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Traffic measurement provides critical information for network management, resource allocation,
traffic engineering, and attack detection. Most prior art has been geared towards specific application
needs with specific performance objectives. To support diverse requirements with efficient and
future-proof implementation, this paper takes a new approach to establish common frameworks,
each for a family of traffic measurement solutions that share the same implementation structure,
providing a high level of generality, for both size and spread measurements and for all flows.
The designs support many options of performance-overhead tradeoff with as few as one memory
update per packet and as little space as several bits per flow on average. Such a family-based
approach will unify implementation by removing redundancy from different measurement tasks and
support reconfigurability in a plug-n-play manner. We demonstrate the connection and difference
in the design of these traffic measurement families and perform experimental comparisons on
hardware/software platforms to find their tradeoff, which provide practical guidance for which
solutions to use under given performance goals.
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1 INTRODUCTION

Traffic measurement is a critical function for network management, resource alignment,
traffic engineering, and anomaly detection. In particular, flow size and flow spread provide
fine-grained and general-purpose information from which a variety of traffic statistics can
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be extracted. Flow size refers to the number of elements (e.g., packets or bytes) in a flow.
It has applications in heavy-hitter detection, flow distribution, super-changer detection,
congestion diagnosis, routing loop and blackhole detection, etc. Flow spread refers to the
number of distinct elements (e.g., header-field values or content) in a flow. It has applications
in super-spreader detection, worm activity monitoring, DDoS attack detection, frequency
profiling, etc. However, modern traffic measurement faces significant challenges below.

Per-flow measurement: This has been the norm with wide deployment of NetFlow [8] and
its non-Cisco equivalent, which have well-known problems, including large space overhead [60],
low sampling rate [16, 38] and flow size measurement only. There were successes in addressing
some specific performance issues [18, 33], but the fundamental problem of NetFlow’s high
space overhead remains untackled. To circumvent this problem, most research has generally
followed the path of reducing measurement scope by abandoning per-flow measurement and
focusing on a small number of heavy hitters or statistics collection [1, 15–17, 29, 31, 34, 49].
However, while per-flow data will allow us to find heavy hitters, detect traffic changes, learn
temporal-spatial traffic distributions, and compute statistics such as entropy, the other way
around is not true — heavy hitters and statistics cannot substitute the value of per-flow
traffic measurement, which is more generic and versatile in supporting network management
functions, particularly when one wants to investigate the behavior of individual hosts or
aggregate of selected subsets. Some applications of per-flow measurement are stealthy attack
detection, fine-grained traffic analysis, flow loss map, ECMP debugging, and TCP timely
attack detection [33].
Generality: There can be numerous different measurement tasks in a network. Imple-

menting a separate hardware/software solution for each one is costly and inefficient. It is
highly desirable to have a universal solution that fits many tasks and is future-proof in
handling unforeseen tasks after deployment [34]. However, most existing work is limited
to specific measurement requirements. First, many solutions (including NetFlow) focus on
flow-size measurement and heavy hitters [3, 34, 58] but ignore flow-spread measurement.
In their data structures, counters suffice in tracking the number of packets in a flow. But
that is not adequate in counting the number of distinct elements in a flow, which requires
a data structure that can “remember” the elements it has seen before in order to avoid
counting duplicates of the same elements, where a flow may have millions of elements to
“remember”. It takes hundreds or thousands of bits per flow to do so [19, 22, 26, 54], which
presents a serious challenge when there are tens of thousands or millions of concurrent flows.
Second, the designs of current traffic monitoring systems are often geared toward specific
performance goals such as space compactness [34, 35, 59] or estimation range [56]. They are
not general enough for complex and flexible tradeoff among accuracy, throughput, space
and processing overhead.

Low space/processing overhead: Modern routers forward packets from incoming ports to
outgoing ports via switching fabric. To match the line speed, on-chip cache memory is often
the first choice for online network functions. However, limited on-chip memory may have to
be shared among routing, performance, measurement, security and other functions, each of
which can only use a fraction of the available space. Depending on their relative importance,
some functions may be allocated tiny portions of the available memory, whereas the amount
of data they have to process and store can be extremely large in high-speed networks.
The great disparity between memory supply and traffic volume requires us to implement
traffic measurement functions as compactly as possible. As an example, if the amount of
on-chip memory allocated to a measurement task is 0.5MB but there are 1M concurrent
flows, with 4 bits per flow, can we still perform per-flow size or spread measurement, with
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generality in performance tradeoff? In addition to space efficiency, we also want to keep
per-packet processing time to a minimum constant, such as a single memory update per
packet. Constant processing steps (time) for each packet helps avoid pipeline stalls and thus
optimize throughput.

Our goal is to meet all the above challenges by designing a family of per-flow measurement
solutions that share a common implementation structure, which can be augmented for
different tradeoff requirements, measuring both flow size and flow spread with constant
per-packet overhead (down to one memory update and a couple of hashes), and doing so in
tight memory (down to several bits per flow). In addition, we want to support network-wide
distributed measurement. No prior art has achieved such a goal. UnivMon [34] does not
perform per-flow measurement, nor does it consider flow spread. It incurs variable processing
time with numerous memory accesses per packet in the worst case. Elastic Sketch [58] does
not measure flow spread and incurs variable processing overhead. SketchLearner [28] needs
to update l + 1 sketches per packet, each requiring multiple memory accesses, with variable
per-packet time, and it does not consider spread, where l is the number of bits in flow
ID. The above work can estimate the sizes of flows, not the spreads of individual flows.
None of them provides a generalized structure for accuracy/throughput/space/processing
tradeoff. FlowRadar [33] provides a constant-time solution, but cannot fully address the
space challenge faced by its NetFlow-type design, which is less efficient than the space-
sharing sketches that we adopt. RHHH [3] monitors hierarchical heavy hitters with constant
per-packet time (many memory accesses), but it does not consider flow spread or per-flow
measurement. Our work is complementary to OpenSketch [61] and SketchVisor [27], and
can be integrated into their architectures.
Numerous sketches have been proposed for traffic measurement [1, 5, 6, 9, 12–15, 19,

34, 39, 42, 62], each designed under specific performance requirements. This paper does
not intend to propose yet another sketch as numerous existing ones fail in fulfilling the
goal stated previously. Instead, we take a different path towards introducing meta-level
frameworks that incorporate the seemingly independent past (and future) sketches under a
common implementation structure, with the flexibility of plug-n-play and many options for
tradeoff. With this idea in mind, we propose several families of measurement solutions, using
the existing sketches as building components, and we compare them to find their respective
areas of excellence in a multi-dimensional evaluation space of measurement accuracy, memory
efficiency, processing overhead, online throughput and query performance. The contributions
are summarized below.

First, we propose a family of sketches called bSketch based on the structure underlying the
counting Bloom filter, and another family called cSketch based on the structure of CountMin.
These sketches share the same implementation, with different plug-in data structures (e.g.,
counters, bitmaps [54], HLL [26] or a combination of them) for actual packet recording.
They support measurement of flow size/spread or multiple measurement tasks together.

Second, we introduce a family of virtual sketches called vSketch, also using a plug-in
design, which shares memory at a fine level, enabling per-flow measurement for both size
and spread with one memory update per packet in tight memory averaging several bits per
flow.
Third, we discuss how to apply these sketch families in distributed measurement.
Fourth, we implement the proposed sketch families in both hardware and software. We

compare their performance using trace-based experiments and reveal the multi-dimensional
tradeoff that these sketches represent. Our experimental results shed light on how to choose
different sketches based on performance and application goals.
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2 BACKGROUND

2.1 Flow Model

We adopt a generalized flow model where each flow consists of all packets that share the
same value(s) in a pre-defined subset of header fields, which together form the flow ID. Then
an incoming packet stream can be abstracted as a sequence of 〈f, e〉 pairs, where f is a
flow ID and e is an element to be measured. With different flow ID definition, flows under
measurement may be per-source flows, per-destination flows, per-source/destination flows,
TCP flows, WWW flows, P2P flows, or other application-specific flows. Flow spread and
flow size are two fundamental traffic measurements based on this flow model. For example,
NetFlow contains several size measurement for TCP/UDP flows. Higher-order statistics
such as mean, deviation, skewness and histogram among all or a selected set of flows can be
derived from per-flow measurements [4, 34].

Flow spread is defined as the number of distinct elements in each flow, where elements under
measurement may be destination addresses, source addresses, ports, or even application-
header fields. Consider per-source flows, where all packets from the same source address
constitute a flow. Measuring the number of distinct destination addresses in each flow
not only helps detect scanning activities [48] but also provides information for monitoring
the actual scanning rate, which can assist in determining the characteristics of malicious
activities, for instance, the infection rate in outbreak of random-scanning worm attacks
[7, 40, 50]. Consider per-destination flows, where all packets sent to a common destination
constitute a flow. If the number of distinct source addresses in a flow suddenly surges, it
may signal a DDoS attack [37, 41, 46, 47, 52] against the destination of the flow. We may
even consider all HTTP request packets that carry the same URL as a flow. An institutional
gateway may determine the popularity of external web content for caching priority by
tracking the number of distinct source addresses in each flow (which consists of all outbound
HTTP requests for the same web content).

