a data

process to account for measurement errors and to include � -functions such as the GNC function

that contain continuation parameters.

Finally, Rangarajan and Chellappa [1993] show how an analog line process can be recovered

for a general class of � -functions. They derive an analog process for the GNC function and show
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how the penalty function retains the continuation parameter of the � -function. They then add spatial

interactions among the analog line processes to perform hysteresis and non-maximum suppression.

The control parameter can be used to extend continuation methods to the case where there is an

explicit line process with spatial interactions. As with the Geman and Reynolds result, Rangarajan

and Chellappa do not address the robustness of the data term nor do they connect the approach

to robust estimation. Black [1992] introduces analog “outlier processes” and exploits the results

of Rangarajan and Chellappa [1993] to “close the loop,” showing how to convert between robust

estimation problems and outlier process formulations.

3 Line Processes

Many “reconstruction” problems in computer vision are initially posed as least-squares estimation

problems. For example, consider the simple problem of reconstructing a smooth surface u given a

set of noisy measurements d. Assume that the data is an ����� image of sites
�

, and each pixel (or

site), ��� �
, has a set of neighbors �	��
� . For a first-order neighborhood system, 
�� , these are just

the four nearest neighbors of � on the grid.

The reconstruction problem can be formulated using a data term, ��� , that enforces fidelity to

the measurements and a smoothness, or regularization term, ��� , that embodies assumptions about

the spatial variation of the data:

�����
u

��� u � d ��� �	�	� u � d � �!�"�#� u �$�
� %�'& �

( �*)+��,.-/�0�21��435%6 &8789 �')+��,.) 6 �21;:'� (1)

where 3 is a constant that controls the relative importance of the two terms, - � is the measurement

at � , and ) � is the reconstructed estimate at � .
The first term ensures that the recovered surface is faithful to the data, while the second term

encodes our prior assumption that surfaces vary smoothly. Natural scenes, however, are typically

only smooth locally and contain discontinuities in depth at surface boundaries.

For illustration consider the “wedding cake” in Figure 1a in which there are surfaces at three

distinct depths. Figure 1b shows the image contaminated by uniform random noise and a small

number of “outliers”, or gross errors. The least-squares approach smooths the data removing the
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a b c

Figure 1: Surface reconstruction example (see text); (a) Original surfaces. (b) Corrupted surfaces.
(c) Least-squares recovery. The top row shows a plot of the surfaces, while the bottom row shows
the depth encoded as an intensity image (with near surfaces being brighter).

noise but in the process obscures the depth discontinuities present in the original image as shown

in Figure 1c.

Adding a spatial line process allows us to recover piecewise smooth surfaces. To do so, we

define a dual lattice, l, of all nearest neighbor pairs �'�/� �$� in
�

and minimize the following objective

function:

� � u � d � l � � %�'& �

��
�*) � ,.- � � 1 �43 %6 & 7 9

( �') � , ) 6 � 1�� ��� 6 ����� � ��� 6 �':
	� � (2)

where the � ��� 6 � l takes on values �� � ��� 6 ��� for some positive constant � (typically � ��� ).
The line process indicates the presence � � ��� 6��  � or absence � � ��� 6�� � � of a discontinuity between

neighboring sites � and � . The function ��� � ��� 6 � can be thought of as the “penalty” for introducing

a discontinuity between � and � . � The penalty function typically goes to 1 as � ��� 6 tends to 0 and�
For a binary line process it is more common to write the smoothness term as�������� "!$#&%('")*!$#

where ) is a constant and ! #,+ � means a discontinuity exists; see, for example, [Blake and Zisserman, 1987]. We find
it convenient to take the line process to be - + ���� .!/% and generalize the penalty term to be some function, 0 , of - .
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Figure 2: An example penalty function, ��� � ��� 6 � , for an analog line process.

a b c

Figure 3: Surface Reconstruction with a spatial line-process. (a) Surface plot. (b) Height plotted
as intensity. (c) Spatial discontinuities (outliers); black means that there is a discontinuity.

��� � ��� 6 � �  when there is no discontinuity ( � ��� 6 � � ). Thus, when no discontinuity is present, the

smoothness term has the original least-squares form, but when a discontinuity is introduced, the

smoothness term is dominated by � , regardless of the spatial error. An example penalty function

is shown in Figure 2, where � � � � � � � � , � � 1 .
Minimizing this new objective function with respect to u and l gives a piecewise smooth surface

with breaks where the spatial gradient is too large. Figure 3 illustrates how the approach preserves

the discontinuities between layers of the wedding cake, but the results also illustrate how the sim-

ple line process allows the introduction of spurious spatial discontinuities. The quadratic data term

draws the solution towards the data outliers and the spatial term allows discontinuities to be intro-

duced to best fit the outlying measurements.
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4 Robust Statistics

This section provides a brief introduction to robust estimation. For mathematical details the reader

is referred to [Hampel et al., 1986; Huber, 1981; Rousseeuw and Leroy, 1987] and for applications

in computer vision see [Robust Workshop, 1990; Meer et al., 1991]. What we focus on here are the

relationships between robust error norms and line processes and the heuristic application of robust

� -functions for outlier rejection.

As identified by Hampel et al. [1986, page 11] the main goals of robust statistics are: “(i) To

describe the structure best fitting the bulk of the data, (ii) To identify deviating data points (outliers)

or deviating substructures for further treatment, if desired.” To state the issue more concretely, ro-

bust statistics addresses the problem of finding the values for the parameters, a � (���� ������� � � � : , that

provide the best fit of a model, u �'�	� a � , to a set of data measurements, d ��
 - � �$- � ������� �$-/�� , in cases

where the data may be corrupted by gross errors.

