
IEEE Transactions on Neural Networks (in press)

A Lagrangian Relaxation Network for Graph Matching

Anand Rangarajan
Departments of Diagnostic Radiology

and Computer Science
Yale University

New Haven, CT 06520-8042
e-mail: anand@noodle.med.yale.edu

Eric Mjolsness
Department of Computer Science

and Engineering
University of California San Diego (UCSD)

La Jolla, CA 92093-0114
e-mail: emj@cs.ucsd.edu

Abstract

A Lagrangian relaxation network for graph matching is presented. The problem is formulated as

follows: given graphs
�

and � , find a permutation matrix � that brings the two sets of vertices into

correspondence. Permutation matrix constraints are formulated in the framework of deterministic
annealing. Our approach is in the same spirit as a Lagrangian decomposition approach in that the

row and column constraints are satisfied separately with a Lagrange multiplier used to equate the two

“solutions.” Due to the unavoidable symmetries in graph isomorphism (resulting in multiple global

minima), we add a symmetry-breaking self-amplification term in order to obtain a permutation matrix.

With the application of a fixpoint preserving algebraic transformation to both the distance measure

and self-amplification terms, we obtain a Lagrangian relaxation network. The network performs min-

imization with respect to the Lagrange parameters and maximization with respect to the permutation

matrix variables. Simulation results are shown on 100 node random graphs and for a wide range of
connectivities.

Index Terms: Deterministic annealing, free energy, permutation matrix, Lagrangian decomposition, al-
gebraic transformation, Lagrangian relaxation, graph matching, self-amplification, symmetry-breaking,
merit function.

1 Introduction

Graph matching is an important part of object recognition systems in computer vision. The problem of
matching structural descriptions of an object to those of a model is posed as weighted graph matching
[1]-[26]. Good, approximate solutions to inexact, weighted graph matching are usually required. Neural
network approaches to graph matching [6, 7, 8, 9, 11, 12, 28, 15, 23, 21, 25, 27] share the feature of other
recent approaches to graph matching [29, 30, 14, 31, 20, 24] in that they are not restricted to looking for
the right isomorphism. Instead, a measure of distance between the two graphs [32] is minimized. The
focus shifts from brittle, symbolic, subgraph isomorphism distance metrics [13, 33] to an “energy” or
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distance measure between graphs which is minimized by the correct correspondence of the vertex labels
of one graph with respect to the other. Subgraph isomorphism is a special case and is achieved when
the distance is zero.

Exact graph isomorphism is an open problem. It is not known to be either NP-hard or have a

polynomial time solution1 [37, 38]. In contrast, subgraph isomorphism is NP-complete [37, 39]. In
this paper, we are interested in exact graph isomorphism and matching as they seem to be problems
intermediate in difficulty. Our approach handles isomorphism and matching in the same manner. We
follow the deterministic annealing framework formulated in [40, 41]. This particular approach is useful
since it readily generalizes to inexact, weighted graph matching.

We set up our problem as follows: given graphs � and � , find a permutation matrix � that minimizes
the distance between the two graphs. A permutation matrix is a zero-one matrix whose rows and
columns sum to one. When the problem is made more difficult—subgraph isomorphism or inexact
graph matching—the permutation matrix constraints get modified. The rows and columns can add
up to one or zero. Permutation matrix constraints are formulated quite naturally in the framework of
deterministic annealing. The row or column constraints are winner-take-alls (WTAs). Our approach is in
the same spirit as a Lagrangian decomposition approach [42, 43] in that the row and column constraints
are satisfied separately with Lagrange multipliers used to equate the two “solutions.” Application of
a fixpoint preserving transformation [44, 45] to the graph matching distance allows us to express the
combination of the distance measure and the permutation matrix constraint using Lagrange parameters.

Due to the unavoidable symmetries involved in graph isomorphism (resulting in multiple global
minima), we add a symmetry-breaking self-amplification term [46] in order to obtain a permutation matrix.
The self-amplification term is similar to the hysteretic annealing performed in [47, 48] and is suited to the
deterministic annealing framework employed here. Unlike hysteretic annealing, the self-amplification
parameter is held fixed. A fixpoint preserving transformation is also applied to the self-amplification
term. With the application of the fixpoint preserving transformations to both the distance measure and
self-amplification terms, the energy function becomes linear in the two “solutions”. The two permutation
matrix variables can now be eliminated, considerably simplifying the energy function. Since the fixpoint
preserving transformations reverse the dynamics, a saddle point of the energy function is sought. The
resulting Lagrangian relaxation network is tested on the graph isomorphism problem with 100 node
random, undirected graphs and on the weighted graph matching problem with 100 node weighted,
random graphs and uniform noise added to the links.

In Section 2, we describe the deterministic annealing, Lagrangian decomposition approach to graph
matching. Using this approach, we derive the Lagrangian relaxation algorithm in Section 3. Experimen-
tal results for graph isomorphism and matching are presented in Section 4. We relate our approach to
Yuille and Kosowsky’s barrier function approach [49] in in Section 5.

1There is significant recent evidence indicating that graph isomorphism may not be NP-hard [34, 35, 36].
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2 Graph matching via deterministic annealing

2.1 Problem Formulation

The graph matching problem is formulated in terms of the adjacency matrices of the two graphs. Given
the adjacency matrices ����� and ����� of two graphs �	��
����� and ����������� respectively, the problem is to
find the permutation match matrix � such that the distance between the two graphs is minimized.
The adjacency matrices ����� and ����� of the two undirected graphs are represented as symmetric, sparse
matrices with zero diagonal entries. The problem is stated as follows:

min� � ���
�� � � ����� ������ !� � �!�"� �#����$% 2

(1)

subject to � � � ���'& 1 � � � � �(�)& 1

with ���(�*,+ 0 � 1 - . Equation (1) describes a distance measure between the two graphs � and � . While
the distance measure handles isomorphism and matching, these two cases should be differentiated.

For isomorphism, the adjacency matrices of the two graphs (as seen from the simple example below)
contain only zero-one entries. When a link exists between nodes “a” and “b”, the corresponding entry

����� is one, otherwise zero. When a correct isomorphism is found, � � & � � or � & �/. � � and the
distance measure in (1) is zero.

For matching, the adjacency matrices of the two graphs can be real-valued. Typically, the graphs are
derived from underlying patterns [9, 14, 24] using, for example, the Euclidean distance between feature
points. The distance measure in (1) may be non-zero expressing the fact that � is a distorted version of

� . (An example of weighted graphs arising from handwritten numerals is shown in Section 4.3.) The
distance measure in (1) corresponds to the following statistical generative model: randomly permute
the nodes of � and then add additive, white, Gaussian noise (AWGN) to the real-valued links. The

resulting expression 0 � � �1.2 �30 2 can be reduced to 0 � �4 � �50 2 using the fact that �1. � &76 for a
permutation matrix.

