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Abstract

Hidden patterns, rendered visible by hindsight, often stand revealed as strong

influences. Rama Chellappa’s lab in the mid to late ’80s molded our charac-

ter and scholarship in more ways than one. Rama ably handled the transition

from image processing to computer vision and established an applied math and

computing infrastructure from which we continue to benefit. In particular, the

themes important to King-Sun Fu—syntax, semantics and statistics—were all

debated in Rama’s lab at that time. We argue that this triad remains impor-

tant. With syntactic representations losing mindshare to statistics, we remain

in the hunt for unification. And with the syntax versus semantics debate un-

resolved, it deserves a hearing as well. We offer two themes—uncertainty and

interaction—to aid in the process of unification. First, we show that complex

wave functions carry probabilistic location information in their magnitude and

syntactic (curve) information in their phase while representing uncertainty at a

fundamental level. Next, after reviewing work in analytic philosophy, we con-

nect semantics to intentional, mental content. Analytic philosophy reminds us

to take human experience seriously but remaining physicalist if possible. To

this end, we introduce a nondualist interactionist model of experience, wherein

compositional (physical) subjects are constantly shaping and being shaped by

a physical world. We then demonstrate that wave functions can accommodate
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interaction, closely tracking previous work in physics on the measurement prob-

lem. The linearity and superposition properties of wave functions allow for

literal addition of waves created by human interaction with shapes. Finally, we

briefly survey the current situation in the human-computer interaction (HCI)

field and argue that mathematical models of interaction akin to those in pat-

tern recognition can aid HCI. We close by arguing that we can follow in Fu’s

footsteps and incorporate the mathematical modeling of human interaction into

pattern recognition.

Keywords: syntax, semantics, statistics, uncertainty, interaction, wave

functions, Schrödinger, Hamilton-Jacobi, phase, topology, level-sets, distance

transform, intentionality, qualia, compositionality, HCI

1. Invocation

Hold the flame ’til the dream ignites

A spirit with a vision is a dream with a mission

Rush, Mission

Luck is often described as “being in the right place at the right time”. Look-

ing back, it seems clear that we were very fortunate indeed to inhabit Prof.

Rama Chellappa’s lab during the mid ’80s, in the Signal and Image Processing

Institute (SIPI) at the University of Southern California (USC) set amidst the

backdrop of a sophisticated, urban Los Angeles. Computer vision was in its

infancy, struggling to emerge from the shadow of an established artificial intel-

ligence (AI). Pattern recognition was seeking to reinvent itself in the hands of

a resurgent neural networks field [1] and would subsequently find a more sta-

ble partner in machine learning [2]. If there was interest in human centered

computing, we certainly didn’t see much evidence at that point.

Rama was and remains the embodiment of that transition from a field tax-

onomy so stable (in the late ’70s) that it verged on taxidermy to a period (the
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early ’80s) when “all that is solid melts into air”2 [3]. Not content with resting

on his laurels in signal and image processing, Rama sought to bring the clarity

and rigor found in mature (and older) fields that stood on the shoulders of ap-

plied mathematics to the nascent (and therefore fertile) area of computer vision.

This quest was aided by three significant factors: (i) the brilliance of Marr [4]

in clearly articulating the nature of representation in computer vision, (ii) the

integrative genius of Fu [5] in bringing together syntax, semantics and statistics

in pattern recognition, and (iii) the strong reliance of neural networks on sta-

tistical mechanics, nonlinear optimization and applied mathematics in general.

While we return to these themes frequently in this work, it is to the specifics of

Rama’s contributions—and the manner in which they illustrate the deployment

of applied math in computer vision—that we now turn.

Since we’re using a signal processing to computer vision crossover perspec-

tive, we bypass Rama’s considerable work on Markov random fields in image

processing and analysis [6] except to note in passing that this framework has

served us well over the past three decades. Instead, we highlight the twin contri-

butions in shape from shading and motion estimation to buttress our crossover

points. In shape from shading, the problem of enforcing integrability was a thorn

in the variational framework. Frankot and Chellappa [7] designed an elegant

projection algorithm to find the closest, valid surface in a least-squares sense to

the non-integrable surface obtained via the calculus of variations approach. The

projection method was signal processing inspired through and through using the

fast Fourier transform (FFT) and least-squares estimation to full effect. Next

up, in motion analysis, Broida and Chellappa [8] were the first to use a Kalman

filter to recursively estimate rigid body motion parameters from noisy images.