Flow size is defined as the number of elements in each flow, where elements may be packets,
bytes, or occurrences of a certain header-field value. One may measure the number of packets
in each TCP flow, the data rate of each voice-over-IP session, the number of bytes that
each host downloads, the number of SYN packets from each source address, or the number
of ACK packets sent to each address. Such information is very useful to service provision,
capacity planning, accounting and billing, and anomaly detection [25, 30]. For instance,
measuring the number of SYN/ACK packets provides a means for detecting SYN attacks
[53]. Studying per-flow sizes over consecutive measurement epochs helps network operators
discover activity patterns and together with user profiling, reveal geographic/demographic
traffic distributions among users. Such information assists Internet service providers and
application developers to align network resource allocation with the majority’s needs [32].
In the event of a botnet attack where there is a sudden surge of small flows, a security
administrator may analyze the change in the flow size distribution [16, 29] and use per-flow
information to compile the list of candidate bots that contribute to the change [23, 24].

Measuring flow spread is more difficult than measuring flow size. Consider per-source flows.
If a source sends 10,000 packets to 100 different destinations, its flow size is 10,000 packets,
but its flow spread is 100 distinct destinations. For flow spread, there needs a mechanism to
keep track of duplicates in the flow, which takes a lot of space.
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Fig. 1. Flow f is hashed to d estimators where its elements e are recorded. Two flows, f and f ′ may be
hashed to the same estimator, which records the elements of both flows.

2.2 System Model

Traffic measurement functions are implemented by monitors and a controller. The monitors
are software/hardware modules that are deployed on routers, switches, firewalls, or mid-
dleboxes to record per-flow statistics in real-time. Each monitor is implemented by an ID
module and a measurement module. The ID module processes only selected packets (such
as SYN packets) or samples a subset of packets to record flow IDs (such as source addresses
for per-source flows). Sampling may lose some flow IDs, particularly for UDP, but it tends
to keep those of larger flows, especially ones that persist over multiple measurement epochs.
Because flow IDs are not recorded on a per-packet basis, this module may be implemented
in off-chip memory. The bigger problem is the on-chip measurement module which processes
all arrival packets. Each packet is abstracted as an 〈f, e〉 pair, and the measurement module
records e in the data structure designated for f . The focus of this paper is the measurement
module.
Time is divided into epochs. At the beginning of each epoch, the monitors send the

measurement results to the controller and reset their data structures for the next epoch.
The controller will combine the measurement results from the whole network and answer
user queries.

3 BSKETCH: A FAMILY OF BLOOM SKETCHES

We begin by presenting our first plug-n-play sketch family called bSketch, which helps
introduce the basic design approach that also underlies more sophisticated sketches later.
Our discussion will surround two abstract tasks: size measurement and spread measurement.
We do not refer to numerous application-specific measurement tasks because they can be
abstracted into the above two.

3.1 Counting Bloom Filter

The counting Bloom filter [9] was originally designed to support member deletion in a Bloom
filter. We can use it for flow-size measurement as follows: The data structure is a single array
of l counters, denoted as C. For each packet 〈f, e〉, we hash f to d counters, and increases
these counters by one, i.e., C[Hi(f)] := C[Hi(f)] + 1, where Hi, 0 ≤ i < d, are independent
hash functions whose output range is [0, l) through modulo operation. Similar to CountMin
[12] (which will be discussed shortly), when querying about flow f , we again hash f to the d
counters and return the minimum value of them as the estimated flow size. The estimate is
accurate when one of the d counters has no other flow hashed to it. But if all d counters are
shared with other flows, there will be an estimation error. By choosing the value with the
smallest error among the d counters, we can reduce the error very effectively.
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3.2 bSketch Design

We generalize the structure of counting Bloom filter to a family of sketches, called bSketch,
where the counting Bloom filter represents a point in this much larger solution space with
much expanded functionalities. As illustrated in Fig. 1, the counter array is replaced with
an estimator array, where each estimator is a plug-in that can be any data structure for
measuring a certain quantity of a flow, which may be size, spread or other statistics. The
technical contributions of bSketch are three-hold: First, its generalized structure expands the
measurement scope from flow size to flow spread and other statistics or their combinations.
Second, it provides a common framework of implementation with plug-ins for a family
of member solutions, as is done in our hardware/software experiments. Third, we will
thoroughly compare its member solutions together with other sketches experimentally to
find their respective strengths and weaknesses under various application goals and resource
settings.
The data structure of bSketch is an array of l estimators, denoted as A. Notations

introduced here or later can be found in Table 1 for quick reference. There are two basic
operations: recording an incoming packet 〈f, e〉 and querying the size/spread of a flow f . For
recording, we hash f to d estimators in the array and record e in those estimators A[Hi(f)],
0 ≤ i < d, as shown in Alg. 1, where the hash functions may be practically implemented
from a master hash function H as Hi(f) = H(f ⊕ s[i]), and s is an array of m randomly
selected seeds. The actual recording operation as a plug-in at Line 2 is dependent on the
type of estimators in use; its pseudo code is given in Alg. 2 and will be discussed shortly. To
query about flow f , we hash f to the d estimators and return the minimum value produced
from these estimators, as shown in Alg. 3 with another plug-in at Line 4.

Algorithm 1 Recording a packet in bSketch

Input: estimator array A, seed array s, packet {〈f, e〉}
Action: record e of f in A

1: for i = 0..d− 1 do
2: bRecord P lugin(f, e, A[Hi(f)])
3: end for

Algorithm 2 bRecord P lugin(f, e, A[Hi(f)])

Input: flow label f , element id e, estimator A[Hi(f)]
Action: record e of f in A[Hi(f)]

1: switch (type of estimator A[Hi(f)])
2: case counter:
3: A[Hi(f)] := A[Hi(f)] + 1
4: case bitmap:
5: A[Hi(f)][H(e)] := 1
6: case FM:
7: set G(e)th bit in A[Hi(f)][H(e)] to one
8: case HLL:
9: A[Hi(f)][H(e)] := max{A[Hi(f)][H(e)], G(e)}

10: end switch
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f flow label
e element id
k actual size/spread of flow f

k̂ estimated size/spread of flow f
H,Hi(·) uniform hash function

s array of randomly selected seeds
G(·) geometric hash function
l total number of estimators in bSketch
d number of estimators per flow in bSketch

A[j], 0 ≤ j < l estimator array in bSketch
b bitmap size in bSkt(bitmap)
m number of estimator arrays in vSketch
w size of each array in vSketch

Ui[j], 0 ≤ i < m,
0 ≤ j < w

jth unit-sketch of ith array in vSketch

Lf logical estimator for flow f

x
number of elements recorded in A[Hi(f)],
number of elements recorded in Lf

x̂ estimated number of elements in Lf

n
noise in A[Hi(f)],
noise in Lf

n̂ estimated noise in Lf

LF logical estimator for super flow F
X total sizes/spreads of all flows

X̂ estimated total sizes/spreads of all flows

Table 1. Notations

Algorithm 3 Querying on a flow in bSketch

Input: estimator array A, seed array s, flow label f , maximum integer value INT MAX

Output: size/spread estimate k̂

1: k̂ := INT MAX
2: for i = 0..d− 1 do
3: k̂ := min{k̂, bQuery P lugin(A[Hi(f)])}
4: end for
5: return k̂

bSketch represents a family of sketches, one for a different estimator plug-in. For example,
when we plug in a counter for each estimator, as shown in Line 3 of Alg. 2, we have the
counting Bloom filter, also denoted as bSkt(counter) in the family. Similarly, when we
plug a bitmap [54], FM [22] or HLL [26] for each estimator in A, we have bSkt(bitmap),
bSkt(FM) or bSkt(HLL), which can measure the spreads of all flows simultaneously in a
memory averaging several bits per flow in our experiments, thanks to estimator sharing in
Fig. 1, whereas the original designs of bitmap/FM/HLL [22, 26, 54] without sharing will
take hundreds or thousands of bits to measure the spread of a single flow. We stress that
the members in the bSketch family are not limited to those described below as other data
structures may also be plugged in.
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Algorithm 4 bQuery P lugin(A[Hi(f)])

Input: estimator A[Hi(f)]

Action: size/spread estimate k̂

1: switch (type of estimator A[Hi(f)])
2: case counter:
3: k̂ := A[Hi(f)]
4: case bitmap:
5: Z = 0
6: for j = 0..b− 1 do
7: if A[Hi(f)][j] = 0 then Z := Z + 1
8: end for
9: k̂ := −b ln(Zb )

10: case FM:
11: p = 0
12: for j = 0..m− 1 do
13: p := p+ no. of consecutive leading ones in A[Hi(f)][j]
14: end for
15: p := p

m ; k̂ := m2p/ϕ
16: case HLL:
17: αm := 0.7213/(1 + 1.079/m); sum := 0
18: for j = 0..m− 1 do
19: sum := sum+ 2−A[Hi(f)][j]

20: end for
21: k̂ := αmm2/sum
22: end switch
23: return k̂

3.3 bSkt(bitmap)

Each estimator A[j], 0 ≤ j < l, is implemented as a bitmap of b bits, which are referred
to as A[j][u], 0 ≤ u < b. The total memory size is b × l. All bits are reset to zeros at the
beginning of each measurement epoch.