The distance measure in (1) contains the rectangle rule of graph matching. To see this, examine the
middle term of the distance measure �� ����� ����� �8�9� ���"�8� . Restricting the edges to be either zero or one, we
see that all four elements in this chain have to be “on” in order to secure a match. When this happens,
vertices “a” and “b” in � are matched to vertices “j” and “i” in � respectively and edges exist between
“a” and “b” and “j” and “i” in � and � respectively. This is depicted in Figure 1. The rectangle rule plays
an important role in subgraph isomorphism; here, one looks for the match matrix yielding the largest
number of rectangles [9].

Figure 1 about here
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2.2 A simple example

An example of isomorphic graphs is shown in Figure 2. For this example, we can generate the adjacency
matrices of the two graphs � (person) and � (face) as follows:

Figure 2 about here.

� &

�����������������������
�

0 1 0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 0

0 0 0 1 0 1 1 1 0 0
0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 1 1

0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0

������������������������
�

and � &

�����������������������
�

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 0 1 0

1 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 0

������������������������
�

The two graphs are also displayed in Figure 3. Note the similarities between Figure 2 and Figure 3.

Figure 3 about here.

The graph are planar enabling easy visualization. We ran the Lagrangian relaxation algorithm on the
two graphs displayed in Figure 3. Since there is a vertical axis of symmetry for both graphs, a number of
isomorphisms (multiple global minima) exist. Two isomorphisms obtained by our algorithm are shown
in Figure 4. The dotted lines in Figure 4 depict the correspondences between nodes in � and � . It is easy
to check that the correspondences represent true isomorphisms.

Permutations are natural representations of isomorphisms and can be equally well expressed as
lists or matrices. The example on the left in Figure 4 shows the list permutation � 0 � 9 � 1 � 8 � 7 � 6 � 5 � 4 � 3 � 2 �
indicating that node 0 in � matches to node 0 in � , 1 	 9, 2 	 1, 3 	 8 etc. Similarly, the example on the
right in Figure 4 shows the list permutation � 1 � 9 � 0 � 8 � 7 � 5 � 6 � 4 � 3 � 2 � indicating that node 0 in � matches
to node 1 in � and 1 	 9, 2 	 0, 3 	 8 etc. Both solutions are correct. A permutation matrix as the
name suggests is a matrix representation of permutation. It is a square zero-one matrix with rows and
columns summing to one. Below, we show both correct isomorphisms as lists ��
 � and matrices � � � .
The relationship between the permutation list and the permutation matrix is formally stated as follows:
If 
 �� � &�� ��� � � � * + 0 ������� ���  1 - , then ����� & 1, with all other elements of � ��� being zero. From this it
follows that in graph isomorphism, node � of � matches to node � in � when �,��� & 1.

Figure 4 about here.
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 & � 0 � 9 � 1 � 8 � 7 � 6 � 5 � 4 � 3 � 2 � 
 & � 1 � 9 � 0 � 8 � 7 � 5 � 6 � 4 � 3 � 2�

� &

�����������������������
�

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0

� ����������������������
�

� &

�����������������������
�

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0

� ����������������������
�

(2)

2.3 Lagrangian Decomposition

We now turn our attention to the constraints. The distance measure contains the match matrix � which
has to satisfy permutation matrix constraints. Besides the usual integrality constraint on the match
variables � � ��� * + 0 � 1 -�� , these constraints include row and column WTAs ( � � � ���'& 1 and � � � ���)& 1).
The constraints on � for graph matching are the same as the constraints for the traveling salesman
problem (TSP).

Neural net approaches (beginnning with the celebrated Hopfield-Tank network [50]) have typically
expressed these constraints via penalty functions. However, contrary to the standard penalty function
approach [51], the penalty function parameters are seldom varied. Regardless of the manner of constraint
satisfaction, the original discrete problem is converted into a nonlinear optimization problem, with the
match matrix assuming values inside the unit hypercube. The permutation matrix constraints get
transformed into doubly stochastic matrix constraints ( � � �!��� & 1, � � �!��� & 1 and �!����* � 0 � 1 � ). An
� log � � ��� � 1  � � log � 1  � � barrier function constrains the match matrix to be inside the unit hypercube.
Gradually changing the barrier function parameter is identical to mean-field annealing (MFA) [52, 53].

Beginning with Kanter and Sompolinsky [54], several authors [55, 40, 56, 57, 58] have noted that a
more compact representation of the WTA constraint is available via what is known as a Potts glass. The
Potts glass approach is also a mean field method. This method utilizes the fact that there are only �
configurations (and not 2 � ) satisfying the WTA constraint ��� ��� � & 1 � � � * + 0 � 1 - � . The WTA constraint
is kept satisfied in a soft manner by having the mean field variables sum to one ��� � � � & 1 � and is termed
softmax [59]. However, the two WTA constraints required by the doubly stochastic matrix cannot be kept
simultaneously satisfied. (Despite having relaxed the integrality constraint, we shall continue to refer
to the row and column constraints as WTAs.)

The basic idea in this paper is to start with two match matrices �
	 1 ��(� and ��	 2 ��(� which have the
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respective properties � � � 	 1 ��(� & 1 � and � � � 	 2 ���� & 1 (3)

always satisfied. Two softmax Potts glasses are used. Assuming that the claim in (3) can be established,
the new objective is

min���
1 ��� ���

2 �
� � � 	 1 � � � 	 2 � � & � ���

�� � � � ��� ��	 1 ����  � � ��	 2 ��9� � ��� $% 2

(4)

subject to ��	 1 ���� & ��	 2 ��(� � (5)

The constraint in (5) is set up using a Lagrange parameter � . This technique of having two copies of the
same variable satisfy different constraints and subsequently equating them is referred to as Lagrangian
decomposition in the operations research literature [42, 43].

We now return to our simple person-face example of the previous section. One possible � 	 1 � and

� 	 2 � generated from our simple graph isomorphism example is shown below.

� 	 1 � &

�����������������������
�

0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 1 0

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

� ����������������������
�

and � 	 2 � &

�����������������������
�

0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

� ����������������������
�

(6)

While the two match matrices are somewhat similar, they violate the row and column constraints

respectively. The columns of � 	 1 � sum to one, whereas the rows of � 	 2 � sum to one. Clearly, if

our Lagrangian relaxation network converges to this particular � 	 1 � and � 	 2 � , it has not produced a
permutation matrix. This can happen if and only if the Lagrange parameter � does not converge to its
correct value.