In fitting a model, the goal is to find the values for the parameters, a, that minimize the size of

the residual errors �'- � , u �'�	� a � �
�����

a
%�'& � �#�*- � , u �*��� a �$��� � �$� (3)

where �+� is a scale parameter, which may or may not be present, and � is our error norm. When the

errors in the measurements are normally distributed, the optimal � -function is the quadratic

�#�'- � , u �'�	� a � ��� � � � �'- � , u �'�	� a � � 1� � 1� � (4)

which gives rise to the standard least-squares estimation problem. Minimizing (3) results in an

M-estimate since this corresponds to Maximum-likelihood estimation. The choice of different � -

functions results in different robust estimators and the robustness of a particular estimator refers to

its insensitivity to outliers, or deviations, from the assumed statistical model.

4.1 Robust Estimators

The least-squares approach is notoriously sensitive to outliers; the problem being that outliers con-

tribute “too much” to the overall solution. Outlying points are assigned a high weight by the quad-

ratic � -function (see Figure 4a). To analyze the behavior of a � -function, we take the approach of
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Figure 4: Quadratic � -function � � � and � -function ��� � .
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Figure 5: Huber’s min-max estimator. � � � � -function, ��� ��� -function.

Hampel et al. [1986] based on influence functions. The influence function characterizes the bias

that a particular measurement has on the solution and is proportional to the derivative, � , of the

� -function. Consider, for example, the quadratic � -function

�#��� � ��� 1 � � ��� � � � � � (5)

For least-squares estimation, the influence of outliers increases linearly and without bound (Figure

4b).

To increase robustness, an estimator must be more forgiving about outlying measurements; that

is, it should increase less rapidly than � 1 . One approach is Huber’s minimax estimator [Huber,

1981] (Figure 5):

���;�	� � �

 � 1�� �� �  � � � � � �  �� � � � � ���� � ��� ��� � �


 � �  � � � � �  �
sign ��� � � � ���� � (6)

The minimax estimator 1 has a � -function that increases like � 1 for small errors while for larger

errors it increases like
� � �

.� The minimax � -function is often written as ��� �&� % +������ ��� � �"! # �&���  ���% % .
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Figure 6: Lorentzian. � � � � -function, ��� � � -function.
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Figure 7: Skipped Mean (truncated quadratic). � � � � -function, � � ��� -function.

Robustness can be increased further by using a � -function that falls away from the quadratic

more quickly. Consider the following Lorentzian estimator:

�#�	� ����� � ������� � � ��	� ���
 1� � � ��� ������ � �� � 1 � � 1 � (7)

The � -function is plotted along with its � -function in Figure 6. Examination of the � -functions re-

veals that when the absolute value of a residual increases beyond a threshold its influence decreases.

Another class of estimators have influence functions that go to zero; that is � ��� � �  , � � �����
for some positive

�
. A common example of these redescending estimators is the skipped mean

[Hampel et al., 1986] (Figure 7):

�#��� ��� � � 
 � 1 if
� � ��� � � ,� otherwise,

� ��� ��� ��� 
 � � if
� � ��� � � , otherwise.

(8)

The � -function is the truncated quadratic commonly used in computer vision [Blake and Zisserman,

1987].
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4.2 Robust Regularization

We now apply the robust estimation technique to our least-squares formulation of the surface re-

covery problem

� � u � d � � %�2& �
( �') � ,.- � � 1 �43 %6 & 7 9 �*) � ,.) 6 � 1 : �

The first term may be violated when our model of the data is not accurate. For example, when

computing stereo correspondence or optical flow the data term embodies an assumption of “data

conservation;” that is, a portion of the scene visible in one image is visible in the other stereo image

or at the next time instant. This assumption may be violated at depth discontinuities in the scene

and the resulting measurements at these locations will be erroneous. Similarly, the spatial term

assumes that within the neighborhood 
 � only a single surface is present and �*) � , ) 6 � 1 will be

small. Near a surface boundary, some of the spatial errors will be large; these should be rejected as

outliers.

Our approach is to replace the quadratic � -function with robust � -functions � � and �/� for the

data and spatial terms. This gives the following objective function:

��� u � d � � %�'& �
(

� � �') � ,.- � ���#� � � 3 %6 & 7 9 �/�#�') � , ) 6 � � � �*: � (9)

This robust formulation of data and spatial terms has been applied to optical flow estimation [Black,

1992; Black and Anandan, 1991; Black and Anandan, 1993b], and it will be applied to image re-

construction later in the paper.

5 Unifying Robust Estimation and Outlier Processes

This section unifies the robust estimation approaches described above and traditional line-process

approaches. First we introduce the notion of an outlier process which is a generalization of the line

process and can be applied to both data and spatial terms. We then show how these binary or analog

outlier processes can be eliminated in the same way that line processes are eliminated and how this

results in a robust estimation problem. Finally we derive a mechanism for converting robust � -

functions into outlier process, thus making the connection complete.
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5.1 Outlier Processes

Recall the line-process formulation of the surface recovery problem

� � u � d � l � � %�2& �

��
�*) � ,.- � � 1 � 3 %6 &87 9

( �*) � ,.) 6 � 1 � ��� 6 � � �#� � ��� 6 �': 	� � (10)

where � ��� 6 is an analog line process, and where ��� is a penalty term. This formulation accounts for

violations of the spatial smoothness term, but does not account for violations of the data term. As

mentioned in the previous section, the data term, like the spatial term, is often only an approximate

model of the data noise process. To accurately recover structure in these situations, the outlying

measurements must be ignored [Black and Anandan, 1991; Geiger and Yuille, 1991; Shulman and

Hervé, 1989].

This prompts us to generalize the notion of a “line process” to that of an “outlier process” that

can be applied to both data and spatial terms. The motivation behind such a generalization is to

formulate a process that performs outlier rejection in the same spirit as the robust estimators do.