Record: An arrival packet 〈f, e〉 is hashed to estimator A[Hi(f)], 0 ≤ i < d. To record ele-
ment e, we hash e to a bit in the bitmap of A[Hi(f)] and set the bit to one: A[Hi(f)][H(e)] :=
1, as shown in Line 5 of Alg. 2, where H is another hash function. Regardless of how many
times e appears in flow f , because they set the same bit, the duplicates are automatically
filtered as they make no extra impact on the bitmap.

Query: When a query is made on flow f , for each bitmap A[Hi(f)], we estimate the number

of distinct elements recorded as k̂i = −b lnVi from [54], as shown in Line 5-9 of Alg. 4, where

Vi is the fraction of bits in A[Hi(f)] that are zeros. Finally, we return mini∈[0,d){k̂i} as an
estimation for flow f ’s spread. The estimation range is up to b ln b.

3.4 bSkt(FM)

Each estimator A[j], 0 ≤ j < l, consists of m FM unit-sketches [22], which are referred to as
A[j][u], 0 ≤ u < m. Each unit-sketch, A[j][u], has 32 bits, which are initialized to zeros at
the beginning of each epoch.
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Record: To record element e in estimator A[Hi(f)], we first hash e to one of its unit-sketches,
A[Hi(f)][H(e)], and then record e in that unit-sketch as follows: Perform a geometric hash
G(e) whose output is i with a probability of 2i+1 and set the G(e)th bit of A[Hi(f)][H(e)]
to one, as shown in Line 7 of Alg. 2.
Query: When a query is made on flow f , for each estimator A[Hi(f)], 0 ≤ i < d, we

estimate the number of distinct elements as k̂i = m2zi/ϕ, as shown in Line 11-15 of Alg. 4,
where zi is the average number of consecutive ones (starting from the least significant bit)
in the unit-sketches of A[Hi(f)], and ϕ is a bias correction constant whose value can be

found in [22]. Finally, we return mini∈[0,d){k̂i} as an estimation for flow f ’s spread. The

estimation range is up to 232.

3.5 bSkt(HLL)

Each estimator A[j], 0 ≤ j < l, consists of m HLL unit-sketches, which are referred to as
A[j][u], 0 ≤ u < m. Each unit-sketch, A[j][u], is 5 bits long, which is initialized to zero at
the beginning of every measurement epoch.
Record: An arrival packet 〈f, e〉 is hashed to estimator A[Hi(f)], 0 ≤ i < d. To record

element e, we hash e to one of its unit-sketches, A[Hi(f)][H(e)], where H(e) is another
hash function. We then record e in that sketch as follows: Perform a geometric hash G(e)
whose value is i with a probability of 2i+1, and if G(e) > A[Hi(f)][H(e)], replace the value
of A[Hi(f)][H(e)] with G(e), as shown in Line 9 of Alg. 2. One way to implement G(e) is to
perform a uniform hash H ′(e) and return the number of leading zeros in the hash result.
Query: Consider estimator A[Hi(f)], 0 ≤ i < d. We define the harmonic mean of its

m unit-sketches as har(A[Hi(f)]) = (
∑m−1

u=0 2−A[Hi(f)][u])−1. When a query is made on
flow f , from each estimator A[Hi(f)], we estimate the number of distinct elements as

k̂i = αm ·m2 ·har(A[Hi(f)]), as shown in Line 17-21 of Alg. 4, where αm is a bias correction
constant whose value can be found in [21]. According to [21], when the estimate is small,
we need to convert the estimator A[Hi(f)] into a bitmap for estimation, which is also true

for FM [22]. Finally, we return mini∈[0,d){k̂i} as an estimation for flow f ’s spread. The

estimation range is up to 232.

3.6 Estimation Accuracy

Below we derive the mean and variance of bSketch estimate k̂ for an arbitrary flow f whose
true size/spread is k. All k elements of flow f are recorded by each of its d estimators,
A[Hi(f)], 0 ≤ i < d, which also record a number n of noise elements from other flows due to
estimator sharing. Let x be the total number of elements recorded by A[Hi(f)]. We have
x = k + n.

For the estimate k̂i from A[Hi(f)], its mean and standard deviation, denoted as μ(n) and
σ(n), are dependent on the instance value of noise n. Their exact formulas depend on the
estimator type and can be found in [21, 22, 54] for bitmap, FM and HLL, respectively. Because

k̂i is computed from the sum of a large number m of unit-sketches in A[Hi(f)], by the central
limit theorem, it follows approximately a normal distribution, N(μ(n), σ(n)). The cumulative

distribution function (CDF) of k̂i with respect to n is given as G(n, t) = 1
2 (1 + erf( t−μ(n)√

2σ(n)
)),

where erf(.) is the complementary error function.
Let X be the total number of elements from all flows. X − k is the number of elements

from flows other than f . They are noise elements with respect to f , and each of them
are recorded for d times by randomly chosen estimators. Assume that noise is randomly
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distributed among all estimators in A. The number n of noise elements recorded by one
estimator A[Hi(f)] follows a Binomial distribution, n ∼ Biom(d(X − k), 1

l ). Hence, for
0 ≤ j < d(X − k),

Prob{n = j} =

(
d(X − k)

j

)
(
1

l
)j(1− 1

l
)d(X−k)−j . (1)

Considering the above noise distribution, the CDF of k̂i is

G∗(t) =
d(X−k)∑

j=0

Prob{n = j}G(j, t)

=

d(X−k)∑
j=0

(
d(X − k)

j

)
(
1

l
)j(1− 1

l
)d(X−k)−jG(j, t).

(2)

Because k̂ = mini∈[0,d){k̂i}, the CDF of k̂, i.e., the probability of k̂ ≤ t, for any t > 0, is
given as

F (t) = 1− (1−G∗(t))d. (3)

The probability distribution function (PDF) of k̂ can be calculated by differentiating F (t)
with respected to t,

f(t) = d(1−G∗(t))d−1

d(X−k)∑
j=0

Prob{x = k + j}g(j, t)

= d(1−G∗(t))d−1

d(X−k)∑
j=0

(
d(X − k)

j

)
(
1

l
)j(1− 1

l
)d(X−k)−jg(j, t),

(4)

where g(j, t) = 1√
2πσ2(j)

e
− (t−μ(j))2

2σ2(j) , which is the PDF of normal distribution. Therefore, the

expectation and variance of bSketch, denoted as μ̂ and σ̂2, can be calculated as

μ̂ = E(k̂) =

∫ ∞

0

tf(t)dt,

σ̂2 = V ar(k̂) =

∫ ∞

0

(t− μ̂)2f(t)dt.

(5)

By the Chebyshev inequality [55], the bias, k̂ − μ̂, is bounded by rσ̂ with probability

Prob(|k̂ − μ̂| ≥ rσ̂) ≤ 1

r2
, (6)

where r is an arbitrary positive real number.

3.7 Composite bSketch

We define a composite bSketch as one that performs multiple measurements together. For
example, in bSkt(Counter, HLL), each estimator contains a counter for flow-size measure-
ment and an array of m HLL unit-sketches for flow-spread measurement, allowing two
measurements to be performed simultaneously in a single processing thread on the same
data structure with shared hashing and memory access. Two more examples of composite
bSketches are (1) two counters per estimator for counting the number of packets and the
number of bytes in each flow, and (2) one bitmap and an array of m HLL unit-sketches per
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Fig. 2. Design of cSketch with multiple estimator arrays

estimator for counting two types of flow spread, one with a smaller required range and the
other with a larger range.

3.8 CountMin and cSketch

CountMin [12] is similar to the counting Bloom filter (CountBlm) except for using d counter
arrays to avoid intra-flow hash collision when mapping the same element to its d counters.
CountMin can also be extended into a family of sketches, called cSketch. We describe it
as follows. It consists of d estimator arrays, denoted as Ai, 0 ≤ i < d, each of which has
w estimators. For each arrival packet 〈f, e〉, we hash f to one estimator in each array and
record e in that estimator Ai[Hi(f)], 0 ≤ i < d. When we want to query about flow f , we
again hash f to one estimator in each array and return the minimum value among the
measurement estimations produced by these d estimators.
An illustration of cSketch is shown in Fig. 2, where two flows f and f ′ share a common

estimator in the first array, where both e and e′ are recorded.
By implementing each estimator as a bitmap, FM, HLL or a combination of them, we

derive cSkt(bitmap), cSkt(FM), and cSkt(HLL) or composite cSketch in a similar way as
described in Section 3.