Once again, the application of signal processing methodologies (filtering, esti-

mation etc.) bore immediate fruit in an important computer vision problem.

In Rama’s lab, these early successes reinforced in all of us not only the impor-

2The first IEEE Computer Vision and Pattern Recognition (CVPR) conference was held
in 1983.
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tance of mathematical rigor in vision problems but the impact of ideas drawn

from other fields such as signal processing on the fledgling area of computer

vision. Furthermore, the specific successes in shape from shading and motion

estimation emboldened Rama to emphasize (i) the correspondence problem in

object recognition and motion and (ii) the link between variational problems

and specific differential equations such as the Poisson equation [9, 10]. The

emphasis on correspondence in the face of an ascendant optical flow paradigm

was particularly courageous and key to shaping my views [11, 12] even though

I didn’t realize it at that time.

SIPI culture in general and Rama’s background in MRFs in particular meant

that inference and estimation principles were drilled into us usually via statistics

courses taken in the math department. Geman and Geman’s landmark paper on

MRFs [13], Gibbs sampling and simulated annealing forced us to pick up quite

a bit of statistical mechanics as well. Entropy, computational temperature and

more broadly, the role of uncertainty became common themes in conversations.

The change in worldview accompanying the transition from image processing to

computer vision meant that we had to grapple with artificial intelligence for the

first time. For many of us with undergraduate engineering backgrounds—with

a lack of emphasis on philosophy—this was simultaneously uncomfortable and

exciting. In particular, this implied taking the central issue of representation

in AI seriously. Syntax versus semantics [14], the Chinese room [15] and more

generally the nooks and crannies of strong AI [16] were endlessly debated. It is

no coincidence that Fu’s seminal work on the unification of syntax and semantics

[5] with a strong focus on statistical pattern recognition became a linchpin.

Fu forced us to focus on the triad—syntax, semantics and statistics—while

remaining grounded in the nuts and bolts of pattern recognition and computer

vision.

We argue that Fu’s triad is even more relevant today. While the past thirty

years has seen much progress in the development of robust algorithms (for clas-

sification and regression), it is fair to say that the dominant paradigm has been

statistics with syntactic representations frequently discarded or sidelined due
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to perceived (and actual) brittleness in the latter. The importance of uncer-

tainty in representation has also faded and replaced (unsuccessfully as we shall

argue) by variance and entropy in parametric and non-parametric probability

distributions. The syntax versus semantics debate has not fared any better in

mainstream AI circles. While analytic philosophy has made tremendous strides

in the past twenty years in delineating the distinction between the computa-

tional and the experiential, these advances have not been absorbed in informa-

tion processing circles. Concomitantly, we have seen the rise of human centered

computation and the field of human-computer interaction (HCI), but we are

not aware of any serious attempts to educate the (usually) younger denizens of

HCI with the significance of Fu’s triad in their endeavors. Consequently, HCI

and related areas remain unaware of the importance of interaction (between

the experiential and the computational) in anchoring semantics while inform-

ing syntactic and statistical representations. To this end, we identify the twin

themes of uncertainty and interaction as central and attempt to unpack their

significance in this essay.

2. Uncertainty

Who can face the knowledge

That the truth is not the truth

Obsolete

Absolute

Rush, Distant Early Warning

In §1, we introduced Fu’s contributions in the larger context of the entire

field of pattern recognition. In this section, we focus on shape analysis in our

attempt to discuss uncertainty in syntactic and statistical representations. We

will not be concerned with semantics here, which is deferred to §3.

Representations inspired by probability theory and statistics—placed under

the same rubric here—have thrived and prospered in shape analysis. Especially

when shapes are parametrized by point-sets, probabilistic representations have
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become quite popular due to the relative ease of density estimation in lower di-

mensions. In the past twenty years, shape correspondence, non-rigid deformable

matching, shape dictionaries etc. have all seen considerable progress since the

robustness afforded by the representations has allowed for outlier detection, in-

complete shape matching and so on. In many cases, shape density functions are

first estimated using Parzen windows or related methods. Subsequently, shape

densities are matched using entropy minimization or other criteria to obtain

shape deformation, shape atlases [17] and the like. Note the simplicity of the

representation schemes which feature little to no explicit syntax. Point-sets are

generally i.i.d. allowing for straightforward density estimation and the Haus-

dorff topology prevents the use of relational information. In spite of this, the

robustness of the representation can account for both point jitter and outliers

belying the need for synthesizing relational and statistical information.