The recovery problem is then reformulated using outlier processes as follows:

� � u � d � l � m � � %�'& �

��
�*) � ,.- � � 1�� � ��� �	� � � � � 3 %6 & 7 9

( �') � ,.) 6 � 1�� ��� 6 ��� �#� � ��� 6 �': 	�.� (11)

where we have simply introduced a new analog process m and a new penalty term � � for rejecting

the measurement. This process allows us to ignore erroneous information from the data term. In

related work, Geiger and Pereira [1992] introduce a binary measurement process that they refer

to as the “sparse process”. They use the process to perform minimal visual encoding and note its

similarity to outlier rejection and robust statistics.

Returning to our surface reconstruction example, recall that the introduction of a line process

prevented smoothing over the layers in the wedding cake but that spurious discontinuities were

found near data outliers. We now consider the outlier-process formulation in which both data and

spatial terms are allowed to be violated. The recovered surface plot in Figure 8a is very close to the

original surface and the number of spurious spatial discontinuities is significantly reduced (Figure

8c). The data points which were treated as outliers are shown as black regions in Figure 8d.

13



a b

c d

Figure 8: Surface Reconstruction with both spatial and data outlier processes. (a) Surface plot. (b)
Height plotted as intensity. (c) Spatial discontinuities (outliers). (d) Data discontinuities (outliers).

5.2 From Outlier Processes to Robust Estimation

The outlier-process formulation leads to an expensive joint estimation problem where one not only

has to estimate u but also the outlier processes l and m. In the case of the simple binary line-process

formulation, Blake and Zisserman [1987] show how the line variables can be removed from the

equation by first minimizing over them. They obtain a new objective function that is solely a func-

tion of u. Exactly the same treatment can be applied to the general analog outlier-process version.

The optimization problem can be written as

�����
u �m � l

��
%�2& �

( �') � ,.- � � 1 � � � �"� � � � �': � 3 %�'& � %6 &87 9
( �*) � ,.) 6 � 1 � ��� 6 ��� �#� � ��� 6 �':��� � (12)

Notice that the measurement term does not depend on l and the smoothness term does not depend
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on m. Thus we can rewrite the equation as,

�����
u

����
��� �
m

%�'& � �') � ,.- � � 1 � � � �"� � � � �����43
� �
�����

l
%�2& � %6 &8789 �') � ,.) 6 �21 � ��� 6 ��� �+� � ��� 6 � �� �� � (13)

We can now minimize with respect to each process separately; that is for each term we compute:

�#��� � � ��������	�
� � �	� 1 � ����� � � �$� (14)

where � is the outlier process. Finally, we can rewrite the minimization problem as

��� �
u

��
%�'& � � �	�') � ,.- � � �43 %�'& � %6 & 7 9 �/�+�') � ,.) 6 � �� � (15)

Geiger and Yuille [1991] propose a similar formulation with a binary (as opposed to analog)

process for the data and spatial terms based on the formulation of Geiger and Pereira [1992]. They

then use mean-field theory techniques to average out the binary processes. As they point out, this

gives a robust estimation problem with the mean-field function as the robust error norm.

5.2.1 Example: Analog Outlier Process

Let us consider an analog outlier process with the penalty function from Figure 2 where .� � � �
and

����� � � � � � 1 � ����� � �
� � 1 � � � � � , � � 1 �

Minimizing � w.r.t. � , we take the partial derivative and set it equal to zero:�� � ����� � � � � � 1 �
� � , �

� � �  �
Solving for � , gives

� � �
�	� 1 � � � 1 �

Substituting � back into ����� � � � then gives

�#�	� � � � 1�	� � 1 �
which is a � -function proposed by Geman and McClure [1987]. Figure 9 plots � ��� � � � for various

values of the outlier process � and in bold, the infimum of this family of quadratics (i.e. �#��� � ).
15



0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

-4 -2 0 2 4

0.2

0.4

0.6

0.8

1

a b

Figure 9: Analog Outlier Process. (a). Penalty function. (b). Family of quadratics, the infimum of
which is the Geman-McClure � -function.

5.3 From Robust Estimators to Outlier Processes

To complete the relationship between � -functions and outlier processes we must go in the other

direction; that is, take an objective function written in terms of robust � -functions and derive a new

objective function which is written in terms of outlier processes.

Our goal is to start with an error norm �#�	� � defined in terms of some residual error � , where � ,

for example, might be the spatial gradient ) � , ) 6 or the data error ) � , - � , and we must introduce

a new variable .� � � � , which will be the outlier processes, so that the solution at the minimum

will be unchanged. This new objective function is

� ��� � � � � � 1 � ����� � ��� (16)

To achieve this for a particular function �#�	� � we must find the appropriate function ��� � � such that

minimizing ����� � � � gives the same solution as minimizing �#�	� � . We want the minimum w.r.t. � to

be the same for both �#��� � and � �	� � � � . Taking derivatives w.r.t. � and equating them, we get

��� ��� �� � � � � (17)

At the minimum � has the same form as the standard weight used in iteratively reweighted least-

squares (IRLS) approaches [Beaton and Tukey, 1974; Campbell, 1980]. But the IRLS approaches

stop here and minimize

%
�

� 1 �

where � is a function of � . This does not have the form of the objective function we want with � as

a variable and does not allow the addition of constraints on the the � ’s.
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We also require

�#��� � � ������ � � 1 � � ��� � ��� � (18)

Differentiating (16) w.r.t. � , we get

� 1 ��� � � � � �  � (19)

Substituting (17) in (19), we get

, �+1 � � � � ��� �	� �� � � (20)

We have to integrate (20) in order to obtain � . We now make a redefinition which considerably

simplifies the derivation of the functional form of ��� � � :
� �	� 1 �����	�� �#��� ��� (21)