Our energy function is constructed with four ingredients: (i) the graph matching distance measure,

(ii) Lagrangian decomposition with the twin softmaxes � 	 1 � and � 	 2 � , (iii) equating the two “solutions”
via the Lagrange parameter � and (iv) a self-amplification term ���2 � ��� ����� (1  ����� ) � with a parameter
	 . In the next section, we present the free energy with the above four ingredients.
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2.4 A Free Energy from Statistical Physics

First, we introduce the machinery of Gibbs distributions [60]. A Gibbs probability distribution is specified
by an energy function ����� � :

Pr ��� & � � & 1� ��� � exp (  ��5����� � ) (7)

where � is the inverse temperature to be used subsequently in the deterministic annealing procedure. In
(7),

� ��� � is the partition function which is a sum over all configurations of � � � ��� � & �	� exp [  ��5����� � ] � .
Rewriting (7), we get  1� log (

� ��� � ) & ����� �� 1� log (Pr ��� & � � ) � (8)

Taking expectations (8) and noting that the left side remains the same, we get

 1� log (
� ��� � ) & � � Pr ��� & � �9� �
� �  1� � � Pr ��� & � � log (Pr �
� & � � ) �

This is a well known statistical physics identity [61] and immediately leads to the definition of the free
energy:

� ��� � def&  1� log (
� ��� � ) &��� ( ����� � )  1� � ��� � (9)

where � is the expectation operator and
� ��� � is the entropy. As the temperature is reduced (and

fewer configurations become likely) the entropy decreases to zero. Also, the expected value of the
energy approaches the minimum value of the energy function. Deterministic annealing minimizes the
free energy

�
instead of ����� � . The free energy (at low � ) is a smooth approximation to the original,

non-convex energy [62, 63, 53] and approaches the minimum of ����� � as � tends to infinity.
Unfortunately, the free energy involves the logarithm of the partition function which is intractable.

For a more tractable computation, the partition function (at each temperature) is approximated via the
saddle-point approximation [58, 40, 49]. The partition function for graph matching is written as follows:

� ��� � & �������� ������
� 	 1 � ��� 	 2 ���
� � � 	 1 ��(� & 1
� � � 	 2 ���� & 1

� 	 1 ���� & � 	 2 ����
� ������
������

exp (  �� [1
2
� �(� ( � � ������� 	 1 ����  � � � 	 2 ��9� �#��� )2

�
	
2
� ��� � 	 1 ���� ��� 	 2 ����

2
(1  � 	 1 ���� ��� 	 2 ����

2
)]) � (10)

In Appendix A, we present the derivation of the free energy arising from an application of the saddle-
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point approximation to the above partition function. The free energy obtained is

� ��� 	 1 � � � 	 1 � ��� 	 2 � � � 	 2 � � �'��� � & 1
2
� ���

�� � � � ��� ��	 1 ����  � � � 	 2 ��"� � ��� $% 2

(11)

� � �(�
�
� ����� ��	 1 ����  � 	 2 ������ � 	

2 � � 	 1 ���� � � 	 2 ��(�
2

�
1  � 	 1 ��(� � � 2���

2 	�
�	
� 1��� � �(� � 	 1 ���� � 	 1 ����  !� � log � � exp �� 	 1 ������ 
 � 1��� � ��� � 	 2 ��(� ��	 2 ��(�  � � log � � exp �� 	 2 ��(��� 
 �

In (11), � 	 1 � and � 	 2 � are dummy variables involved in the implementation of the two WTA constraints.

� 	 1 � and � 	 2 � are continuous-valued versions of the discrete match matrices � 	 1 � and � 	 2 � . As the
temperature is reduced to zero, � 	 1 � and � 	 2 � converge to the corners of the unit hypercube while
respecting the softmax constraints.

2.5 Algebraic Transformations

The free energy in (11) can be considerably simplified. We apply a fixed–point preserving algebraic
transformation, essentially a Legendre transformation [44, 45, 27] which transforms� 2 	 2

���  � 2

where it is seen that
max� 2

���  � 2 & � 2 �
Both the distance and the self-amplification terms are modified using this algebraic transformation. The
distance becomes

� � �1���)� & � ��� �'���
�� � � ����� �����' � � �!�"� �#��� ��  1

2
� ��� � 2��� � (12)

With the application of the above algebraic transformation, the distance measure becomes linear in the
match matrix and the dynamics are reversed. We ascend on � as well as the Lagrange parameters � .

Introducing a new parameter � does not significantly change the number of variables � 2 � 2 � on which
ascent is performed.

The self-amplification term becomes

 	
2
� ��� � � 	 1 ���� � � 2���

2 
 2 	  	 � ��� ��	 1 ��(� � � 	 2 ����
2 � ��� � 	

2
� ��� � 2��� � (13)

The distance measure and the self-amplification term are transformed so that the energy function

becomes linear in � 	 1 � and � 	 2 � . Also, we have separate control via � and � over the amount of
ascent/descent on the distance measure and self-amplification terms respectively.
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The fixed points of the free energy w.r.t. � 	 1 � � � 	 2 � � � 	 1 � and � 	 2 � are evaluated by direct differentia-

tion. These variables are eliminated from
�

and after dropping the terms � ��� � 	 1 ���� and � ��� � 	 2 ���� (which
are constrained to be a constant) and reversing the sign of

�
, we get

� � � � �'� � � & 1
2
� �(� � 2���  	

2
� ��� � 2�(� (14)

� 1� � � log � � exp �  �� � � � ����� �'��� � � ���  	
2 � ��� 	 


� 1
� � � log � � exp

��
� �

�� � � �������'�"� � � ��� � 	
2 � ��� �� $% �

This is the final form of the free energy. Note that the match variables � 	 1 � and � 	 2 � have been
eliminated. The energy function in (14) is to be minimized w.r.t. � and � and maximized w.r.t. � . The
dynamics on � � � ��� and � can be separated.

When the fixed points are evaluated (partial derivatives with respect to � , � and � are set to zero),
we get ��������	� & 0 
 �'��� & � � � ��� ��	 1 ����  � � ��	 2 ��9� �#���9���������	� & 0 
 � 	 1 ���� & � 	 2 ���� � and��������	� & 0 
 � �(� & � � 1 ��	�� � � 2 ��	�

2 �
where

� 	 1 ���� & exp
�  ���� ��� ��� � � � � � � ���  �2 � �����	�� � exp
�  �� � � � ��� � � � � � � ���  �2 � ��� �	� � and (15)

� 	 2 ���� & exp
� � � ��� ��� � �'� � � � �(� � �2 � ��� ���� � exp
� � � � � �#� � �'� � � � �"� � �2 � �"� �	� (16)

are the two softmaxes corresponding to � � � 	 1 ���� & 1 and � � � 	 2 ���� & 1 respectively. At its fixed point,
the reversed parameter � is equal to the distance measure. For graph isomorphism, � converges to zero,

and hence, the � 2 term can be dropped from the free energy. The parameter � then becomes a Lagrange
parameter satisfying the graph isomorphism constraint—graph matching distance equals zero.