When shapes are parsed into sets of non self- or other-intersecting closed

planar curves (in 2D), level sets and distance transform representations have

become popular in this space [18]. Distance transforms satisfy the eikonal equa-

tion ‖∇S‖ = 1 (with a constant forcing function) with the zero level sets com-

prising the shape. In contrast to the point-set representation, distance functions

embed curve syntactic information into a scalar field S(x). There is no room

for uncertainty in the representation however, for signed and unsigned distance

functions are highly constrained geometric objects that leverage the curve (re-

lational) topology information. These constraints (implicit in ‖∇S‖ = 1) do

not allow distance functions to be added, for example, or facilitate shape atlas

computation. When one shape contains two curves and another three curves,

their scalar distance transform fields cannot be easily combined. Consequently,

while this representation has flourished with active contours and level sets see-

ing wide usage in shape extraction, there has not been much interest in these

(more syntactic) representations for computing shape statistics.

In the past few years, we have been exploring the notion of uncertainty in

the distance transform representation [19, 20]. The eikonal equation ‖∇S‖ = 1

is an example of a static Hamilton-Jacobi equation. In the theoretical physics
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literature, it is well known that the nonlinear Hamilton-Jacobi equation can be

embedded in a linear Schrödinger equation [21]. Since we cannot expect much

familiarity with this literature, we summarize the main results below. Assume a

particle with mass m moving under a constant potential V (x). The Schrödinger

equation for the free particle is

i~
∂ψ

dt
= − ~2

2m
∇2ψ + V (x)ψ (1)

where ~ is the reduced Planck’s constant. Since ψ(x) is complex, we may express

it as R(x) exp
{
iS(x)

~

}
with R(x) being the magnitude and S(x) related to the

phase of the wave function. The complex Schrödinger equation can be rewritten

as two equations—one for R(x) and the other for S(x):

2R
∂R

∂t
+

1

m
∇ ·
(
R2∇S

)
= 0, (2)

∂S

∂t
+
‖∇S‖2

2m
+ V (x)− ~2

2m

∇2R

R
= 0. (3)

The equation for S(x) is very close to the classical Hamilton-Jacobi equation for

a particle. As ~→ 0, and assuming bounded derivatives and R(x) > 0, ∀x ∈ Ω,

we get
∂S

∂t
+
‖∇S‖2

2m
+ V (x) = 0, (4)

the Hamilton-Jacobi equation for a particle moving under V (x). When we

specialize to the static case (∂S∂t = −1) and set m = 1
2 and V (x) = 0, we get

‖∇S‖ = 1, the constant forcing function version of the eikonal equation. We

can solve the linear Schrödinger instead of the nonlinear Hamilton-Jacobi—a

concrete payoff of this relationship. Furthermore, the use of a computational

parameter similar to Planck’s constant introduces uncertainty into the distance

transform setup. Finally, instead of computing distance functions, we compute

wave functions which by virtue of satisfying a linear differential equation, inherit

the properties of linearity and superposition. For more details, please see [22,

20].

What we gain—the introduction of uncertainty and the ability to add and

superpose wave functions—more than makes up for what we lose—certainty in
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the distance function representation. Having discussed the benefits of a wave

function representation over those of a distance function, we now demonstrate

one of its advantages—specifically the ability to represent a set of planar curves

with uncertainty—relative to shape density functions which were previously

used to represent point-sets with uncertainty.

Consider a set of points xi ∈ R2, i ∈ {1, . . . , N}. We may fit a density

function to this point-set by employing a Parzen window density estimator and

a Gaussian kernel. If a Gaussian is centered at each point, we get

p(x) =
1

N

N∑
i=1

1

2πσ2
exp

{
−‖x− xi‖

2

2σ2

}
, (5)

where σ is the isotropic standard deviation of each 2D Gaussian. The un-

certainty parameter σ in this point-set density function representation can be

estimated via cross-validation or other methods available in the density esti-

mation literature. The scalar field p(x) gives us the probability density at any

location in R2. A large value of the density translates to higher likelihood of the

shape being present and vice-versa. As mentioned earlier, there is however no

way to represent curves (other than as discretized point-sets) in this framework.