After the redefinition, we get �
� �	� 1 � � ��
 �	� �� � (22)

and consequently (20) can be rewritten as

,"� 1 � � � � � � ��� 1 ��� � (23)

� can be obtained by integrating (23) w.r.t. � . This integral can be written in the form

��
�	� ��� � ��� � �	� � -��

by multiplying both sides of (23) by
� � � � � ��� 1 � (assuming for the moment that

�
� � ��� 1 ����  ):

 � � � � � �	� 1$� � � � � �	� 1$� -��+1 � 
,"�+1 � � � ���+10�2-��+1�� (24)

Integrating by parts (antiderivative), we get

��� � � �	� 1 � � � , � 1 � � �	� 1 � � � ��� 1 ��� (25)

We want to recover ��� � � . From (17) and (22), we get

� � ��� ��� �� � � �
� �	� 1 ��� (26)

Substituting this solution for � in (25), we get

��� � � � � � � � � ��� � � � ����, � � � � ��� � � � � � (27)
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if � � 
 � � � exists. Notice that � is defined in terms of
�
� (Equation (26)). For � to be an outlier process,

we want it to vary between 0 and 1, hence we require

� � �
���

� � � � � � � � ��� ��� � ���
���
	

�
� � � � �  �

To prove that (26) is indeed a minimum of � �	� � � � w.r.t. � , we require� 1� � 1 ����� � � � � � � � � � � ��� 1 � � �  � (28)

Differentiating (23) w.r.t. � , we obtain

� � � � � � ��� 1 � � � , ��
� � ��� 1 �

�  �
� �

� � �	� 1 � �  � (29)

This means that
� 
 
 ��� 1 ����  , satisfying the assumption necessary to derive (24).

The definition of ��� � � derived here is the same as that proposed by Geman and Reynolds [1992].

Similarly the condition in Equation (28) derived here implies that
�

must be concave; this is the

same requirement imposed by Geman and Reynolds. The derivation is summarized in Figure 10 as

a straightforward mechanism for converting robust formulations to outlier-process formulations.

A catalog of common robust � -functions and their outlier processes formulations is provided in

Appendix A.

5.3.1 Example

To illustrate the mechanism we consider the robust surface reconstruction example:

��� u � � %�'& �

��
�#�*) � ,.- � ���#� � �43 %6 &8789 �#�') � ,.) 6 ���+� � �� �

where � � and � � are scale parameters and where � is the Lorentzian � -function:

�#��� ����� � � � ��� � � �� � ���
 1� �

The first step is to define
�

:

� � � ��� ����� � � � � � �
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1. Define
� � � � � �#�

�
� ��� � where � is possibly scaled by a parameter � in

� .

2. Compute the first and second partial derivatives (
� 
 � � � and

� 
 
 � � � ) of
�

with respect to � .

3. If
� � � ��� � � 
 � � � � � , and� ��� ���
	 � 
 � � � �  , and� 
 
 � � � �  ,

then proceed, otherwise stop: � does not have a simple outlier process for-
mulation.

4. Define the outlier process � � � 
 � � � .
5. Solve � � � 
 � � � for � giving � � � � 
 � � � � � � .
6. Define: � � � � � � � � �, � � � � � � � 
 ��� � � � � �, � � � 
 ��� � � � ���
7. The new objective function is:

����� � � � � � � 1 � � ��� � �

Figure 10: A simple mechanism for recovering the outlier process from a robust � -function.

We then compute the first and second partial derivatives w.r.t. � :

� 
 � � ��� ��	� � �� 
 
 � � ��� , �
� � � � � 1 �

We observe that these satisfy the conditions in Step 3 of the mechanism and we can define � �� 
 � � � . Solving for � gives:

� � � � 
 � � � � � � � �
� , � �

Given � and � we can write the penalty function as

� � � � � , � � � � � � � � �� 
 � � , � , ����� � �

The penalty function is plotted in Figure 11a. The outlier-process formulation for the Lorentzian is
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Figure 11: Lorentzian outlier process. (a) Penalty function. (b) Infimum of � �	� � � ����� .

then:

����� � � ����� � �� � �� 
 1 � ����� � ���
This function is plotted (in gray) for various values of � in Figure 11b; the bold curve is the Lorent-

zian � -function which is the infimum of the family of quadratics.

We can now write the surface recovery problem using the Lorentzian outlier process as

��� u � m � l ��� � ���+� � � %�'& �

� � �� � 1� �') � ,.- � � 1�� � � � � � � � �
��3�%6 & 7 9

� �� � 1� �') � ,.) 6 � 1�� ��� 6 ����� � ��� 6 � � �� � (30)

where � is the penalty function defined above.

5.4 Discussion

This section has shown how to convert back and forth between a wide class of robust estimation

problems and outlier-process formulations. We have seen the intimate mathematical relationship

between the � -functions and their penalty functions � . This connection allows penalty functions to

be analyzed using the tools of robust statistics to reveal their outlier rejection properties. To develop

further intuitions about this relationship let us examine some different � -functions.

Figure 12 shows three different � functions. The linear � corresponds to the truncated quadratic

error norm (Equation 5). For this function the extremum points ( � ��� and � �  ) determine the

infimum leading to a binary outlier process. For all curves above this linear curve we have exactly

the same situation; ie. a truncated quadratic with a binary outlier process. The interesting penalty
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Figure 12: Various penalty functions.

functions are those that curve below the line; these determine � functions which smoothly introduce

outlier rejection. The more convex the � function, the more gradual the transition between inliers

and outliers.

A � -function can be found for all � -functions that fall away from the quadratic, but there are

some special cases. For � -functions whose influence functions redescend to zero, we get .� ��� � � �� . For non-redescending influence functions (eg. the Lorentzian, Huber’s minimax, etc.) we have� � � �
�
� ��� � � ��� indicating an infinite penalty for completely rejecting a residual.