We have obtained a free energy which expresses the graph matching and permutation matrix con-
straints. In the next section, we describe the algorithm that extremizes the above energy function.

3 The Lagrangian relaxation algorithm

A saddle point of the energy function in (14) is sought. The energy function is minimized w.r.t. � and �
and maximized w.r.t. � . In Appendix B, we show that the energy function in (14) is weakly convex w.r.t.
the reversed parameter � and the Lagrange parameters � . Hence, local minima do not occur during
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minimization. Relaxation of the constraints via � and � and subsequent optimization w.r.t. them is
referred to as Lagrangian relaxation [64, 42]. While minimizing the energy function, the main objective is
not to find the Lagrange parameters but to satisfy the constraints in (4) and (5). To this end, we use the
merit function [51] rather than the energy function to determine the line search parameter during each
iteration of a conjugate-gradient (CG) update. The merit function for our energy function is

� merit � � � ��� & 1
2
� ���

����� �� �'�(��� 2
�
��� ��

� �(��� 2 	
& 1

2
� ���

��
�
�� �'�(�� � � ����� � 	 1 ���� � � � ��	 2 ��9� �#����$% 2

� � ��	 1 ��(�  ��	 2 ��(� � 2

� �
� � (17)

Using the merit function to obtain the line search parameter allows us to escape the typically slow,
oscillatory convergence of the Lagrange parameters [65]. The merit function in (17) is a combination
of the graph matching distance measure and doubly stochastic matrix constraint deviation. Reducing
the merit function satisfies the twin requirements of distance minimization and constraint satisfaction.

The � 	 2 � norm of the constraint violation is obtained from the merit function ��� 	 2 � norm &
	 2 � merit

� � and

used to set convergence thresholds. Since the energy function is weakly convex, the merit function (and

therefore the � 	 2 � norm as well) are guaranteed not to increase for gradient descent dynamics [51].
While maximizing the energy function w.r.t. � , the objective function is very slowly and gradually

increased (not maximized) at each temperature. But it is always minimized w.r.t. � and � . This approach
is used since graph matching distance minimization and constraint satisfaction are more crucial than
self-amplification.

THE LAGRANGIAN RELAXATION ALGORITHM

I. INITIALIZE: Set � & � 	 0 � and �'��� � � to zero.

II. DESCEND: Run a CG algorithm w.r.t. � � � ��� in the free energy (14) until � 	 2 � norm �� 	 2 �thr. Use the

merit function in (17) to determine the line search parameter.

III. ASCEND: Set � ��� & � � 1 ��	�� � � 2 ��	�
2 ��� ��� is a uniform random number in �  �� ��� � � . This performs

self-amplification.

IV. ANNEAL: Increase � . � 	 �  1 � & � 1  �� ��� 	 � � ��� � max. Return to step II unless all � ��� have converged��� � � � �!��� � 1  ���(� ������� .
Note from the description of the algorithm that while the energy function is minimized w.r.t. the
Lagrange parameters, it is merely increased (one iteration) w.r.t. � at each temperature.
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4 Simulation results

All reported simulations were executed on Silicon Graphics Indigo workstations with R4000 and R4400
processors.

4.1 Graph Isomorphism

We are first interested in testing our method on the isomorphism problem which requires that the
distance between the two graphs be equal to zero. This is achieved by dropping the second term of (12)
and treating � as a Lagrange parameter instead of as a reversed “neuron” [44] arising from the fixpoint
preserving transformation.

We ran the Lagrangian relaxation algorithm on 100 node undirected, random graphs �� & 100 � with
weights in + 0 � 1 - and for a wide range of connectivities. It is difficult to generate random graphs with
the exact number of edges as specified by the desired connectivity [66]. Instead, we generated random
graphs with the number of edges approximating the desired connectivity. The chosen connectivities
are + 0 � 001 � 0 � 01 � 0 � 02 � 0 � 03 � 0 � 04 - and from 0.05 to 0.5 in steps of 0.025. Sixty examples were generated
at each connectivity giving a total of 1440 examples. The results are presented in Figures 5 and 6. In

all experiments, the following parameters were used: � & 0 � 01 � � 	 0 � & 1 � 0 and � max & 100. The self-

amplification parameter 	 was set to �20 & 5. For most connectivities, a number of permutation matrices

map � onto � . These different solutions correspond to multiple global minima. The self-amplification
term performs the useful function of symmetry-breaking [67, 68]. The match matrix traverses a series of

bifurcations in starting from an almost uniform doubly stochastic matrix � � ��� & 1
� � random noise � and

ending with the final permutation matrix. The bifurcations due to symmetry-breaking start occurring at

� & 2 �
�
& 40 for fully connected 100 node graphs but much before that for sparsely connected graphs.

The � 	 2 � norm threshold ( � 	 2 �thr), the ���(� convergence threshold � and the symmetry-breaking parameter �
were set to 0.02, 0.001 and 0.0001 respectively. Our method always gave a correct permutation matrix
for all the examples except for 3 failures out of 60 runs taken at an average connectivity percentage of
1%. From Figures 5 and 6, it is seen that the number of iterations and the relaxation time are large for
both extremely small connectivities and for moderate to large connectivities. The method can also be
tried for connectivities larger than 0.5 but for this problem it is easier to reverse the weights on all the
edges. These results are clearly superior to the results obtained by Simić [28]. Simić’s deterministic
annealing network [28] could not reliably find isomorphisms for all connectivities less than 30% in 75
node random graphs.

Figure 5 about here.

Figure 6 about here.
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Figure 7 about here.

Figure 7 shows the change in energy as the iterations proceed for the sixty examples of graph
isomorphism at a connectivity of 0.01. With the exception of the three failures (indicated by the flatlines),
the pattern is the same. An isomorphism is obtained when the energy goes to zero and when all the match
matrix variables have converged. This corresponds to a saddle point. The energy first decreases rapidly,
passes through zero (with the match matrix very far from convergence) and then increases gradually
approaching zero. The gradual progress towards integral solutions is seen in Figure 8 where the changes
in the match matrix are depicted through 36 temperatures. The black dots appearing for the first time
in Figure 8(c) indicate convergence to integral solutions of the respective rows and columns. These
stay in place and the remaining rows and columns gradually converge. In Figure 8(f), the permutation
matrix obtained is shown. The black dots are ones with the white spaces being zeros—similar to the
permutation matrices in (2).

Figure 8 about here.