The relationship between CountMin and CountBlm is similar to that between partitioned
Bloom filter and Bloom filter. Small flows have slightly smaller chance of colliding with large
flows in CountBlm than in CountMin for the same reason that Bloom filter has slightly
smaller false positive ratio than its partitioned counterpart [9]. That means bSketch has a
slightly better performance than cSketch. But the difference is very small for small d values
(e.g., 4) typically in use. Actually this type of design has been considered in [10, 11].

4 VSKETCH: A FAMILY OF VIRTUAL SKETCHES

bSketch requires multiple memory updates per packet. In this section, we design a family of
virtual sketches, called vSketch, which incurs exactly one memory update per packet and
works well in tight memory averaging several bits per flow. The contributions of vSketch are
three-hold: First, its low overhead supports much higher packet throughput than bSketch,
UnivMon [34] and Elastic Sketch [58] as our experiments will show. Second, it provides
another common framework of implementation with plug-ins for a family of member sketches.
Third, its generalized design embodies an effective mechanism for noise measurement and
removal, making its member sketches more accurate than the prior work [56, 59] for multi-flow
spread measurement.
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Fig. 3. Design of vSketch with unit-sketch sharing among logical estimators

4.1 Logical Estimators

The structure of vSketch is shown in Fig. 3, where each flow f is assigned to one logical
estimator Lf , in contrast to bSketch that assigns each flow to d estimators. Consequently,
vSketch records every incoming element once, compared to bSketch that does it d times.

Assigning a separate estimator to each flow is however costly in memory because an
estimator for spread measurement takes hundreds or thousands of bits and there are
numerous flows. Fortunately, our logical estimators are not real. They exist only in our
mind. The physical data structure in vSketch consists of m arrays of unit-sketches, which are
plug-ins that will be substituted with bits, counters, FM unit-sketches [22], HLL unit-sketches
[26], or another data structure, each producing a different member in the vSketch family.
The logical estimator of each flow is virtually constructed by randomly drawing (through
hashing) one unit-sketch from each array, and it will record all elements of the flow in these
m unit-sketches.
Two logical estimators may draw the same unit-sketch, resulting in memory sharing.

vSketch shares memory among flows at the unit-sketch level, in contrast to bSketch that
shares at the estimator level, which is evident by comparing Fig. 3 with Fig. 1. This finer level
of sharing spreads elements from all flows more evenly across the memory space, resulting
in better memory efficiency.

The benefit of sharing does not come for free. As shown in Fig. 3, e and e′ from different
flows are recorded in the same unit-sketch that is shared by f and f ′. Because of such sharing,
when any flow records its elements, it may introduce noise to the logical estimators of other
flows. Fortunately, because unit-sketches are shared among flows uniformly at random, the
noise is distributed among the unit-sketches randomly. vSketch is designed to measure and
remove such noise effectively.

Algorithm 5 Recording a packet in vSketch

Input: unit-sketch arrays U , seed array s, packet {〈f, e〉}
Action: record e of f in U

1: i∗ := H(f ⊕ e)
2: vRecord P lugin(f, e, Ui∗[Hi∗ [f ]])

4.2 vSketch Design

Let Ui, 0 ≤ i < m, denote the m arrays in vSketch, each of w unit-sketches. Consider an
arbitrary flow f . Its logical estimator Lf consists of m unit-sketches, one from each array,
i.e., Ui[Hi(f)], 0 ≤ i < m, where the hash functions may be practically implemented from a
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Algorithm 6 vRecord P lugin(f, e, Ui∗[Hi∗ [f ]])

Input: flow label f , element id e, unit-sketch Ui∗[Hi∗ [f ]]
Action: record e of f in Ui∗[Hi∗ [f ]]

1: switch (type of unit-sketch Ui∗[Hi∗ [f ]])
2: case counter:
3: Ui∗[Hi∗ [f ]] := Ui∗[Hi∗ [f ]] + 1
4: case bit:
5: Ui∗[Hi∗ [f ]] := 1
6: case FM unit-sketch:
7: set the G(f ⊕ e)th bit in Ui∗[Hi∗ [f ]] to one
8: case HLL unit-sketch:
9: Ui∗[Hi∗ [f ]] := max{Ui∗[Hi∗ [f ]], G(f ⊕ e)}

10: end switch

Algorithm 7 Querying on a flow in vSketch

Input: unit-sketch arrays U , seed array s, flow label f

Output: size/spread estimate k̂

1: for i = 0..m− 1 do
2: Lf [i] = Ui[Hi(j)]
3: turn Ui into LF [i]
4: end for
5: x̂ = vQuery P lugin(Lf )

6: X̂ = vQuery P lugin(LF )
7: n̂ = X

w

8: return k̂ = x̂− n̂

master hash function H as Hi(f) = H(f ⊕ s[i]), and s is an array of m randomly selected
seeds. That is, the ith unit-sketch in the logical estimator, denoted as Lf [i], is actually
Ui[Hi(f)] from the physical data structure.

To record an arrival packet 〈f, e〉, as shown in Alg. 5, we compute i∗ = H(e) and records e
in Ui∗ [Hi∗(f)], which is an action vRecord P lugin dependent on the type of the unit-sketch.
To query about flow f , as shown in Alg. 7, we hash f along with m random seeds s to find
its logical estimator, Lf = {Ui[Hi(f)] | 0 ≤ i < m}, which records both the elements from f
(information) and some elements from other flows (noise) due to unit-sketch sharing. Let x
be the total number of elements recorded in Lf , which is the sum of the flow size/spread k
plus noise n, i.e.,

x = k + n. (7)

We estimate the noise as follows: Let X be the sum of the sizes/spreads of all flows. The
number of elements from flows other than f is X − k; these are noise to f . They are
distributed among the m× w unit-sketches randomly. Because Lf contains m unit-sketches,
the portion of noise in Lf has the following expected value

E(n) =
X − k

w
≈ X

k
, (8)

if k 
 X. Consider a super flow F that contains all X elements from all flows. In the next
subsection, we will explain how to turn U into the super flow’s logical estimator LF (Line 3
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of Alg. 7), which will provide an estimate X̂. By substituting X with its estimate X̂ and

using the mean noise as the estimate for n, we have n̂ = X̂
w . Finally, by subtracting the

mean noise, we estimate the flow’s size/spread as k̂ = x̂− X̂
w (Line 7-8 of Alg. 7), where x̂ is

the estimation of x computed from Lf through vQuery P lugin which depends on the type
of unit-sketches. The pseudo code of vQuery P lugin, Alg. 8, is similar to Alg. 4, and we
place it in Appendix I.

While the formula for k̂ removes the mean noise, it cannot remove the variance in noise

distribution, which results in estimation errors and may even make k̂ negative. Hence, when

k̂ turns out to be negative, we set it to the smallest size/spread, 1.

4.3 Members in vSketch Family

By substituting each unit-sketch in Ui[j], 0 ≤ i < m, 0 ≤ j < w, with a bit, a counter, a
32-bit FM unit-sketch [22] and a HLL unit-sketch [26], we derive members in the vSketch
family, called virtual sketches and denoted as vSkt(bitmap), vSkt(counter), vSkt(FM) and
vSkt(HLL), respectively. We briefly describe vSkt(counter) and vSkt(HLL), while the other
two can be derived similarly.

For vSkt(counter), when recording an element e of flow f , we compute i∗ = H(f ⊕ e) and
increase Ui∗ [Hi∗(f)] by one, as shown in Line 3 of Alg. 6. When a query is made about flow

f , we estimate the flow size as x̂− X̂
w , where x̂ =

∑m−1
i=0 Ui[Hi(f)], as shown in Line 3-6 of

Alg. 8. To estimate the size X̂ of the super flow, we combine U0, U1, ..., Um−1 into a super

estimator LF , where LF [i] =
∑w−1

j=0 Ui[j], 0 ≤ i < m and X̂ =
∑m−1

i=0 LF [i].

For vSkt(HLL), when recording an element e of flow f , we compute i∗ = H(f ⊕ e) and set
Ui∗ [Hi∗(f)] to G(f ⊕ e) if the latter is greater than the former, as shown in Line 9 of Alg. 6.

When a query is made about flow f , we estimate the flow spread as x̂− X̂
w , where x̂ is the

estimation produced from the logical HLL estimator Lf . To estimate the spread X̂ of the super
flow, we combine U into a super estimator LF , where LF [i] = maxj∈[0,w−1] Ui[j], 0 ≤ i < m

and X̂ is the estimation produced from the super estimator LF using Line 20-24 of Alg. 8
with Lf replaced by LF .

While we do not describe vSkt(FM) and vSkt(bitmap), their super estimators are con-
structed as follows: For vSkt(FM), LF [i] is the bitwise OR of Ui[j], j ∈ [0, w − 1]; for
vSkt(bitmap), LF is the concatenation of Ui, 0 ≤ i < m.