Andrews’ sine [Andrews et al., 1972] is a common robust estimator that satisfies the criteria

for having an outlier process but, in this case, there is no closed form expression for the penalty

function. Still other functions are concave (
� 
 
 � � � �  ) only over some interval (eg. the GNC

function, Tukey’s biweight, and Andrews’ sine). This concave section determines the shape of the� -function since it determines the transition between the extrema � � � and � �  corresponding

to quadratic and constant sections of the � -function respectively. These and other functions are

considered in greater detail in Appendix A.

There are other approaches to robust statistics that have been applied to computer vision prob-

lems (see [Meer et al., 1991] for a review). One popular approach in computer vision is the least-

median-of-squares (LMedS) algorithm [Rousseeuw and Leroy, 1987] in which model parameters

are estimated by minimizing the median of the squares of the residuals

�����
a

med � �'- � , u �'�	� a � � 1 � (31)

The approach is typically more robust than the M-estimation approach described above since it can

tolerate data which contains up to 50% outliers. This approach, and others like it based on order
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�
��� � ��� � )��

�	��
 � 6 � ������
Figure 13: Cliques for spatial interaction constraints (up to rotation) at a site � . The ����
 � 6 cliques
are used for hysteresis and the � ������ cliques are used for non-maxima suppression.

statistics, do not appear to have clear connections to outlier-process formulations.

6 Exploiting the Relationship

In this section we exploit the relationship between robust estimation and outlier processes. We show

that the recovery of the outlier process allows the formulation of prior assumptions about the spatial

organization of outliers. We also show the extension of continuation methods to the analog outlier-

process formulation with these spatial constraints.

6.1 Adding Spatial Interactions

The previous sections have shown how robust estimation and outlier processes are closely related

and how we can often convert one formulation into the other. One motivation for recovering the

outlier process is that it allows us to incorporate into the objective function prior assumptions on the

nature of discontinuities. While numerous authors have proposed spatial coherence constraints for

discrete line processes [Chou and Brown, 1990; Geman and Reynolds, 1992; Geman and Geman,

1984; Murray and Buxton, 1987], we need to generalize these results to the case of analog line

processes.

We consider two kinds of interaction terms, hysteresis [Canny, 1986] and non-maximum sup-

pression [Nevatia and Babu, 1980]. Other common types of interactions (for example corners) can

be modeled in a similar way. The hysteresis term assists in the formation of unbroken contours

while the non-maximum suppression term inhibits multiple responses to a single edge present in

the data. Hysteresis corresponds to lowering the penalty for creating edges at a particular orienta-

tion non-maximum suppression corresponds to increasing the penalty for creating multiple edges

parallel at the same orientation.
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Consider the cliques of the form shown in Figure 13. We define a new term that penalizes the

configurations on the right in Figure 13 and rewards those on the left. We define a new term ���

which encodes our prior assumptions about the organization of spatial discontinuities

� � � l � � � %�2& �

��
,  � %����� 9	� � �", � ��� 6 � � �	, � � � 
 � � 

1 %� 9	���� � �", � ��� 6 � � �	, � 6 � � � �� � (32)

where the parameters
 � and


1 assume values in the interval

(  � � : and � controls the importance

of the spatial interaction term. We now minimize the following objective function which contains

the data term, spatial smoothness term, and the new spatial interaction term

��� u � d � m � l � � � � � u � d � m � �!�"�+� u � l � �.��� � l ��� (33)

Notice that the outlier-process formulation is more general than the robust formulation because

it makes the outliers explicit thus allowing additional constraints to be imposed on them. We doubt

that there is a simple robust analog of this outlier-process formulation with spatial interactions.

6.2 Continuation Methods and Outlier Processes

Recall the robust objective function (9)

��� u � d � � %�'& �
(

� � �') � ,.- � ���#� � � %6 &87 9 �/� �*) � ,.) 6 ���+� �*: �

This function may be non-convex depending on the choice of � -function. Continuation methods

provide one popular class of approaches for minimizing such non-convex functions. The idea is

to choose a � -function which has a control parameter that can be used to change the shape of the

function. This parameter is exploited to construct a convex approximation to the objective function

which can be readily minimized. The minimum is then tracked as the control parameter is adjusted

so that the objective function increasingly approximates the original non-convex estimation prob-

lem.

We can recover an analog outlier process for this type of � -function and the penalty function in

the outlier-process formulation retains the control parameter of the original � -function. This allows

us to apply continuation methods to the explicit outlier-process formulations, and to do so even in

the presence of spatial interactions. Below we illustrate by deriving an analog outlier process for

the GNC function.

23



-4 -2 2 4

0.2

0.4

0.6

0.8

1

-4 -2 2 4

-0.6

-0.4

-0.2

0.2

0.4

0.6

a b

Figure 14: GNC Function ( 3��  � � , �"�  � � ). (a) �#��� � 3 ��� � , (b) � , function.

6.2.1 Example: The GNC Function

Blake and Zisserman [1987] construct a piecewise polynomial approximation to the truncated quad-

ratic called the GNC function �

�#�	� � 3 ���8� �
���� ���
3 1 � 1 "� 3 1 � 1 � 	��
 	� 3 � � � � �� �	��� �,�� � � �43 1 � 1 � 	��
 	 � 3 1 � 1 � ��
 		� otherwise

(34)

�"�	� � 3 ���8� �
���� ���
� 3 1 � .� 3 1 � 1 � 	��
 	� 3 � sign ��� � � ��� �	��� �,�� �;3 � � � 	��
 	 � 3 1 � 1 � �
 		 otherwise

(35)

The parameter � , controls the shape of the � -function and as � � � the � -function approaches the

truncated quadratic. The � -function and its � -function are shown in Figure 14.