4.2 Weighted Graph Matching

Next, we ran the Lagrangian relaxation algorithm on 100 node weighted graphs. The weights are chosen
randomly in the interval � 0 � 1 � . Uniform noise in the interval �  �� ���� is then added to all the edges. While
the distance measure in (1) calls for additive, white, Gaussian noise (AWGN), we added independent
uniform noise because it facilitates comparison with three other non-neural methods of graph matching,
namely, eigendecomposition [29], symmetric polynomial transform [30] and linear programming [31].
All these methods have been tested with uniform noise, allowing for a straightforward comparison. The

noise variance corresponding to uniform noise is � 2 � 3. We chose nine noise variances roughly ranging
from 0.0025 to 0.02 with sixty examples at each value giving us a total of 540 examples. The results are
presented in Figure 9. [In the figure, the number of iterations is plotted against ln � variance � 0 � 0025 � � 2.]

In all experiments, we used the following parameters: � & 0 � 01 � � 	 0 � & 1 � 0 and � max & 100. The

self-amplification parameter 	 was set to �10 & 10. The � 	 2 � norm threshold ( � 	 2 �thr), the ���(� convergence

threshold � and the symmetry-breaking parameter � were set to 0.02, 0.001 and 0.0001 respectively.
Our method always gave a correct permutation matrix for all the examples indicating that we have not
“broken” our algorithm. These results are superior to the results obtained by the eigendecomposition
approach [29], the symmetric polynomial transform approach [30] and the linear programming approach
[31]. In the other approaches, 10 node fully connected graphs were matched with uniform noise added
to the links. The linear programming approach was the most accurate giving exact results on 50 trials
only when the noise variance was less than 0.0035. In contrast, we get exact results in our 100 node fully
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connected graph matching experiments on 60 trials when the noise variance is less than 0.02—a factor of
10 better both in terms of the noise variance and size of graphs handled. We are extending this approach
to inexact, weighted graph matching where the limitations of this approach can be better studied.

Figure 9 about here.

4.3 Matching handwritten numerals

In order to test the algorithm in a more realistic setting, we examined the problem of finding corre-
spondences between a model and data. This problem frequently arises in object recognition (computer
vision) [69].

To this end, we generated a handwritten numeral “model” (along with rotated and scaled versions)
using an X windows interface. The interface also provided us with “ground-truth” coordinate point
locations for the models. Let

� � � � & 1 � � � � ��� denote the � 2-D points describing the model numeral.
(Each

� � is a 2-D vector.) A weighted graph � —invariant to rotation, translation and scaling of the 2-D
point set

�
—was obtained in the following manner. Let the distance between all pairs of points in

�
��� �� ��� � & 0 � � � � 0 2 � � � ���,* + 1 ����� � ��� - �

The distance
� �

is invariant to rotation and translation of
�

. In order to get scale invariance, we

first sorted the distances
��� �� ��� � . Then we assigned the normalized rank order � � � 	 ��� 1 �

2 , where � *+ 1 � � � ��� � 	 ��� 1 �
2 - is the rank of a distance element

��� �� ��� � , to the corresponding element ��� ��� � of the

adjacency matrix of graph � . The diagonal elements of � ��� were set to zero. The matrix is symmetric
since

��� �����	� � & ��� �
�#��� � . Using the rank order rather than the distance makes graph � scale invariant.
We have described the process by which a weighted graph � is obtained from point set

�
.

Figure 10 about here.

The same procedure is repeated for all the “data” point sets obtained by rotating, scaling and adding
noise to the model

�
. The correspondences between model and data numerals is depicted in Figure 10.

Figures 10(a) and (b) illustrate the case for pure rotation and scale. The model “9” is rotated by 180 �
in Figure 10(a) and scaled down by a factor of four—we have increased the scale somewhat for better
visualization—in Figure 10(b). Since the graphs are rotation and scale invariant, the correspondences are
near perfect as expected. In Figures 10(c) and (d), we present an anecdotal study of the noise performance.
The effect of noise is simulated by adding independent additive Gaussian (AWGN) random numbers
to the point set

�
and not the weights of graph � . The same procedure for obtaining a graph from the

point set was carried out. The correspondences shown in Figures 10(c) and (d) are degraded somewhat.
The graphs � and � resulting in the procedure described above have 91 nodes. We ran the Lagrangian
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relaxation algorithm with the following parameters: � & 0 � 01 � � 	 0 � & 1 � 0 and � max & 100. The self-

amplification parameter 	 was set to 5. The � 	 2 � norm threshold ( � 	 2 �thr), the ���(� convergence threshold �
and the symmetry-breaking parameter � were set to 0.02, 0.01 and 0.0001 respectively. This anecdotal
study demonstrates an application of the graph matching technique to the problem of model matching
in computer vision.

We have recently developed a related graph matching algorithm based on an objective function which
is equivalent up to fixpoints to the free energy in (11) [27, 26]. While the objective function is similar,
the optimization dynamics are very different from those of the Lagrangian relaxation algorithm. Line
searches and Lagrangian relaxation are eschewed in favor of a discrete algorithm which satisfies the
doubly stochastic matrix constraints via iterated row and column normalization. The method is much
faster (by a factor of 10 or more) but less accurate. The Lagrangian relaxation algorithm is amenable to
analog VLSI implementation and its utility may lie there. The discrete algorithm may be competitive (in
terms of speed and accuracy) with other algorithms implemented on digital computers.

5 Relationship to Yuille and Kosowsky

The free energy in (11) is closely related to the approach of Yuille and Kosowsky [49]2. Their approach,
applicable to quadratic assignment problems in general, expresses the doubly stochastic matrix con-
straint using an � log � � � barrier function and two Lagrange parameters (enforcing WTA constraints).
The barrier function parameter plays the role of deterministic annealing.

The free energy before elimination of the match matrix variables is

� ��� 	 1 � � � 	 1 � ��� 	 2 � � � 	 2 � � �'��� � & 1
2
� ���

�� � � � ��� ��	 1 ����  � � � 	 2 ��"� � ��� $% 2

� � �(�
�
� ��� � � 	 1 ����  � 	 2 ������ � 	

2 � � 	 1 ���� � ��	 2 ��(�
2

�
1  ��	 1 ��(� � � 2���

2 	�
�	
� 1��� � �(� � 	 1 ���� � 	 1 ����  � � log � � exp �� 	 1 ������ 
 � 1��� � ��� � 	 2 ��(� ��	 2 ��(�  � � log � � exp �� 	 2 ��(��� 
 �

Differentiating the above free energy w.r.t. � 	 1 � and equating the result to zero, we get

� 	 1 ���� & exp � � 	 1 ������
� � exp � � 	 1 ���� � � (18)

This is rewritten to reflect the dependence of � 	 1 � on � 	 1 � :

� 	 1 ���� � � exp � � 	 1 ���� � & exp ��� 	 1 ������
2We acknowledge Alan Yuille for pointing out the close relationship between our Lagrangian decomposition approach and

the barrier function approach developed in [49].
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 � 	 1 ��(� & log � ��	 1 ��(��� � log � � exp � � 	 1 ���� � � (19)

Equation (19) consists of a set of self-consistent equations from which � 	 1 � cannot be eliminated. Substi-
tuting (19) in the entropy term

� & � �(� � 	 1 ���� � 	 1 ����  � � log � � exp � � 	 1 ���� � �
we get

� & � ��� � 	 1 ��(� log � � 	 1 ������ �!� � �
log � � exp � � 	 1 ���� � 	 � � � � 	 1 ����  1 
 �

The log � � exp ��� 	 1 ��(��� term is replaced by a new variable �#� which is a Lagrange parameter enforcing

the WTA constraint � � � 	 1 ���� & 1. A new � log � � � barrier function is obtained. This was first shown
by Yuille and Kosowsky [49]. Unlike traditional barrier functions [51], this barrier function (shown in
Figure 11) does not go to infinity as � 	 0. Nevertheless, it achieves the objective of keeping the match
matrix positive.