We can construct composite vSketches by setting each unit-sketch to be a composite and
thus allowing multiple measurement tasks to be performed simultaneously. For example, in
vSkt(Counter, HLL), each unit-sketch Ui[j], 0 ≤ i < m, 0 ≤ j < w, contains a counter Ui[j].C
for flow-size measurement and an HLL estimator Ui[j].H for flow-spread measurement.

4.4 Estimation Accuracy

Theorem 1. The expectation of a flow’s vSketch estimate k̂ satisfies

k(1− ε− 1

w
) ≤ E(k̂) ≤ k(1 + ε− 1

w
), (9)

where ε = δ(1− 1
w + 2X

wk ), if the type of logical estimators chosen in the vSketch ensures that
when a number y of elements are recorded in an estimator, the expectation of its estimate ŷ
satisfies

y(1− δ) ≤ E(ŷ) ≤ y(1 + δ), (10)

where δ ≥ 0 and is dependent on the estimator type.
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The proof can be found in Appendix II. The number w of unit-sketches in each array of
vSketch is expected to be very large and thus 1

w is very small. If we ignore this small term in

(9), ε specifies a bound on the estimation bias, i.e., |E( k̂k )− 1| ≤ ε. Its value is proportional
to the bias δ of the estimator type in use. As is expected, it also increases as X (noise)
increases, and it decreases as k (information) and w (memory space) increase. The value of
δ is typically small. For example, when we use a counter estimator, δ = 0. When we use an
HLL estimator [21], δ = ε1(m), where ε1(m) ≤ 5× 10−5 if m ≥ 16, and m is the number of
unit-sketches in the HLL estimator. When we use an FM estimator [22], δ = ε2(m), where
ε2(m) ∼ λ

2m if m is large, and λ is a constant which can be closely approximated as 0.61.

Theorem 2. Assume that noise elements are distributed among all unit-sketches uniformly
at random. The variance of vSketch estimate is

V ar(k̂) =

⎧⎪⎪⎨
⎪⎪⎩

X
w (1− 1

w ), vSkt(counter)

mα+ αβ
2w + mβ

w , vSkt(bitmap)
0.782

m (k + X
w )2 + 0.782

mw2 X
2 + ( 0.78

2

m + 1)Xm (1− 1
w ), vSkt(FM)

1.042

m (k + X
w )2 + 1.042

mw2 X
2 + ( 1.04

2

m + 1)Xm (1− 1
w ) vSkt(HLL)

(11)

where α = e
X

mw+ k
m − k

m − 1 and β = e
X

mw − X
mw − 1.

The proof can be found in Appendix III. It is not always true that noise elements are
distributed among all unit-sketches uniformly at random. A simple example is that when
there are only two flows, the noise will not be distributed among all unit-sketches. However,
this assumption is approximately true when there are a large number of flows and the
size/spread of any flow is negligible when comparing with the total size/spread of all flows,
which is generally true for large network traffic where sketches are needed.

5 DISTRIBUTED MEASUREMENT

Packets from a TCP flow tend to follow the same path. But our flow model includes both
TCP flows and other generalized flows which may follow multiple paths. In this section,
we show that bSketch and vSketch can support distributed measurement through simple
spatial-temporal join operations. While other work such as [58] can also support distributed
measurement, they do not have the generality in size/spread measurement, plug-n-play and
multi-dimensional tradeoff that are sought after in this paper.

5.1 Spatial-Temporal Join for bSketch

We first consider spatial join. When a flow passes multiple paths, each router may only
capture a fraction of the flow’s traffic. For example, if we define a flow as all packets from the
same source (which may be a single address or a subnet), then the flow may follow multiple
paths when the source sends packets to different destination addresses. After routers send
their bSketches to the controller, we need a primitive function called spatial join to combine
these bSketches into one so that we can efficiently answer queries about the network-wide
size/spread of a flow. Let n be the number of bSketches to be combined, and At be the array
of estimators reported from the tth router, 0 ≤ t < n. Spatial join combines them into A∗.
As is described below, the operation of spatial join is dependent on which sketch is used.
bSkt(counter): A∗[j] =

∑n−1
t=0 At[j], for 0 ≤ j < l.

bSkt(bitmap): A∗[j] is the bitwise OR of At[j], 0 ≤ t < n, for 0 ≤ j < l.

bSkt(FM): The qth FM sketch in A∗[j] is the bitwise OR of the qth sketches of At[j],

0 ≤ t < n, for 0 ≤ q < m, 0 ≤ j < t.
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bSkt(HLL): The qth HLL sketch in A∗[j] is the maximum value among the qth sketches of

At[j], 0 ≤ t < n, for 0 ≤ q < m, 0 ≤ j < l.
The query on the combined bSketch, A∗, is performed in the same way as presented in

Section 3.
Next we consider temporal join. Each router may report its bSketch at a pre-defined

schedule or when polled by a central controller. After reporting, it resets its bSketch to
release space for recording new elements in the next epoch. If an application wants to know
the flow size/spread over a period that covers multiple epochs, the controller may join the
multiple reported bSketches from a router into one to support efficient queries. While the
join is performed in temporal dimension, its operation is the same as that of spatial join.

5.2 Spatial-Temporal Join for vSketch

Consider the spatial join of n vSketches. Let U t
i , 0 ≤ i < m, be the vSketch from the tth

router, 0 ≤ t < n. Let U∗i , 0 ≤ i < m, be the resulting vSketch. The operation of spatial
join is presented below.
vSkt(counter): U∗i [j] =

∑n−1
t=0 U t

i [j], for 0 ≤ i < m, 0 ≤ j < w.

vSkt(bitmap): U∗i [j] is the OR of U t
i [j], 0 ≤ t < n, 0 ≤ i < m, 0 ≤ j < w.

vSkt(FM): U∗i [j] is the bitwise OR of U t
i [j], 0 ≤ t < n, for 0 ≤ i < m, 0 ≤ j < w.

vSkt(HLL): U∗i [j] is the maximum value among U t
i [j], 0 ≤ t < n, for 0 ≤ i < m, 0 ≤ j < w.

The temporal join operation of n vSketches from the same router is the same as above.

6 EVALUATION

We evaluate the performance of the proposed sketch families in both hardware and software
through trace-driven experiments to find tradeoff. We also compare them with the prior art,
and discuss which sketches are more suitable for given performance goals.

6.1 Implementation

We implement bSketch, cSketch and vSketch in both hardware and software, including
four sketches from each family: bSkt(counter), bSkt(bitmap), bSkt(FM), and bSkt(HLL)
for bSketch; vSkt(counter), vSkt(bitmap), vSkt(FM) and vSkt(HLL) for vSketch. The
performance of cSketch is very similar to that of bSketch. Therefore, our comparison will
focus on bSketch vs. vSketch. We also implement the most relevant prior art, including
Unimon [34], Elastic Sketch [58], CSE [59], vPCSA[57] and vHLL [56] for comparison. All
related codes are available on Github [43].
OVS Implementation: They are implemented on OVS (OpenvSwitch) [45] in the kernel

mode datapath under the Ubuntu 18.04LTS environment. We use the virtual network adapter
on our machine to perform the experiments.

CPU Implementation: The sketch families are implemented on a machine with Intel Core
i7-8700 3.2GHz CPU and 16GB memory.
GPU Implementation: We use the CUDA toolkit [44] for parallel programming of the

proposed sketch families on GPU. Experiments are performed on an NVDIA GPU with
GeForce GTX 1070, 8GB GDDR5 memory and 1920 CUDA cores at a clock rate of 1506-1683
MHz.
FPGA Implementation: We implement the sketch families on XLINX ZYBO-7010, with

512MB DDR3 DRAM, 240 KB Block RAM, and a clock rate of 50 MHz.
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6.2 Experimental Setting

Traffic Traces: We download twenty anonymized traces from CAIDA [51], with each trace
containing one minute network traffic, which has 18M∼20M packets. The average packet
size in each trace is around 800 bytes. In our experiments, we set each epoch to one minute
long.
For flow size, we define a flow as all packets from the same source address to the same

destination address, and we measure the number of packets in each flow, which has application
in building a traffic map. There are around 438K flows in a single epoch. For flow spread, we
define a flow as all packets to the same destination, and we measure the number of distinct
source addresses in each flow, which has application in DDoS detection. There are around
213K flows in a single epoch.