To recover a GNC outlier process we write down
� � � ��� � and its derivatives

� � � ���8���
���� ���
�
� � � � � � ���8�,�� � � � � ��

.� � � 	��
 		��
 	 � � � ��
 		
otherwise

� 
 � � ���8���
���� ���
�
� � � ��
 	� 	 , � �

.� � � 	��
 		��
 	 � � � ��
 		
otherwise

� 
 
 � � ���8���
���� ���

, �1 � 	�� �
 	�����

.� � � 	��
 		��
 	 � � � ��
 		
otherwise �

We see that
� ��� ��� � � 
 � � ��� � , � � � ���
	 � 
 � � ���  , and

�
is concave over the middle interval,�

The parameterization used here is from [Rangarajan and Chellappa, 1993].
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Figure 15: GNC penalty function and objective function (for � �  � � ).
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Figure 16: GNC Function. Dark indicates high values of the control parameter, � ; light indicates
low values of � . (a) The penalty function ��� � ���8� for the GNC outlier process. (b) The GNC- �
function.

satisfying Step 3 of the mechanism. Finally, deriving the penalty function we get

� � 
 � � � � � � � � � � ��� �
� � � � � 1 � (36)

� � � ��� � � � � �	, � �
� � � � (37)

� �	� � 3 ��� � � � � 3#1 �+1 � � ��� � ��� �$� (38)

where .� � � � . The penalty function is plotted in Figure 15 as is the objective function for various

values of � with 3 and � fixed. The GNC function is the infimum of the family of quadratics and is

displayed in bold. Notice that the mechanism has only transformed the middle section of the GNC�
function since this section contains all the information about the transition between the quadratic

and constant sections of the � -function. The quadratic and constant sections correspond to outlier

processes � � � and � �  respectively.

Notice that the penalty function, ��� � ��� � , retains the control parameter � . Figure 16 plots the
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GNC function and the corresponding penalty function for various values of � . As the value of �
increases, the GNC function approximates the truncated quadratic and correspondingly the

� � �	 �
	 ��� � � � � � , � �

and hence the � -function becomes linear and the objective function becomes:

����� � 3+� � 3 1 � 1 � � � �	, � � �

Notice that this is just the traditional binary line-process formulation. As � �  the penalty func-

tion becomes more curved and transition between the quadratic and the constant sections of the

� -function becomes correspondingly more gradual. This gradual slope can be adjusted until the

objective function becomes convex.

6.2.2 Continuation Methods and Spatial Interactions

By deriving penalty functions with continuation parameters we can apply standard continuation

methods to problems that involve spatial interaction of outlier processes. By adjusting the control

parameter we can begin minimizing an objective function that gives high penalties for introducing

outliers. This means that initially no outliers will be introduced and hence the spatial interaction

term will have no effect on the solution. The initial convex approximation will contain no outliers

and no spatial interactions, then by adjusting the control parameter, outliers begin to appear and

interact.

This is one of the by-products of the relationship between robust estimation and line processes.

We can begin with a robust estimation problem formulated using a � -function like the GNC func-

tion, construct an analog outlier process, and add interactions among the spatial outliers. We can

then employ the GNC continuation method in just the same way as before. The key difference is

that now we can make explicit the spatial interactions if they are important. In the following section

we will show experiments which illustrate this idea.

It should be noted that the mean field approach also allows one to add interactions [Geiger and

Girosi, 1991; Geiger and Yuille, 1991]. However, the approach does not allow us to start with an ar-

bitrary � -function like the Lorentzian and then add spatial interactions so that we inherit the specific

outlier rejection properties of the error norm.
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7 Outlier Processes: Experimental Results

This section illustrates the use of outlier processes and demonstrates how the outlier-process ap-

proach allows the introduction of additional constraints on spatial organization. The first two ex-

periments show how to take a robust estimation problem, recover an explicit outlier process, and

then add constraints on the spatial organization of the outliers. A third experiment shows how a

robust treatment can improve optical flow estimates by accounting for gross measurement errors as

well as spatial discontinuities.

7.1 Image Reconstruction

We consider the problem of fitting a piecewise smooth brightness model u to image data
�
. The

assumption of piecewise smooth brightness is frequently violated in natural images. In textured

regions and at intensity boundaries, where the brightness is not uniform, the use of a robust data

term allows us to detect and reject the measurements that violate the uniform brightness assumption.

Given an image brightness function
� � , � � �

, we want to recover a piecewise smooth surface

u that minimizes

� � u � � � � %�2& �
(

�#�') � , � � ���#� � � �
� %6 &87 9 �#�') � ,.) 6 ���+� �':*� (39)

where 
 � is the standard first-order neighborhood system, and where we take � to be the Lorentzian.

A two level continuation method was used in which the solution was found for a coarse approxima-

tion using � �	� � � and �+�#� � � , then a fine level was computed with � � � � � and � �#� � � . At each stage

the function was minimized using iterative coordinate descent. For this experiment � �	� � � ��� � �  ,
� � � � � ��� � �  , � � � � � ���� �  , � � � � � � � � � , and 30 iterations were used at each step in the continu-

ation method.

Figure 17 shows an image of Mission Bay in San Diego and the results of robust reconstruction.

Figure 17b shows the recovered piecewise constant brightness model which removes a significant

amount of the texture contained in the original image (Figure 17a).

We can detect which measurements were treated as outliers and had their influence reduced. The

point � where the influence begins to decrease occurs when the second derivative of the � -function
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a b

c d

Figure 17: Aerial Image Experiment. (a) Original image; (b) Reconstructed image; (c) Data out-
liers; (d) Spatial outliers.

is zero. For the Lorentzian, the second derivative� 1 �� � 1 � � �� � �
� � � � 1 , � 1 �
� � � 1 � � 1 � 1 �

equals zero when � ��� � � � . In the case of the Lorentzian, we say that a residual � is an outlier

if
� � ��� � � � .