Figure 11 about here.

An � log � � � barrier function and a Lagrange parameter �5� are similarly associated with the WTA

constraint � � � 	 2 ���� & 1. When this is done, the new free energy takes the form

� � � 	 1 � � � 	 2 � � �'��� ��� ��� � & 1
2
� ���

�� � � � ��� ��	 1 ����  � � ��	 2 ��"� �#�9� $% 2

(20)

� � �(�
�
� ��� � ��	 1 ����  ��	 2 ���� � � 	

2 � � 	 1 ��(� � � 	 2 ����
2

�
1  � 	 1 ���� � � 2�(�

2 	 
 	
� 1�

� � ��� ��	 1 ���� log � ��	 1 ��(� � � � � � � � � � ��	 1 ��(�  1 
 � � �(� ��	 2 ��(� log � ��	 2 ���� � � � � �'� � � � ��	 2 ����  1 
�� �
Differentiating the above free energy w.r.t. � and setting the result to zero, we get � 	 1 ���� & ��	 2 ��(� .
Substituting this in (20), we get

� � � � � ��� ��� � & 1
2
� �(�

�� � � � ��� �!���' � � �!�"� �#��� $% 2

�
	
2
� ��� ���(� � 1  ����� � (21)

� 1�
� � ��� 2 �!��� log � ���(� � � � � � � � � � �!���� 1 
 � � � �'� � � � �!���  1 
�� �
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A Lagrangian relaxation network similar to the one reported in this paper can be obtained from the
above free energy. At a theoretical level, the two formulations are equivalent. No penalty functions
have been used to express the WTA constraints and doubly stochastic match matrices are obtained at
each temperature setting when the Lagrange parameters converge.

Other optimizing network approaches using penalty functions [50, 28] can be related to ours by
replacing Lagrange parameters with penalty functions. For example, Simić [28] uses a Potts glass
softmax and a penalty function for the two WTA constraints. The penalty functions satisfy the doubly
stochastic matrix constraint asymptotically as opposed to our approach where this constraint is satisfied
at each temperature.

6 Conclusions

We have formulated and tested a Lagrangian relaxation network for graph matching. A distinguishing
feature of our approach is exact constraint satisfaction at each temperature within deterministic anneal-
ing. In addition, the reversal of the dynamics on the graph matching term allows us to simultaneously
ascend on the matching and constraint satisfaction terms. The results for both matching and isomor-
phism are impressive. Perfect results are obtained for almost all instances. We are currently extending
our Lagrangian relaxation approach to inexact, weighted graph matching with subsequent application
to object recognition. Finally, Lagrangian relaxation networks similar to the ones presented here can be
designed for other quadratic assignment problems like the traveling salesman problem.
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A Derivation of the free energy

In this section, we begin with the partition function in (10) and systematically demonstrate the change
of variables and other calculations leading to the final free energy in (14).

� ��� � & �������� ������
� 	 1 � ��� 	 2 � �
� � � 	 1 ��(� & 1
� � � 	 2 ���� & 1

� 	 1 ���� & � 	 2 ����
� ������
������

exp (  �� [1
2
� �(� ( � � ������� 	 1 ����  � � � 	 2 ��9� �#��� )2
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�
	
2
� ��� � 	 1 ���� ��� 	 2 ����

2
(1  � 	 1 ���� ��� 	 2 ����

2
)]) � (22)

We now illustrate the Potts glass encoding of the WTA constraint. The treatment follows [40]. Consider
the following partition function arising from an energy function � �
� ��� � � � � & 1 � � �)* + 0 � 1 - . Following
[40], we get

� ��� � & ��� � � �
� � � �'& 1

� �
�

exp (  ��5����� � )
& ��� � � �

� � � �'& 1

� �
�

��� � � � ���  � � exp (  ��5��� � � )
& � � � � exp �� ��)� � � �(� ��� � � ��� � � �

� � � �)& 1

� �
�

exp

� � � �'� ��� �� � �9� 	
& ��� � �

� � � � exp

�  ��)� � � �' � � � � � � � log � � � exp ��� � � 
�	 �
The deterministic annealing trick evaluates the above integrand at its saddle points and uses the result
as an approximation to the partition function integral.

� ��� ��� � � ˆ� � ˆ� ��� � & exp

�  �� � � � ˆ� � � 1�
� � � ˆ� � ˆ� �  log � � exp � ˆ� � � 	 
�	 def& exp (  �� � ) (23)

where ˆ� and ˆ� are the solutions to� ��
� � & 0 
 ˆ�'� &  �� � �� � � � and

� �� � � & 0 
 ˆ� � & exp ( �'� )
� � exp ( � � ) � (24)

Here, � � ˆ� � & 1 and a single winner is obtained as � is increased. A continuation method is obtained
from the saddle-point approximation. At each temperature setting, a relaxation network is used to

obtain the pair ˆ� and ˆ� . The inverse temperature � is increased and the earlier solution is used as an
initial condition for the next stage.

Writing the details of the saddle-point approximation for the graph matching objective and its two
WTAs is awkward. Below, we present a “bare bones” version of the derivation.