Can we translate the density function uncertainty representation of a point-

set to a wave function uncertainty representation of a set of curves? The analysis

above suggests that the magnitude of the wave function R(x) can be related to

the shape density whereas the phase of the wave function is related to the

shortest distance S(x) to the shape boundary. To drive this metaphor home, we

turn to Huygens’ principle [23]: we consider waves emanating from every point

on the shape boundary. The influence of each wave isotropically decreases as you

move away from its source location and the directionality of the wave depends

on the normal vector at the source location. From a computational perspective,

we cannot place a wave source at each point on the shape boundary—instead

we consider planar curves with a discrete number of source locations.

Assume a set of planar non self- or other-intersecting curves parametrized

by xkl, νkl ∈ R2, k ∈ {1, . . . , Nl} , l ∈ {1, . . . , L}. Here xkl, k ∈ {1, . . . , Nl} is

the set of control points of the lth curve in anti-clockwise order and νkl, k ∈
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{1, . . . , Nl}, the set of outward facing unit normal vectors. We use unit nor-

mals since Huygens’ principle only needs directions to be specified. We unpack

Huygens’ principle by constructing the wave function

ψ(x) =

L∑
l=1

Nl∑
k=1

exp

{
−‖x− xkl‖

λ

}
exp

{
i
〈νkl, x− xkl〉

τ

}
, (6)

where λ, τ are free parameters related to isotropic decay and spatial frequency

respectively and 〈·, ·〉 denoting an inner product. (The choice of absolute rather

than squared distance in the exponent is not justified here.) The wave function

not need be normalized. The magnitude and phase of the wave function can

be computed from (6) and we focus on the phase following its approximate

identification with the Hamilton-Jacobi field S(x) above:

S(x) = arctan

(
={ψ(x)}
< {ψ(x)}

)
, (7)

is the wrapped phase component of the wave function with its zero level set peri-

odicity proportional to τ . Computation of the wrapped phase is straightforward

(while certainly not the case for the unwrapped phase). Below, in Figure 2, we

display the contours of S(x) corresponding to a set of shapes depicted in Fig-

ure 1. For each of the silhouettes3 in Figure 1, we extracted the contours and

then fit outward facing normals using B-splines. Then, we compute ψ(x) us-

ing the normals along with the curve locations. For all six shapes, we set λ

to 0.01 and τ to 0.4 (except for the horse shape where τ was set to 0.3). The

level sets of S were extracted via the contour function in MATLAB R©. In all

cases, we observe (and the reader can observe this as well by zooming into the

plots) that the phase information captures the entire figural of the shape. Shape

topology information is preserved and in particular, we clearly see the medial

axes. The reader may be doubtful of the usefulness of the topology information

since we displayed all contours of S but this can be dispelled by visualizing the

magnitude of the wave function. This information, available in Figure 3 clearly

demonstrates the preservation of shape location information in the form of high

3We thank Kaleem Siddiqi for providing us with the set of silhouettes.

9



magnitude values near the shape boundary.

To the best of our knowledge, this is a new contribution. While the mag-

nitude of the wave function in (6) can be expected to behave similarly to the

point-set Parzen window density estimator in (5), topology representation via

the phase of the wave function—obtained by merely turning curve normals into

spatial frequency attributes—is new. Syntax and statistics are joined at the

hip in this new representation: witness the use of attribute information (curve

normals) to anchor a relational (topology) representation. Uncertainty in this

representation is at a deeper level than density functions since these can be ob-

tained from wave functions and not vice-versa. It remains to be seen if the wave

function shape representation can be leveraged for shape atlases, registration

and indexing—and we plan to pursue these topics in the near future.

3. Interaction

Nothing he’s got he really needs

Twenty first century schizoid man

King Crimson, 21st Century Schizoid Man

Fu’s main concern was the unification of structural (syntactical) pattern

recognition and statistical decision theory. In [5], he proposed an attributed

grammar for pattern recognition. He argued that pattern primitives could be

characterized using feature vectors (and their attributes) and handled using

statistical decision theory while contextual information could be handled using

syntactic (relational) methods. Fu uses semantics in different senses of the word.

He sometimes appeals to attribute information at points on a shape, for exam-

ple, and contrasts attributes (semantic information) from relational (syntactic

information) representations. In other places, he discusses statistical and syntac-

tic pattern recognition and builds a contrast between attributes and contextual

information. Since the three way relationships between syntax, semantics and

statistics were left implicit in his work, we decided to coin Fu’s triad—syntax,

semantics and statistics—as an explicit homage to his characterization of the
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problem space. As one has to be very careful with the word semantics, we now

discuss the larger context of the syntax versus semantics problem and explain

why interaction is needed to shore up semantics.