Notice that the data outliers in Figure 17c correspond to the textured regions in the image. Figure

17d illustrates the spatial outliers corresponding to brightness changes in the recovered image.

7.1.1 Noisy Images

We now consider an image reconstruction problem in which the image has been significantly de-

graded by random noise. For comparison purposes, Figure 17 shows the original (noiseless) aerial
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c d

Figure 18: Degraded Image Experiment. (a) Corrupted image; (b) Reconstructed image; (c) Data
outliers; (d) Spatial outliers.

image. Figure 18 shows the same image degraded by additive white Gaussian noise (variance=175)

and the results of the robust reconstruction. All parameter settings were exactly the same for the

noiseless and noisy data. Visual inspection of the recovered image (in the noisy case) shows that it

is very similar to the reconstruction in the noiseless case. The spatial outliers are also very similar.

Notice, however, that there are significantly more data outliers which are introduced to reject the

added image noise.
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a d

b e

c f

Figure 19: Recovered outlier processes (Lorentzian function). Without spatial interactions: (a)
Reconstructed image; (b) Data outliers; (c) Spatial outliers. With spatial interactions: (d) Recon-
structed image; (e) Data outliers; (f) Spatial outliers.
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7.2 Recovering the Outlier Process

In the next experiment we used the mechanism in Section 5.3 to recover the outlier-process formu-

lation of the Lorentzian � -function (Figure 11). Recall, this gives the following objective function

� � u � m � l ���#�	���+� � � %�2& �

� � �� � 1� �') � ,.- � � 1 � � � ��� � � � �
� ���%6 &87 9 � �� � 1� �*) � ,.) 6 � 1 � ��� 6 ����� � ��� 6 � � �� � (40)

where ��� � � � � , � , � ��� � in the case of the Lorentzian.

We then minimize Equation (40) by alternatively solving for the outlier processes in closed form

and then minimizing with respect to u � using a coordinate-descent method while holding the outliers

fixed. The parameters are exactly the same as before; in particular we use exactly the same contin-

uation method with the explicit outlier-process formulation as was used in the robust formulation.

The solutions for the outlier processes are derived by differentiating w.r.t. each outlier process and

setting the result to zero. For the Lorentzian we get�� � � �	� � � � � � 1� � 1 � � 
 � � � � � 1� � 1 � �	, �
� �  � � �

� � 1� � 1 � � 1 �
where � is the outlier process and � is the appropriate residual.

The results are shown in Figure 19(a, b, c). Notice that the reconstructed image, the data out-

liers, and the spatial outliers are nearly identical to the robust formulation (Figure 18) as expected.

Small differences can be expected due to the slightly different optimization techniques.

Now that we have an explicit spatial outlier process we can introduce spatial constraints (Equa-

tion 32). We now minimize Equation (33) in exactly the same way as in the case without spatial

constraints, with all the parameters the same. The results in Figure 19 (d, e, f ) show that the in-

troduction of the spatial coherence constraints result in more extended and completed contours and

fewer “thick” edges.

7.3 Optical Flow

Weak continuity methods have been widely applied to the problem of estimating dense optical flow,

or 2D image velocity. Depth discontinuities in the scene, or the independent motion of objects,

give rise to optical flow fields that are piecewise smooth. While line processes and weak-continuity
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methods have been used to preserve flow discontinuities [Black and Anandan, 1991; Konrad and

Dubois, 1988; Murray and Buxton, 1987; Shulman and Hervé, 1989; Tian and Shah, 1992], less

attention has been paid to the measurement term and the assumptions it embodies. Let
� ��� ���+� �$� be

the image brightness at a point ��� ���#� at time � . The data conservation constraint can be expressed

in terms of the standard brightness constancy assumption as follows:

� �	� ��� � �$� � � ��� �!)�� � ���"� � � � � � ��� �$� � (41)

where �*) � � � is the horizontal and vertical image velocity at a point and � � is small. Taking the Taylor

series expansion of the right hand side, dropping terms above first order, and simplifying gives the

optical flow constraint equation
� � ) � � 
 � � � 6 �  �

where the subscripts denote partial derivatives of the image brightness. This brightness constancy

assumption is violated in cases of transparency, shadows, reflections, and motion discontinuities.

In these cases, erroneous measurements should be treated as outliers. �
To recover the optical flow we want to find the vector u � �') � � � at each image location that

minimizes the measurement error � � � � � ) � � 
 � � � 6 � while enforcing piecewise continuity. That

is we minimize

��� u � � %�'& �
(

� �	� � � � ) � � � 
 � � � � 6 � ���#� � � 3 %� &87 9 �/�+��� u � , u � � ���+�/�':'� (42)

where Black and Anandan [1993b] take � � to be the Lorentzian. The spatial term � �#��� u � , u � � ���+� �
enforces a piecewise-smooth flow field.

Here we briefly summarize some experiments with synthetic images (see [Black, 1992; Black

and Anandan, 1993b] for details). Consider the randomly textured image sequence shown in Figure

20 in which the right half of the image is translating one pixel to the left. The second brightness

image in the sequence has been corrupted with uniform random noise in the range
( , � � � � � � � � � : . We

compare the performance of three common approaches: a least-squares formulation (the standard

Horn and Schunck formulation [Horn and Schunck, 1981]) in which � � ��� � � �/�+��� � � � 1 , a version

with a quadratic measurement term ( � �	�	� ��� � 1 ) and robust smoothness term ( � � � Lorentzian)
	
The same types of violations occur in stereo correspondence problems.
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a b c

Figure 20: Random Noise Example. a) First random noise image in the sequence. b) True horizon-
tal motion (black � , � pixel, white � � pixel, gray �  pixels). c) True vertical motion.