� ��� � & � � � � 	 1 �
� � � � 	 1 � � � � � 	 2 �

� � � � 	 2 � � � � � ��� � � 	 1 ���
� � � 	 1 ��(� & 1

� �
�

exp

� � ��� � 	 1 ��(� � � 	 1 ����  � 	 1 ��(� � 	
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��� � � 	 2 � �
� � � 	 2 ���� & 1

� �
�

exp

� � �(� � 	 2 ���� � ��	 2 ��(�  � 	 2 ���� � 	 exp (  �� [1
2
� ��� ( � � � ��� � 	 1 ����  � � ��	 2 ��9� � ��� )2

�
	
2
� ��� ��	 1 ��(� � ��	 2 ����

2
(1  � 	 1 ���� � ��	 2 ��(�

2
) � � �(� � �(� � � 	 1 ��(�  � 	 2 ��(� � ])

� exp �  �� � � ˆ� 	 1 � � ˆ� 	 1 � � ˆ� 	 2 � � ˆ� 	 2 � � ˆ� ��� � �
where

� ��� 	 1 � � � 	 1 � ��� 	 2 � � � 	 2 � � �'��� � & 1
2
� ���

�� � � ����� ��	 1 ����  � � � 	 2 ��"� �#��� $% 2

� � ���
�
� �(� � � 	 1 ����  � 	 2 ���� � � 	

2
� ��� ��	 1 ���� � � 	 2 ����

2 � 1  ��	 1 ���� � � 	 2 ����
2 
�	

� 1
� � � �(� � 	 1 ���� � 	 1 ����  !� � log � � exp �� 	 1 ������ 
 � 1

� � � ��� � 	 2 ��(� � 	 2 ��(�  � � log � � exp �� 	 2 ��(��� 
 �

B Non-negative definiteness of the Hessian

In this section, we show that the Hessian of the objective function in (14) with respect to the reversed
“neuron” � and the Lagrange parameter � is non-negative definite. The proof is carried out for the
isomorphism case alone. Since the only difference between the energy function for graph isomorphism

and graph matching is a convex � �(� � 2��� term, the proof also carries over to the graph matching energy
function. For the Hessian to be non-negative definite, we require for any � and � ,

� & ���� � �
�
� ��� � 1�

�
2 �� � ��� � �'� � 
 � � � � 2 � ��� � 1�

�
2 ��

� �(� � �'� � 
 � � � ��� ��� � 1�
�

2 ��
� �(� � � � � 
 � � � 	 � 0 � (25)

Now

1�
�

2 �� �'��� � �'� � &  1��� � � ��� � � � 	 1 �� �� �'� �  � � �
� 	 2 �� �� �'� � � � � 
 � (26)

1�
�

2 ��
� �(� � � � � &  1��� � � 	 1 ��(��

� � �  �
� 	 2 �����
� � � 
 � and (27)

1�
�

2 ��
� ��� � �'� � &  1��� � � 	 1 ��(�� �'� �  �

� 	 2 ����� � � � 
 � (28)
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Rewriting ��	 1 �� � and � 	 2 �� � , for convenience:

� 	 1 �� � & exp (  �� [ � � � � � �'��� � � � � ])
��� exp (  �� [ � � ��� � �'��� � � � � ]) � � 	 2 �� � & exp ��� � � � � � � � �"� � � � ��� �

��� exp ��� �
� � � � ���'�"� � � � ��� � � (29)

From (29), the relevant partial derivatives required in (26), (27) and (28) are evaluated.�
� 	 1 �� �� � � � &  �� ����� � 	 1 �� � � ��� �  !� � � � � � 	 1 �� � 
 � (30)�
� 	 2 �� �� �'� � & � � � ��� � 	 2 �� � � � � �  � � � � � � 	 2 �� � 
 � (31)

and �
� 	 1 ��(��
� � � &  �� � ��� ��	 1 ��(� ��� ���  � 	 1 ���� � � (32)�

� 	 2 ��(��
� � � & � � ��� � 	 2 ��(� � �����  � 	 2 ��"� � � (33)

where ����� and � ��� are Kronecker delta functions.
From (26), (30) and (31), we get

1
�

�
2 �� � ��� � � � � & ����� � � � ��� � � � � � 	 1 �� �  � � � � � � � 	 1 �� � 
 � � � � � � � 	 1 �� � 
�	

� � ��� � � � � � � � � � � 	 2 �� �  � � � � � � ��	 2 �� � 
 � � � � � � ��	 2 �� � 
�	 � (34)

From (27), (32) and (33), we get

1�
�

2 ��
� ��� � � � � & ����� � 	 1 ��(� � � ���  � 	 1 ���� � � � ��� � 	 2 ���� � �����  � 	 2 ��"� � � (35)

And finally, from (28), (30) and (31), we get

1�
�

2 ��
� �(� � �'� � & ����� � 	 1 ���� � ��� �  � � ��� � ��	 1 �� � 
 � � ��� ��	 2 ��(� � �����  � � � � � ��	 2 �� � 
 � (36)

Using (34), (35) and (36), we evaluate
�

in (25):

� & ���� � � � ��� � ���
� � � � � � � � � � 	 1 �� �  � � � � � � � 	 1 �� � 
 � � � � � � � 	 1 �� � 
�	 � � �

� ���� � � � ����� ���
� � � � � � � � � ��	 2 �� �  � � � � � � ��	 2 �� � 
 � � � � � � � 	 2 �� � 
�	 � � �
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� 2 ���� � � � �(�
� � ��� ��	 1 ��(� � � � �  � � � � � ��	 1 �� � 
 � � � � � ��� ��	 2 ��(� � � ���  � � � � � ��	 2 �� � 
 � � � 	

� ���� � � �#�(� � ����� ��	 1 ��(� ��� ���  � 	 1 ���� � � � ��� � 	 2 ���� � �����  � 	 2 ��"� � � �8� � � (37)

This is rearranged to give

� & � � � � � � � � � � � �(� 
 � � � � � � � ��� 
 � 	 1 �� �  � �
� � � � � � � � � � ��� 
 ��	 1 �� � 	 � � � � � � � � � � ��� 
 � 	 1 �� � 	

� � � � � � � � � � � � ��� 
 �� � � � � � � �"� $% � 	 2 �� �  � � � � � � � � � � � � ��� 
 � 	 2 �� � 	 �� � �
�� � � � � � � �"� $% � 	 2 �� � ��

� 2 � � � � �8��� � � � ��� � � ��� 
 � 	 1 ��(�  2 � � � � �#���
� � � � � � � � � � ��� 
 � 	 1 �� � 	

� 2 � � � � �8���
�� � � ����� � �9��$% ��	 2 ��(�  2 � � � � �#���

�� � �
�� � � � � � � �"��$% ��	 2 �� � ��

� � � � � � 2��� � 	 1 ����  � � � � � �#��� � 	 1 ��(� 
 � � � �8��� � 	 1 ���� 

� � � � � � 2��� � 	 2 ����  � � � � � �#��� � 	 2 ��(� 
 �� � � �#�9� � 	 2 ��"� $%��

The above expression is simplified as follows. Define

� � � def& � � ��� � � ���9� �#� � def& � � � � � � �(�� (38)

�
is rewritten in a more compact form:

� & � �
�� � � � 2�(� � 	 1 ��(�  � � � � �(� � 	 1 ��(� 
 2

�� � � �
�� � � � 2��� � 	 2 ��(�  � � � �8��� � 	 2 ���� 
 2

��
� 2 � �

� � � �#��� � �(� � 	 1 ����  � � � �#��� � 	 1 ���� 
 � � � � ��� � 	 1 ��(� 
 	
� 2 � � � � � �#��� �#��� � 	 2 ��(�  � � � �8��� � 	 2 ��(� 
 � � � �#��� � 	 2 ��(� 
 	