In philosophy, semantics is related to the concept of intentionality—mental

content that is directed to a certain state of the world [24]. For example, certain

key points on a shape may be meaningful to us and not easily captured by

shape location and normal information. This intentional content directed at

shape attributes is meaningful to us and therefore carries semantic information.

Intentionality is usually contrasted with qualia—the phenomenal qualities of

experience [25]. The past twenty years has seen intense debate between those

who espouse that machine intentionality will naturally emerge from underlying

complex (syntactic) representations and those who believe that intentionality

and qualia are coupled and that machines cannot have qualia and consequently,

true intentionality as well. Below, we summarize the philosophical state of

affairs and discuss the relevance to pattern recognition.

To keep things simple and focused, we—in journalistic mode—first survey

the various philosophical positions using a chronological approach. Since the

main debate of the past twenty years has been on the ultimate nature of hu-

man experience, we begin there. Dennett in [26], set this process in motion by a

careful deconstruction of the Cartesian theater—an imagined physical “here and

now” in the brain where “it all comes together” and a self is created. Dennett’s

deconstruction allowed him to disqualify qualia and adopt an almost elimina-

tivist position regarding human experience. Then, Chalmers in [27], posed the

hard problem of consciousness by asking (over and over), why physical and com-

putational processes had to be accompanied by experience. Chalmers argued

(convincingly to many) that there was no reason to believe that any process

had to be necessarily accompanied by experience and that the processes could

very well be “just going on in the dark”. Therefore, there is an explanatory

gap [28] between physical processes and experience which subsumes the seman-

tic gap between linguistic and computational representations. This observation

led Chalmers to adopt a dualistic position in which experience is fundamental
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and therefore to be added to a physicalist or computational base. The hard

problem of experience as formulated by Chalmers was very influential and kick-

started a conference series4 and an interdisciplinary journal5 devoted to the

problem. Within this framework, Stoljar, in [29, 30] argued that it is precisely

our ignorance of the true nature of the physical that sustains the hard problem.

Physicalism could have a mystery ingredient X which always entails experi-

ence. Ignorance of this mystery ingredient leads us to adopt dualistic positions

prematurely. While the specification of X may be hard, there is no a priori

reason to rule it out. This position—a fundamental physicalism which entails

experience—seemed eminently sound leading us to speculate that composition-

ality is the mystery ingredient [31] and that it is by virtue of being compositional

subjects that we have qualia and therefore intentionality as well. Compositional

subjects are conceived as physical beings which interact with the world and give

it form and are in turn informed. We characterize this position as non-dualist

interactionist to emphasize the differences with both dualism and eliminativism

which preceded it.

We justify the above segue into philosophy by showing the relevance to pat-

tern recognition. An orienting generalization that can be made about the fields

of pattern recognition, computer vision and machine learning is their reliance

on automated information processing. Insofar as human experience enters the

picture, it is merely in the form of behavioral patterns which are modeled—in

supervised learning, interactive segmentation, activity recognition etc. While

there are exceptions to this stereotyping [32, 33], we feel our generalization is a

fair characterization. We argue that this lack is due to the influence of strong AI

which is still being felt by these fields long after AI has lost its once dominant

position. While Fu’s triad is a constant reminder that syntax and semantics

have to be unified, we are not aware of serious attempts at this time to continue

along Fu’s path and complete the unification at a fundamental level. With se-

4Toward a Science of Consciousness: The Tucson Conference (http://consciousness.
arizona.edu).

5Journal of Consciousness Studies, Imprint Academic, UK.
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mantics (for us) being related to human experience, we must take Chalmers’

point seriously about the need to accommodate experience while eschewing du-

alism. The nondualist interactionist position outlined above is a step in this

direction as it allows for a (physical) subject to interact with a (physical) world

with both being informed by the interaction. It has the potential to lead to

a unified theory of the behavioral and the intentional while remaining true to

its computational roots. The dualism between the physical and experiential

is replaced by a naturalistic dualism within physicalism between compositional

subjects and processes, thereby evading the hard problem. Since this appears

to be a reasonable and common sense approach, we would expect fields such

as human-computer interaction (HCI) to have already adopted similar philo-

sophical positions and be presently engaged in constructing a theory of HCI

by modeling the inter-relationships between the computational, behavioral and

intentional worlds.

