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1 Introduction

In today’s lecture we started on proving circuit depth lower bounds (regardless
of size) for st-connectivity. We will prove lower bounds for monotone circuit
depth. Note that stcon is a monotone function (why?) The proof for a lower
bound for this function will be done according to the following ideas:

Idea 1: Give a communication complexity lower bound. Recall from previous
lectures the following definition and theorem that relates communication
complexity to (monotone) circuit depth of functions:

Definition 1 For a boolean function f : {0,1}" — {0,1}, let X = f~1(1)
(i.e. the set of all z’s such that f(z) = 1) and Y = f~1(0). Let Ry C
X xY x {1,...,n} consist of all triples (z,y,i) such that z; # y;. Let
My C X xY x{1,...,n} consist of all triples (x,y,4) such that x; =1 and
y; = 0. Le, z; > y;. Note that this is analogous to Ry (and makes sense)
for monotone functions f.

Theorem 2 For every f : {0,1}" — {0,1}, we have d(f) = D(Ry). And
dm(f) = D(My). Here d(f) is the min depth of a circuit computing f,
and Here d,,(f) is the min depth of a monotone circuit computing f. The
latter result says that the communication complexity of a relation of the
form of My (as opposed to Ry ) is only useful for lower bounding bounding
the monotone circuit depth (as opposed to general circuit depth) of f.

Idea 2: We want to prove a lower bound for st-connectivity, the function that
gives a 1 if there is a path between s and t, by proving a lower bound
for R¢orr and by giving a reduction from the protocol for st-connectivity
(Mstcon) to the protocol for fork (Ryork) that does not increase the depth.
In other words:

Rfork SA Mstcon

Idea 3: Show the lower bound for Ry,p.

Due to theorem 2 we don’t need to explicitly define the function fork. As
long as we are able to define the set Ry, we can proceed. We will define the
set Ryorr as follows:
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Definition 3 Let j,w,l,i € N and z,y € {1,...,w}. We define the set Rjorr
as follows:

Riork = {(z,y,9)|% = yi NTiz1 # Yit1}

There is one drawback with the this definition however. Not every pair z,y
isin Rfork3

Example 1 For w = 3, let x = 223 and y = 121 and i = 2, then (z,y,1) €
Ryork. However for given x = 222 and y = 222 there is no i such that (z,y,i) €
Rfork

It is rather inconvenient that not every z,y is in Ryorp, so we extend the
definition a little bit by adding some extra information to « and y. We are going
to place a digit in front and to the back of z and y. We obtain the following
definition:

Definition 4 Let - denote string concatenation. Let j,w,l,i € N andz = 1-
{1, ,w} wandy =1-{1,..,w} - (w—1). Now we define Rfori as follows:

Riork = {(2,y,0)|Ti = yi NTiy1 # Yig1}

This new definition has the advantage that for every pair z and y, there is
some ¢ such that (z,y,4) is an element of the set Ryfopk:

Claim 5

Vw,gai((xa Y, 7’) € Rfork)

Proof:  Trivial, just find the first place where they differ. Convince yourself
that such a place exists. [ ]

The function st-connectivity gives a one when there exists a path between
the source s and the target ¢. Formally this function is defined as follows:

Definition 6 (st-connectivity) Let G = (V, E) be a digraph (directed graph)
where |V| = n. Let G have two vertices s,t € V called the source and target.
The boolean function stcon is defined as follows:

stecon(G) =1 <= ecp(s ~ t)

Recall from previous lectures that we can represent a graph as a binary
string (of length n? — n) by indicating whether an edge exists (1) or not (0).
Since we can always relabel a graph we assume that s and ¢ are fixed vertices in
the input. Notice that stcon is a monotone function. If s and ¢ are connected,
then the addition of another edge will not disconnect s and t.

2 Reduction

We will now examine how we can convert a communication protocol for stcon
into a communication protocol for fork without increasing the depth, the amount
of bits communicated, of the protocol. First let us make sure we formally un-
derstand the definition of M.o1,-
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Definition 7 (Mgicon) Let stcon be a boolean function for a graph of n vertices.
Let Gy = stcon™1(1) and G5 = stcon™(0). Now Mo, is defined as:

Mstcon = {(»’L‘;y,i) | T € Glay € G2;$i # yz}

Since the input of the function stcon is a string of bits indicating whether or
not there exists an edge in the graph G, an element (x,y,7) € Mgicon indicates
that there does not exists an edge in the graph x where there is an edge in the
graph y. A protocol for M., is actually giving this edge as an output.

We will look at a subset M!,.,, C X' xY x {1,...,n?> — n}. The reason
for looking at a subset is that it is easier for us and it is sufficient due to the
following condition:

Rfork SA MI

stcon

S A Mstcon

We will show the first reduction, whereas the latter one is trivial. For the first
reduction we have to show that we can convert the input to from Rjf,- to an
input of M,,, and are able to convert the output of M},..,, back to Rfork, as
depicted in figure 2.

The conversion of the input will be two graphs. One graph G; used by Alice
and one graph G2 used by Bob. The graph that Alice and Bob will use is a
layered graph as depicted in figure 1. The graph will be of size n. We have
I+ 2 = /n layers of w = /n vertices.

Definition 8 (Converting the input) Here is how we convert an input from
Ryfork to an input of M., .. Take the string z € 1-{1,...,w} - w, interpreted
by Alice as a graph consisting of a single path from 1 to w. The string y €
1-{1,..,w} - (w—1) will be interpreted by Bob as a graph in G2 which contains
the path given by y. In addition to this, Bob is going to throw in all other edges
between adjacent layers, except those who originate in one of the vertices on the

path.

The graphs that Bob and Alice use might remind you of the positive and
negative test graphs of some lectures ago. Alice is using a minimal graph for
which stcon returns true whereas Bob is using a maximal graph for which stcon
returns false. Notice that in figure 1 we did not draw all the edges for Bob.

Claim 9 Let the output of the protocol Mgion be the edge (u,v) that is in G1
and not in G2. Let u be in the it" layer of Gy. (By definition of layered graphs,
v is in (i + 1)* layer). Now i is a correct output for a protocol for Ryork on
input x,y, i.e. Ryork(x,y,1) =1

Proof: Since (u,v) € G, it follows that u = z; and v = y; by construction
of G1.We now have to show that (u,v) ¢ G2. By construction of G2, the edges
in G go from everything other than y; in it" layer to everything in the (i 4 1)**
layer, and the single edge from y; to y;+1. So, the edges not in G2 are exactly
those that go from y; in i*" layer to everything other than y;,; in the (i 4+ 1)**
layer. Therefore u = y; and v # y;11. Therefore ¢ is such that z; = y;, but
Zit1 # Yi+1- Hence i is a correct output for a protocol for R¢,,« on input x,y.
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Tnput to fork Output fork

******* »  Additional edges for Bob

——————— > Original edges for Bob (given by v)

— »  Original edges for alice (given by =)

Figure 1: Layered Graph Figure 2: Reduction
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