� � �

�� � � � 2��� � 	 1 ����  � � � �#��� � 	 1 ��(� 
 2
�� � � �

�� � � � 2�(� � 	 2 ����  � � � �#�(� � 	 2 ���� 
 2
�� � (39)

And after further simplification,

� & � � � � � � 2��� � 	 1 ���� � 2 �#��� � �(� � 	 1 ���� � � 2��� � 	 1 ��(� � � � � � � � � 2�(� � 	 2 ��(� � 2 �8��� �8��� � 	 2 ���� ��� 2��� � 	 2 ���� �
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 � �
�� � � � � ��� ��	 1 ��(� 
 2

� 2 � � � �#��� ��	 1 ���� 
�� � � � ��� ��	 1 ���� 
 � � � � �#�(� ��	 1 ��(� 
 2
��

 � �
�� � � � �8��� � 	 2 ���� 
 2

� 2 � � � �#�(� � 	 2 ���� 
�� � � �#��� � 	 2 ��(� 
 � � � � �#�(� � 	 2 ���� 
 2
�� �

A second round of definitions completes the “compactification” of
�

.

� �(� def& � ��� ���#������� ��� def& �#��� ���#��� � (40)

And finally,
�

is shown to be

� & � �
�� � � � 2��� � 	 1 ����  � � � � ��� ��	 1 ��(� 
 2

�� � � �
�� � � � 2�(� � 	 2 ����  � � � � �(� � 	 2 ���� 
 2

�� � (41)

For any � , setting
� � & � �(� � � 	 1 ���� and � � & � � 	 1 ���� and using the Cauchy-Schwartz inequality

� � � 2� � � � 2� � � � � � � � � 
 2

with equality occurring when
� � &�� � � and � is an arbitrary non-zero constant, we get [41]

� � � 2��� � 	 1 ���� � � � 	 1 ���� � � � � � ��� � 	 1 ��(� 
 2


 � � � 2�(� ��	 1 ���� � � � � � ��� ��	 1 ��(� 
 2

(42)

using the fact that � � � 	 1 ���� & 1 is always satisfied.

Similarly, for any � , setting
� � & � ��� � ��	 2 ��(� and ��� & � � 	 2 ���� and using the Cauchy-Schwartz inequality,

we get

� � � 2��� ��	 2 ���� � � ��	 2 ���� � � � � � ��� � 	 2 ���� 
 2


 � � � 2��� � 	 2 ���� � � � � � ��� � 	 2 ���� 
 2

(43)

using the fact that � � � 	 2 ��(� & 1 is always satisfied.
Therefore

� �
0 with equality occurring for those vectors � ��� & � �(� � � and � ��� &�� ��� � � , where �

and � are arbitrary vectors.
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Figure Captions

Figure 1: The rectangle rule for graph isomorphism: vertices “a” and “b” in � are matched to vertices
“j” and “i” in � respectively and edges exists between “a” and “b” and “j” and “i” in � and �

respectively. A rectangle is constructed from the cycle of vertices ��� ���	 �
� � �	 � ��� �	 � � � �	 � . As a

match to “i”, “b” will be preferred to “c” or “d” because it has the same degree (3) and can therefore
participate in more rectangles. The same holds for a match between “a” and “j”.

Figure 2: An example of isomorphic graphs: The person and the face are seen to be isomorphic. A link
between any two nodes in one graph has a counterpart in the other graph. There’s a redundancy
in that the mirror image of the face (person) is also isomorphic to the person (face). Redrawn
with permission from “Compared to what? an introduction to the analysis of algorithms.”, Gregory J. E.
Rawlins, page 306, chapter 5, Computer Science Press, W. H. Freeman and Co., New York, 1992.

Figure 3: Graphs of the person (on the left) and the face (on the right) corresponding to the drawings in
Figure 2. Both graphs have ten vertices and ten edges.

Figure 4: Illustration of multiple solutions in graph isomorphism. Left: One correct labelling. Right:
Another correct labelling.

Figure 5: Number of iterations vs. connectivity: Each “+” in the figure denotes the number of iterations
taken for a 100 node graph isomorphism run. A total of 1440 graph isomorphism examples are
presented. The interval � 0 � 5 � % was tested more heavily to obtain a better sampling of the decrease
and then increase in the number of iterations. The apparent quantization of the iterations is not
understood. The figure on the right is an errorbar plot of the data presented in the figure on the
left. Note the decrease in the variance of the number of iterations in the interval � 0 � 5 � %.

Figure 6: Relaxation time vs. connectivity: Each “x” in the figure denotes the wall clock time. The code
was not optimized. The figure on the right is an errorbar plot of the data presented in the figure on
the left.

Figure 7: Energy vs. number of iterations: In the figure on the left, the approach to a saddle point is
depicted for a connectivity of 1%. In all 60 cases, the energy decreases rapidly, goes through zero
with the match matrix far from convergence and then slowly ascends. Three failures are indicated
by flat lines. The energy does not make the ascent to zero. In the right figure, the same approach
to a saddle point of the energy is depicted for one particular example.

Figure 8: Match matrix at the (a) first, (b) ninth, (c) sixteenth, (d) nineteenth, (e) thirty-third, and (f)
thirty-sixth temperatures: Gradual evolution from a nearly uniform doubly stochastic matrix to
a permutation matrix (with black dots representing ones and white spaces representing zeros) is
shown.

Figure 9: Number of iterations vs. noise variance: Each “+” in the figure denotes the number of iterations
taken for a 100 node graph matching run. A total of 540 graph matching examples are presented.
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Independent, uniform noise is added to each edge. The number of iterations is plotted against
ln � variance � 0 � 0025 � � 2. The figure on the right is an errorbar plot of the data presented in the figure
on the left. Note the gradual increase in the variance of the number of iterations.

Figure 10: Correspondences in matching handwritten numerals: (a) Rotation (b) Scale (c) Additive
Gaussian Noise and (d) All of the above.

Figure 11: The � log � � � barrier function. The free energy resulting from the Lagrangian decomposi-
tion approach is related via a change of variables to the approach of Yuille and Kosowsky. The
latter approach uses an � log � � � barrier function and two Lagrange parameters for the two WTA
constraints.



Rangarajan and Mjolsness: A Lagrangian Relaxation Network for Graph Matching 29

Figures

ab
G

M

g

Ma j

b

c d

k l

bi i

ji

aj

Figure 1:



Rangarajan and Mjolsness: A Lagrangian Relaxation Network for Graph Matching 30

Figure 2:
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