Parameter Setting: The total memory for a traffic measurement task is 1MB. Counters
are 32 bits long. Each FM unit-sketch is 32 bits, and each HLL unit-sketch is 5 bits. The
number m of unit-sketches in each FM or HLL estimator is 128. The number d of estimators
that each flow is hashed to in bSketch is 4. The default parameter values may change in
experiments in order to evaluate the impact of individual parameters. For example, we will
reduce the memory to 0.25MB to evaluate how these sketches perform with several bits per
flow on average.

bSkt(counter) and vSkt(counter) are designed for flow-size measurement. Other sketches,
including bSkt(bitmap), bSkt(FM) and bSkt(HLL), vSkt(bitmap), vSkt(FM) and vSkt(HLL)
are designed for spread measurement. But they can also be adapted for size measurement. For
bSkt(bitmap) and vSkt(bitmap), instead of setting the H(e)th bit in the (logical) estimator,
we simply take a random number r and set the rth bit in the (logical) estimator. Similarly
for bSkt(FM), bSkt(HLL), vSkt(FM) and vSkt(HLL), we replace geometric hash G(e) with
a geometrically-distributed random number for size measurement.
The maximum flow size in each epoch is around 150K. Hence, we set the bitmap size in

bSkt(bitmap) and vSkt(bitmap) to 20000 bits in order to accommodate the maximum size.
The maximum flow spread in each epoch is around 20K. Hence, we set the bitmap size in
bSkt(bitmap) and vSkt(bitmap) to 5000 bits in order to accommodate the maximum spread.

Performance Metrics: We compare sketches under different parameter settings in terms
of online throughput, query speed, and estimation accuracy.
1. Online throughput. The average number of packets processed by the measurement

module per second. Because the average packet size in our data set is 803 bytes. We can
compute throughput in bits per second by multiplying the packet count with 6,424 bits per
packet.

2. Query speed. The average number of queries that the controller (using the same machine
as described previously) can process each second.
3. Estimation accuracy. We use both absolute error and relative error to measure the

estimation accuracy. Let k̂f be the size/spread estimate of a flow f , and kf be the true

size/spread. The absolute error is defined as 1
N

∑
f |k̂f − kf |, where N is the total number

of flows. The relative standard error is

√
V ar(k̂f )

kf
.

Below we first perform comparative studies on the proposed sketch families, then compare
them with the prior art, and finally give a summary on when to use which sketch.
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Fig. 4. Throughput comparison under OVS
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Fig. 5. Throughput comparison without OVS
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Fig. 6. Throughput comparison on GPU
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Fig. 7. Throughput comparison on FPGA

6.3 Throughput

We first compare the throughput of our sketch family under different evaluation platforms
including OVS, CPU, GPU and FPGA.

Fig. 4 compares online throughput of the eight sketches for measuring flow size and the six
sketches for measuring flow spread in the two families, bSketch and vSketch. The sketches
run in the dataplane of OpenvSwitch. All of them process the incoming packets with similar
throughput of about 0.24 Mpps (mega packets per second), which is also the throughput
when we turn off traffic measurement and run OVS alone. It suggests that these sketches
contribute minor overhead in the dataplane of OVS and the throughput is largely determined
by other switch operations.

When we run the sketches stand-alone on the same machine outside OVS, the throughput
becomes much higher in Fig. 5 and differs among the sketches. As expected, vSketch has
higher throughput than bSketch in general because of fewer memory updates and fewer hash
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Fig. 9. Flow-size estimation accuracy

operations per packet. For size measurement, vSkt(counter) has the highest throughput of
42.93 Mpps (or 275 Gbps), compared to bSkt(counter)’s 7.35 Mpps. For spread measurement,
the throughput ranges from 33.67 Mpps of vSkt(bitmap) to 12.2 Mpps of vSkt(HLL),
compared to bSkt(bitmap)’s 9.07 Mpps and bSkt(HLL)’s 1.39 Mpps.
Throughput can be significantly increased with hardware accelerator such as GPU that

offers parallel processing. Fig. 6 presents online throughput under GPU implementation.
The highest throughput for size measurement is 190 Mpps by vSkt(counter) and the highest
for spread measurement is 490 Mpps by vSkt(bitmap), which are 4.43 times and 14.99
times faster than the CPU implementation in Fig. 5, respectively. On one hand, hardware
acceleration reduces throughput difference caused by processing. On the other hand, all
sketches for size measurement need to generate a random number when recording an element.
It appears that the random number generator cannot be parallelled, causing the throughput
of size measurement to be smaller than that of spread measurement.
Fig. 7 presents online throughput under FPGA implementation. The vSketch members

perform similarly, and so do the bSketch members, with the former’s throughput four times
of the latter. The reason is that bSketch members need to access memory more than vSketch
members. vSketch makes one memory update per packet, compared to four updates by
bSketch, resulting in 4:1 throughput ratio.
Next we compare with the prior art including Univmon [34] and Elastic Sketch [58].

Univmon also has a generic design, but it collects heavy hitters and traffic statistics, without
per-flow measurement nor flow spread. Elastic Sketch combines a hash table for heavy hitters
and CountMin for other flows. It is also designed only for flow size. Our relationship with
Elastic Sketch is complementary because bSketch and vSketch can replace its CountMin part.
Also closely related is FlowRadar [33], but it cannot be implemented under our experimental
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Fig. 11. Accuracy comparison with prior work

setting due to insufficient memory. Fig. 8 presents throughput comparison with the prior
art for flow-size measurement on the CPU implementation under our default experiment
setting described earlier. The throughput of UnivMon is 0.21 Mpps due to large per-packet
overhead. Elastic Sketch achieves 1.16 Mpps for its two-stage processing; it has variable
per-packet time. The throughput of bSkt(counter) and vSkt(counter) are much higher at 6.1
and 18.9 Mpps, respectively.

6.4 Accuracy and Memory Overhead

Fig. 9 compares bSkt(counter), bSkt(HLL), vSkt(counter), vSkt(bitmap), vSkt(FM) and
vSkt(HLL) on flow-size estimation accuracy. We do not include bSkt(bitmap) and bSkt(FM)
because their performance is much worse. Fig. 9a shows the relative errors. bSkt(counter)
is clearly the winner, with vSkt(counter) in the second place for large flows. This is not
surprising because these two sketches are specifically designed for flow-size measurement.
Fig. 9a shows the absolute errors for small flows. bSkt(counter) again performs the best,
vSkt(HLL) and vSkt(bitmap) come next, while bSkt(HLL) has large absolute errors for
small flows.
Fig. 10 compares bSkt(bitmap), bSkt(FM), bSkt(HLL), vSkt(bitmap), vSkt(FM) and

vSkt(HLL) on flow-spread estimation accuracy. Fig. 10a shows that vSkt(bitmap) performs
the best with a small relative error of less than 4% for large flows, which is followed by
5% of vSkt(FM). The best in the bSketch family is bSkt(FM)’s 6%. It shows that noise
removal of vSketches is more powerful than the min-value approach of bSketches for spread
measurement. Fig. 10b shows absolute errors for small flows. Again vSkt(bitmap) performs
the best, while the absolute errors of bSkt(bitmap) and bSkt(FM) are large for small flows.
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(a) Flow-size estimation

(b) Flow-spread estimation
Fig. 12. Absolute error w.r.t. memory

In Fig. 12, we study estimation accuracy with respect to memory availability. Fig. 12a
presents average absolute errors over all flows when the memory is 0.25MB, 0.5MB, 1MB and
2MB for size measurement and 0.0625MB, 0.125MB, 0.25MB, 0.5MB for spread measurement.
It compares vSkt(bitmap), vSkt(FM), vSkt(counter), vSkt(HLL) and bSkt(counter) on flow-
size measurement. As we increase memory, all sketches perform better. With 0.25MB,
vSkt(bitmap) has the worst error, followed by vSkt(FM), vSkt(counter), and vSkt(HLL),
while bSkt(counter) performs slightly worse than vSkt(HLL) under such tight memory.
Fig. 12b compares bSkt(HLL), vSkt(FM), vSkt(bitmap), and vSkt(HLL) on flow-spread
measurement. As we increase memory, all sketches perform better. In consistent with Fig. 10,
vSkt(bitmap) and vSkt(HLL) have the smallest errors, with vSkt(HLL) slightly better, which
works very well under 0.25MB, averaging serval bits per flow.

We also compare with the prior art. Elastic Sketch [58] uses CountMin, which is similar to
bSkt(counter) for per-flow size measurement. On per-flow spread measurement, we compare
CSE [59] (which uses bitmap) with vSkt(bitmap), vPCSA [57] with vSkt(FM), and vHLL
[56] with vSkt(HLL). Fig. 11 shows the average absolute errors: vSkt(bitmap)’s 8.78 vs.
CSE’s 8.54, vSkt(FM)’s 2.03 vs. vPCSA’s 11.20, 82% error reduction, and vSkt(HLL)’s 1.20
vs. vHLL’s 2.84, 58% error reduction. While the two bitmap sketches perform similarly,
vSketch outperforms vPCSA and vHLL significantly due to better noise estimation thanks
to its ability to create an effective logical estimator for the super flow.