(see, for example, [Harris et al., 1990]), and the robust formulation (both � � and � � Lorentzian).

All solutions were obtained by minimizing � � u � using the same coordinate descent procedure as

in the previous sections. For the robust approach we use the parameter settings suggested in [Black

and Anandan, 1993a]; 3 � � � � while, during the continuation method, � � varies linearly from��� � � �
to

� � � �
and � � varies linearly from � � � �

to  �  � � � �
.

The results are illustrated in Figure 21. The top row shows the horizontal motion and the bot-

tom row shows the vertical motion recovered by each of the approaches (black � , � pixel, white

� � pixel, gray �  pixels). Figure 21a shows the noisy, but smooth, results obtained by least-

squares; the purely quadratic solution attempts to be faithful to both the smoothness model and the

noisy data. Figures 21b shows that introducing a robust smoothness term alone causes the recov-

ered flow to be piecewise smooth, but that gross errors in the data can produce spurious motion

discontinuities. Finally, Figure 21c shows the improvement realized when outliers are rejected in

both the measurement and spatial smoothness terms. Figure 22 shows where the spatial and mea-

surement errors were treated as outliers (that is, where the absolute brightness and spatial errors

exceeded
� � �#� and

� � � � respectively).

8 Conclusion

The idea of weak continuity has had a great impact on many problems in early vision, including sur-

face recovery, segmentation, image reconstruction, and optical flow estimation. Within the decade
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a b c

Figure 21: Effect of robust data term. a) Least-squares (quadratic) solution. b) Quadratic data term
and robust smoothness term. c) Fully robust formulation.

since the publication of Geman and Geman’s paper [1984] describing “line processes” for image

restoration, the line process has become a nearly ubiquitous tool in early vision.

In the field of statistics, notions of robustness date back over one hundred years, but the 1960’s

and 1970’s saw consolidation of the field we know as robust statistics today and as characterized

by the work of Huber [1981] and Hampel et al. [1986]. Förstner [1987] was probably the first to

apply robust statistics to computer vision problems and, since then, there has been growing interest

in robust techniques.

We have shown in this paper that the unifying concept underlying the line-process and robust-

statistical approaches is the notion of outlier rejection. The generalization of line process to out-

lier processes makes the connection to robust statistics clear. Moreover, the elimination of the out-

lier processes by minimization (eg. Blake and Zisserman) or by integration (eg. Mean-Field ap-

proaches) provides the connection to robust estimation approaches based on influence functions

[Hampel et al., 1986].
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a b

Figure 22: Outliers in the smoothness and data terms. a) Spatial discontinuities. b) Data outliers.

This connection is comforting since it provides a connection between two different communi-

ties, but on its own, not revolutionary. For those interested in computer vision, the power hidden in

this connection lies in the ability to take a robust estimation problem and reformulate it as an equiv-

alent problem with explicit outlier processes. What this permits is the straightforward extension

of results from robust statistics to problems in vision. In particular, by recovering an analog out-

lier process we can enforce constraints on spatial continuity which are crucial for many problems.

Additionally, we can continue to use the continuation methods developed for solving non-convex

optimization problems to solve the robust formulations with explicit outlier processes.

Finally, the connection to robust statistics opens up a host of potentially new outlier process that

have specific outlier rejection properties that may be desirable. Our experiments indicate that these

connections are already paying off and that the outlier-process framework generalizes the work on

line processes and extends robust estimation techniques to cope with problems in early vision.
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A Catalog of Estimators and Outlier Processes

This catalog contains some of the common � -functions found in the computer vision and robust

statistics literature along with their outlier-process forms. It is not meant to be an exhaustive list

since new outlier processes can be easily derived using the method described in the paper. The

Lorentzian and the GNC outlier processes are derived in the text (Sections 5.3.1 and 6.2.1 respec-

tively) and are not repeated here.

The first five � -functions (Figures 23–27) are commonly used for robust estimation. The L1

norm and Huber’s minimax do not have redescending influence functions and the penalty for a dis-

continuity goes to infinity ( ����/� � � ). The functions of Tukey, Hampel, and Andrews are all

redescending and hence their
�

-functions are concave only over an interval. Hence all of these

functions are simple special cases of the general mechanism. Furthermore, Andrews’ sine does not

admit a closed form solution for � .

The following four � -functions (Figures 28–31) have appeared in the computer vision literature.

One of the simplest � -functions is that used by Geman and McClure [1987] for image reconstruction

(Figure 28). Leclerc [1989] derived another � -function by starting with a different formulation of

the smoothness term. Consider the objective function

��� u � d � � %�2& �

��
�') � ,.- � � 1 � � %6 & 7 9 � �	,�� �') � ,.) 6 � � �� �

where � is a constant and � ��� � is a delta function. Leclerc developed a continuation strategy by

approximating the delta function with a sequence of Gaussians of decreasing variance � � , where �

is a control parameter that is decreased from infinity to zero (see Figure 29). As � goes to zero, the

� -function approaches the delta function.

Geiger and Girosi [1991] derive an approximation to the truncated quadratic based on mean-

field theory. Instead of minimizing over the binary line processes as done by Blake and Zisserman,
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Figure 26: Hampel’s Function
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Figure 28: Geman and McClure Function
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Figure 29: Leclerc Function
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they integrate them out and derive the � -function in Figure 30. For small � the function behaves

like the quadratic while, as � goes to infinity, the function approaches the shape of the truncated

quadratic. Embedded in a continuation method, controlling � provides a deterministic annealing

scheme.

Finally, Geman and Reynolds [1992] use the � -function in Figure 31 for reconstructing degraded

images. In this case,
� 
 �� � � � , so we can not derive an outlier process between 0 and 1; instead

we take � �  .
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Figure 31: Geman and Reynolds Function
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