To the best of our knowledge, no attempt has been made to unify syntax

and semantics by attempting to mathematically model (predict and control)

the set of interactions between humans and machines while availing of behav-

ioral (activities), intentional (beliefs), computational (objects and patterns) and

perhaps even functional (imaging, EEG) data. At present, the field of HCI

is more concerned with the design of optimal user interfaces and the ability

of interaction to elicit novel phenomenology in test subjects. A focus on the

mathematical modeling of human interaction—while well within the purview of

HCI—has not yet emerged. This schism between older areas such as pattern

recognition and machine learning and newer ones such as HCI and human-

centered computing is to be expected since the emphasis on human interaction

is very new and clearly a new millennium phenomenon. Obviously there are

meetings and conferences—such as the International Conference on Multimodal

Interaction (ICMI)—wherein human interaction and pattern recognition come

together, but until these become first tier, our point remains valid. Since this

trend is expected to continue into the near future, there is a high likelihood

that pattern recognition will remain bereft of human interaction (in its broad-
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est form as outlined above) while HCI continues exploring novel phenomenology

[34]. Clearly, this gap between pattern recognition and HCI mirrors the earlier

gap (in the late ’70s) between image processing and a fledgling computer vision.

Perhaps a postmodern counterpart of Rama is needed to step in and bridge the

gap by bringing a sophisticated applied math aesthetic to HCI. When this gap is

taken in conjunction with our previous observation that machine learning may

continue shedding its syntactic components, we think the loss of Fu will be even

more keenly felt in the future.

From the above arguments, we see that there are no principled reasons why

pattern recognition cannot include within its rubric the modeling of human

interaction with machines. Even if its present day center of narrative gravity

is anchored in automated processing, there is no reason to rule out a reboot

especially since we witnessed a previous one in the early ’80s. We now try to

specify one way that things may proceed.

There is an unexpected conceptual connection between interaction as spec-

ified here and the wave functions of the previous section. In physics, the only

way in which a conscious observer interacts with a physical system is via the

process of measurement which causes wave function collapse (from a superposed

state) [35]. While this remains a highly controversial subject in physics [36], it

dovetails well with a nondualist interactionist position. Since we would like to

explicitly take into account different forms of data, we envisage an overall wave

function ψ comprising separate components in the form ψc〉ψf 〉ψi〉ψb〉 with the

subscripts c, f , i, and b standing for the computational, functional, intentional

and behavioral respectively. Here, we have used the standard ket (ψa〉) notation

from physics [37] (loosely understood as an infinite dimensional counterpart of

a vector). The notation ψa〉ψb〉 denotes a composite or direct tensor product

of kets ψa〉 and ψb〉. Of the components above, the intentional presents the

most difficult problem for data collection since people can be deluded about

their own beliefs—perhaps the main reason why such a unification has not been

previously attempted. It may turn out that one way to take this into account

is to use separate wave function components for verbal reports and intentions
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with the latter being a hidden variable, predicted by the rest. Needless to say,

this is all extremely speculative but instructive: there is a clear and pressing

need to simultaneously and mathematically model the entire range of human

interaction (including behaviors and intentions) in order to unify syntax and

semantics. We cannot sketch out a full proposal here but instead attempt to

make a limited point about human interaction and shape analysis.

In shape analysis, the wave function discontinuously changes when source

locations and/or normals are added/erased. Since wave functions do not evolve

in our setup, the discontinuous change is quite natural. It merely corresponds to

added/erased source information. Consequently, we may now return to the wave

function shape representation and specify a problem of pattern interaction in

that space. Note that the issue of creating a model of interaction is orthogonal

to the issue of creating a (shape) representation that facilitates interaction. We

are merely pointing out that wave functions are felicitous of interaction.

To press this point home, we took a silhouette shape (shown in Figure 4)

and obtained a wave function from just a segment of the shape. Curve normal

information is not utilized. The wave function is computed using

ψ(x) =

L∑
l=1

Nl∑
k=1

exp

{
−‖x− xkl‖

λ

}
exp

{
i
‖x− xkl‖

τ

}
, (8)

in other words, from location information alone. Shape topology information

is extracted from the level sets of the phase as before and clearly show the

partialness of each shape segment. However, when we add the wave functions

together and display the shape topology from phase, we obtain the full shape

figural. We clearly see that this can be operated in an interactive context. A

human can interact with this emerging wave function and edit shape locations

(and erase them if necessary) to produce the final wave function which contains

both topology and location information in phase and magnitude respectively.