6.5 Query Speed

Fig. 13a shows that bSketch outperforms vSketch in offline query speed for flow size, with
bSkt(counter)’s speed at 3.9 Mqps, compared to vSkt(counter)’s 0.9 Mqps, where Mqps
stands for mega queries per second. The reason is that vSkt(counter) uses more counters
in size computation than bSkt(counter). Two sketches, bSkt(bitmap) and vSkt(bitmap),
have very low query speeds, 5.8 Kqps and 4.0Kqps respectively, because it takes time to
scan their large bitmaps. Fig. 13b shows that bSketch and vSketch have more comparable
performance for querying flow spread. Four sketches — bSkt(FM), bSkt(HLL), vSkt(FM)
and vSkt(HLL) — achieve query throughput in the range of 2.7 to 3.1 Mqps.
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(a) Flow-size estimation
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Fig. 14. Aggregate error after spatial join

(a) Flow-size estimation

(b) Flow-spread estimation
Fig. 15. Aggregate error after temporal join

6.6 Spatial/Temporal Join

For network-wide distributed measurement, we use the traffic data from CAIDA and
perform spatial/temporal join over multiple one-minute traffic traces we have downloaded.
Fig. 14 compares the best five, vSkt(bitmap), vSkt(FM), vSkt(counter), vSkt(HLL) and
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bSkt(counter), on average absolute errors over all flows after spatial join is performed
on sketches received from n = 2, 4, 6, 8, 10 routers. The traffic traces from each router is
one-minute long. The errors are largely independent of n, meaning that the sketches can all
properly aggregate n parts into one for query. Fig. 14a shows that bSkt(counter) is clearly
the winner for flow-size measurement and Fig. 14b shows that vSkt(HLL) is the winner for
flow-spread measurement.

Fig. 15 compares the best four, bSkt(HLL), vSkt(FM), vSkt(bitmap) and vSkt(HLL), on
average absolute errors over all flows after temporal join is performed on sketches received
from one router in n = 1, 5, 10 epoches, during which traces at different times from the
CAIDA download are fed to the same router. For all sketches, their accuracy drop as the
number of epoches increases because more flows and more elements are recorded over time,
introducing more noise in the data structures. Fig. 15a shows that bSkt(counter) is the
winner for flow-size measurement. vSkt(bitmap) cannot handle n = 10 epoches because its
limited estimation range is over-flown by too many flows and elements. Fig. 15b shows that
vSkt(HLL) is the winner for flow-spread measurement.

6.7 Summary and Practical Guidelines

Based on our experimental comparison, we have the following conclusions: In terms of online
throughput of stand-alone software implementation, vSkt(counter) performs the best for
size estimation and vSkt(bitmap) performs the best for spread estimation. However, the
difference among different sketches is largely diminished on hardware platforms or within
OVS. In terms of query speed, bSkt(counter) performs the best for size estimation, while
bSkt(HLL) performs the best for spread estimation. In terms of accuracy, bSkt(counter)
performs the best for size estimation, while vSkt(bitmap) and vSkt(HLL) perform the best
for spread estimation. The performance of all sketches is improved as we increase memory.
bSkt(counter), vSkt(counter), vSkt(FM), vSkt(HLL), vSkt(bitmap) and bSkt(HLL) can
properly handle spatial-temporal join.
For balance between online throughput and query speed, in stand-alone software and

hardware implementations, one may choose vSkt(counter) or bSkt(counter) for size estimation;
but in OVS, bSkt(counter) is the choice. Again for balance between the two, in stand-alone
software and GPU implementation, one should choose vSkt(FM) for spread estimation; but
in OVS and FPGA, one may choose vSkt(FM) or vSkt(HLL), according to Fig. 4-13. For
balance between online throughput and estimation accuracy, one may choose vSkt(counter)
for size estimation, and may alternatively choose bSkt(counter) in OVS implementation; one
may choose vSkt(bitmap) or vSkt(FM) for spread estimation, and may alternatively choose
vSkt(HLL) in hardware and OVS implementations, based on Fig. 4-7 and 9-12.

7 RELATED WORK

Much research on network traffic measurement has focused on heavy hitters and statistics
[1, 5, 6, 13–15, 19, 34, 39, 42, 62]. Flow size measurement is a simple counting problem and
can be easily solved using counters. However, when there are numerous flows, it can incur
tremendous memory overhead. Therefore, most research has followed the path of designing
efficient data structures to perform approximate estimation. Instead of using separate
counters for individual flows, counting Bloom filter [9], CounterMin [12] and Counter Braids
[35, 36] share counters among flows to reduce the memory overhead. To record one element,
they have to update d counters, which limits their throughputs.
Flow spread measurement is a more difficult problem, and it is too costly to store all

elements of each flow in a hash table for duplicate removal. Better solutions such as PCSA
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[22], MultiresolutionBitmap [20], MinCount [2], LogLog [17] and HyperLogLog [21] provide
efficient means to eliminate duplicates. But their memory consumption remains high. CSE
[59] and vHLL [56] reduces memory consumption through space sharing.

UnivMon [34] introduces a multi-level sketch design that can measure many flow statistics
at once. Monitoring hierarchical heavy hitters is a difficult problem, and Basat et al. proposes
a randomized solution with constant per-packet processing time [3]. OpenSketch [61] provides
a three-staged framework to compose traffic measurement functions from a component library.
FlowRadar [33] provides a compact and constant-time design for NetFlow-type measurement.
SketchVisor [27] proposes a software traffic measurement architecture with a fast path to
handle surge in incoming traffic beyond the normal slow processing path can handle. Elastic
Sketch [58] and SketchLearner [28] adopt a multi-staged design to isolate heavy hitters from
the rest.

8 CONCLUSION

We presented three sketch families, called bSketch, cSketch and vSketch, each sharing a
common implementation structure, based on which we can derive new sketches by plugging
in different data structures that meet certain performance goal, application need or desirable
tradeoff. We have implemented a number of sketches from each family and performed
trace-based experiments to evaluate and compare their performance, which leads to guidance
on how to pick from these sketches in practice.
Our future work is to extend research on network-wide measurement by exploring other

sophisticated functions such as estimating the persistent traffic [63] in terms of both flow
size and spread under the context of the proposed sketch families.
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APPENDIX I. PSEUDO CODE

Algorithm 8 vQuery P lugin(Lf )

Input: estimator Lf

Action: size/spread estimate k̂

1: switch (type of estimator Lf )
2: case counter:
3: k̂ := 0
4: for j = 0..m− 1 do

5: k̂ := k̂ + Lf [j]
6: end for
7: case bitmap:
8: Z = 0
9: for j = 0..b− 1 do

10: if Lf [j] = 0 then Z := Z + 1
11: end for
12: k̂ := −b ln(Zb )
13: case FM:
14: p := 0
15: for j = 0..m− 1 do
16: p := p+ no. of consecutive leading ones in Lf [j]
17: end for
18: p = p

m ; k̂ = m2p/ϕ
19: case HLL:
20: αm := 0.7213/(1 + 1.079/m); sum = 0
21: for j = 0..m− 1 do
22: sum := sum+ 2−Lf [j]

23: end for
24: k̂ := αmm2/sum
25: end switch
26: return k̂

APPENDIX II. PROOF OF THEOREM 1

Proof. From (7), x = k + n, where x is the number of elements recorded in the logical
estimator Lf , consisting of k elements from flow f and n noise elements from other flows,
with k being a constant and n being a random variable. For each instance value of n, from
(10), we have

(k + n)(1− δ) ≤ E(x̂) ≤ (k + n)(1 + δ). (12)

Over the distribution of n, we have

(k + E(n))(1− δ) ≤ E(x̂) ≤ (k + E(n))(1 + δ). (13)

Applying (8) to (13), we have

(k +
X − k

w
)(1− δ) ≤ E(x̂) ≤ (k +

X − k

w
)(1 + δ). (14)

Consider the super estimator LF that records all X elements. From (10), we have

X(1− δ) ≤ E(X̂) ≤ X(1 + δ). (15)
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Because k̂ = x̂− n̂ and n̂ = X̂
w ,

E(k̂) = E(x̂)− E(X̂)

w
. (16)

From (13), (15) and (16), we have

k(1− 1

w
− δ(1− 1

w
+

2X

wk
)) ≤ E(k̂) ≤ k(1− 1

w
+ δ(1− 1

w
+

2X

wk
)). (17)

Let ε = δ(1− 1
w + 2X

wk ). Eq. (17) can be rewritten as

k(1− ε− 1

w
) ≤ E(k̂) ≤ k(1 + ε− 1

w
). (18)

�

APPENDIX III. PROOF OF THEOREM 2

Proof. Below we derive V ar(k̂) for vSkt(counter), vSkt(bitmap), vSkt(FM) and vSkt(HLL),
respectively.