It remains to be seen if normal information can be included in this framework

and the interplay between uncertainty and interaction is poorly understood.

In this section, we took the position that interaction is one of the foun-

dations of intentionality and therefore semantics. In exploring this theme, we
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have shown the unexpected relationship between interaction and linearity: when

shape source locations are edited—added or erased—the wave function changes

discontinuously as expected. But, the linearity of the wave function allows for

the discontinuous contributions (in time) to be integrated via linear operations

into a new representation. While human interaction in shape wave function

representations is new (to our knowledge), it has been repeatedly pointed out

in the physics literature. For example, Wheeler in [38] emphasized the central-

ity of the participant-observer in physics and the importance of the dictum “No

elementary phenomenon is a phenomenon until it is a registered (observed) phe-

nomenon”. Since physics is far afield from us, we take our cue from Chalmers

who points out [35] in connection with arguments against interactionism: “By

far the strongest response to this objection, however, is to suggest that far from

ruling out interactionism, contemporary physics is positively encouraging to the

possibility.” We have merely taken this point further and in a mathematical

direction by modeling interaction of humans with shapes in terms of source lo-

cation edits leading to discontinuous wave function change—which is entirely

straightforward in our context. In the future, we plan to take into account dif-

ferent forms of data (intentional and behavioral) in a wave function framework

in the hope of fulfilling a deeper integration of syntax and semantics.

4. Disputation

Knowledge is a deadly friend

When no one sets the rules

King Crimson, Epitaph

Throughout this essay, we have championed Fu’s endeavors in trying to unify

syntax, semantics and statistics in pattern recognition. First, we examined his

contributions in the light of the differences between syntactic and statistical pat-

tern recognition. The concept of uncertainty was highlighted as a way to soften

syntactical representations and make them more robust. When we restricted

our focus to shape analysis, we were able to demonstrate the importance of a
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new complex wave function whose magnitude and phase simultaneously repre-

sented shape location and topology respectively. Next, we looked at the current

state of the syntax versus semantics debate and concluded that interaction was

a key component missing in present day pattern recognition. An unexpected

nexus exists between wave functions and interaction in the physics literature

which we leveraged for shape analysis. It turns out that interaction in the form

of the editing of source locations and attributes can be accommodated in the

wave function representation. Furthermore, properties like linearity and super-

position come to our aid when the wave function changes discontinuously in

response to interaction. Finally, in the quest for more generality, we suggested

that pattern recognition should be open to including human interaction into its

fold, perhaps leading to a newer, HIPR (human interaction in pattern recogni-

tion) sub-field—a reboot prefigured by the earlier CVPR reconfiguration of the

early ’80s.

Lest we be accused of being too glib in these recommendations, it’s worth

noting the gulf that exists between some of the fields under consideration: pat-

tern recognition, human-computer interaction, philosophy and neuroscience.

There is no shared consensus between these fields at the present time: for

example neuroscience is still focused on how brain processes give rise to ex-

perience whereas HCI in the main treats the human as a Cartesian unit. At the

same time, philosophy is moving away from both the naïve Cartesian dualism of

HCI and the materialism of neuroscience. We have already discussed the lack

of emphasis on mathematical modeling in HCI in contrast to its centrality in

pattern recognition. And pattern recognition, machine learning and computer

vision have lately not shown much interest in philosophy preferring to leave

intact their tacit commitments to strong AI. Given these divisions, a shotgun

synthesis is clearly premature, unwarranted and possibly dangerous. Rather,

a synthesis should first be deemed necessary perhaps driven by demographic

change or the impending dissolution of a field. While the former is to be pre-

ferred over the finality of the latter, it too represents a gloaming which is hard

to detect until it is almost upon us.
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Figure 1: Six silhouette shapes.

Figure 2: Shape topology information from phase for six silhouettes. Please zoom into the
online version for a more detailed view.
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Figure 3: Shape location information from magnitude for six silhouettes. Please zoom into
the online version for a more detailed view.
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Figure 4: Shape addition. Top: Bird image. Second Row: Left and center: shape topologies
from phase for partial segments. Right: shape topology obtained from the sum of the wave
functions. Bottom Row: Left and center: shape location from magnitude for partial segments.
Right: shape location from magnitude obtained from the sum of the wave functions. Please
zoom into the online version for a more detailed view.
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