1. Case of vSkt(counter)

Consider the logical estimator Lf of an arbitrary flow f . Recall that x = k+n, where x is
the estimate from Lf (see Line 3-6 of Alg. 8), k is the actual size of the flow, and n is the noise,
which follows a Binomial distribution, n ∼ Bino(X−k, 1

w ), because Lf consists of m counters

randomly selected from the wm counters in U . Hence, V ar(n) = X−k
w (1− 1

w ) ≈ X
w (1− 1

w )

when k 
 X, where X is the sum of the sizes of all flows. For vSkt(Counter), X̂ = X, which
is a constant, x̂ = x, and thus V ar(x̂) = V ar(x) = V ar(n) ≈ X

w (1− 1
w ). We have

V ar(k̂) = V ar(x̂− X̂

w
) = V ar(x̂) =

X

w
(1− 1

w
) (19)

2. Case of vSkt(bitmap)

Because k̂ = x̂− n̂, we have

V ar(k̂) = V ar(x̂) + V ar(n̂) + 2(E(x̂)E(n̂)− E(x̂n̂)). (20)

Let Vf be the percentage of bits in the logical estimator Lf that are zeros. Before we derive

V ar(k̂), we need to derive V ar(Vf ) first. Consider an arbitrary bit Lf [i], 0 ≤ i < m, in the
logical estimator Lf where elements from f and other flows (noise) randomly distribute
among its m bits. For the k elements from flow f , the probability that Lf [i] is not chosen to
record any of them is (1− 1

m )k. The (X − k) noise elements from other flows are randomly
distributed among all wm physical bits. Hence, those recorded by the m bits in Lf follow a
Binomial distribution, i.e., n ∼ Bino(X − k, 1

w ). Therefore, the probability that Lf [i] does
not record any noise element is

X−k∑
0

(
X − k

i

)
(
1

w
)i(1− 1

w
)X−k−i(1− 1

m
)i

=

X−k∑
0

(
X − k

i

)
(1− 1

w
)X−k−i(

1

w
− 1

mw
)i

= (1− 1

w
+

1

w
− 1

mw
)X−k = (1− 1

mw
)X−k.

(21)
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Let Ai be the event that Lf [i] does not record any element and thus remains 0. Let 1Ai
be

the corresponding indictor variable, which is 1 when Ai happens and 0 otherwise. We have

Prob(Ai) = (1− 1

mw
)X−k(1− 1

m
)k. (22)

The expected number of zero bits in Lf , denoted as Zf , is

E(Zf ) =

m−1∑
j=0

1Ai
=

m−1∑
j=0

Prob(Ai)

=
m−1∑
i=0

(1− 1

mw
)X−k(1− 1

m
)k

≈ me−( X
mw+ k

m ).

(23)

Because Vf =
Zf

m , we have

E(Vf ) = e−( X
mw+ k

m ). (24)

Consider any two bits, Lf [i] and Lf [j], i �= j. The probability for both of them to be zeros is

Prob(Ai ∩ Aj) = (1− 2

mw
)X−k(1− 2

m
)k. (25)

Therefore, we have

E((Vf )
2) =

1

m2
E((

m−1∑
i=0

1Ai
)2)

=
1

m2
E(

m−1∑
i=0

(1Ai
)2) +

2

m2
E(

m∑
i=0

i−1∑
j=0

(1Ai
1Aj

))

=
1

m
(1− 1

mw
)X−k(1− 1

m
)k

+
m− 1

m
(1− 2

mw
)X−k(1− 2

m
)k.

(26)
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Applying (24) and (26) to V ar(Vf ) = E(Vf − E(Vf ))
2, we have

V ar(Vf ) = E(Vf − E(Vf ))
2 = E((Vf )

2)− (E(Vf ))
2

=
1

m
(1− 1

mw
)X−k(1− 1

m
)k

+
m− 1

m
(1− 2

mw
)X−k(1− 2

m
)k

− (1− 1

mw
)2(X−k)(1− 1

m
)2k

=
m− 1

m
((1− 2

mw
)X−k(1− 2

m
)k

− (1− 1

mw
)2(X−k)(1− 1

m
)2k)

+ (1− 2

m
)X−k(1− 2

m
)k

− (1− 1

mw
)2(X−k)(1− 1

m
)2k

≈ 1

m
(e−( X

mw+ k
m ) − e−2( X

mw+ k
m ))

+ e−2(X−k
m + k

m )(
−k

m2
)

≈ 1

m
(e−( X

mw+ k
m ) − e−2( X

mw+ k
m )

− k

m
e−2( X

mw+ k
m )).

(27)

From [54], the estimate of x from the logical estimator Lf is given as

x̂ = −m ln(Vf ). (28)

Hence,

E(x̂) = E(−m ln(Vf )). (29)

By using the Taylor Series of ln(Vf ) and applying (24) and (27) to (29), we have

E(x̂) = E(−m ln(Vf ))

≈ E(ln(E(Vf ) +
Vf − E(Vf )

E(Vf )
− (Vf − E(Vf ))

2

2E(Vf )2
)

≈ m(
X

mw
+

k

m
+

1

2E(Vf )2
E((Vf − E(Vf ))

2))

= m(
X

mw
+

k

m
+

e
X

mw+ k
m − 1− k

m

2m
)

(30)

where

ln(Vf ) = ln(E(Vf )) +
Vf − E(Vf )

E(Vf )
− (Vf − E(Vf ))

2

2E(Vf )2
+ .... (31)
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Similarly, using the Taylor Series of ln(Vf ) and keeping the first two terms, we derive the
variance of x̂ as

V ar(x̂) = V ar(−m ln(Vf ))

≈ m2V ar(ln(E(Vf ) +
Vf − E(Vf )

E(Vf )
)

≈ m2V ar(
X

mw
+

k

m
− Vf − E(Vf )

E(Vf )
)

=
m2

E(Vf )2
V ar(Vf )

≈ m(e(
X

mw+ k
m ) − k

m
− 1).

(32)

Next we derive the mean and variance of n̂, which is equal to X̂
w . From [54],

X̂ = −mw ln(VF ). (33)

Hence, n̂ = −m ln(VF ). We have

E(n̂) = E(−m ln(VF )). (34)

By using the following Taylor Series

ln(VF ) = ln(E(VF )) +
VF − E(VF )

E(VF )
− (VF − E(VF ))

2

2E(VF )2
+ ..., (35)

we have

E(n̂) = E(−m ln(VF ))

≈ m(
X

mw
+

1

2E(VF )2
E((VF − E(VF ))

2))

= m(
X

mw
+

1

2E(VF )2
V ar(VF )).

(36)

Let VF be the percentage of bits in the super estimator LF that are zeros. From [54], its
mean and variance are

E(VF ) ≈ e−
X

mw ,

V ar(VF ) ≈ e−
X

mw

mw
(1− (1 +

X

mw
)e−

X
mw ).

(37)

Applying (37) to (36), we have

E(n̂) = E(−m ln(VF ))

= m(
X

mw
+

e
X

mw − 1− X
mw

2mw
).

(38)
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Using the Taylor series (35) and keeping the first two terms, we have

V ar(n̂) = V ar(−m ln(VF ))

≈ m2V ar(
X

mw
− VF − E(VF )

E(VF )
)

=
m2

E(VF )2
V ar(VF )

≈ m

w
(e

X
mw − 1− X

mw
).

(39)

Furthermore, by using the Taylor series (31) and (35), we have

E(x̂n̂) = E(m2 ln(Vf ) ln(VF ))

≈ m2E((ln(E(Vf )) +
Vf − E(Vf )

E(Vf )
)·

(ln(E(VF )) +
VF − E(VF )

E(VF )
))

(40)

By applying (29) and (37) to (40), we have

E(x̂n̂) ≈ m2(
X

mw
(
X

mw
+

k

m
+

e
X

mw+ k
m − 1− k

m

2m
)

+
X
mw + k

m

mw
(X +

e
X

mw − X
mw − 1

2
)

− X

mw
(
X

mw
+

k

m
)

= m2(
X

mw
(
X

mw
+

k

m
) +

X(e
X

mw+ k
m − 1− k

m )

2m2w

+
( X
mw + k

m )(e
X

mw − X
mw − 1)

2mw
))

(41)

Finally, by applying (30), (32), (38), (39) and (41) to (20), we have

V ar(k̂) ≈ m(e
X

mw+ k
m − 1− k

m
) +

m(e
X

mw − X
mw − 1)

w

+
(e

X
mw+ k

m − 1− k
m )(e

X
mw − X

mw − 1)

2w
.

(42)

3. Case of vSkt(HLL)

Because k̂ = x̂− n̂ and n̂ = X̂
w , we have

V ar(k̂) = V ar(x̂− n̂) = V ar(x̂)− 2Cov(x̂, n̂) + V ar(n̂)

= V ar(x̂)− 2Cov(x̂,
X̂

w
) +

V ar(X̂)

w2
,

= V ar(x̂)− 2

w
Cov(x̂, X̂) +

V ar(X̂)

w2
,

(43)

where x̂ is the estimate from the logical estimator Lf and X̂ is the estimate from the
super estimator LF . Assuming that the contribution of elements recorded in a single logical
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estimator Lf is negligible to the super estimator LF , which is true when k 
 X and w is

large, we have Cov(x̂, X̂) = 0. Therefore,

V ar(k̂) = V ar(x̂) +
V ar(X̂)

w2
,

= E(x̂2)− (E(x̂))2 +
V ar(X̂)

w2
.

(44)

According to [21], for a logical estimator Lf which records x elements, the expectation and
variation of its estimate x̂ are given as

E(x̂) = x(1 + ε1(x) + o(1)), (45)
√
V ar(x̂) = x(

βm√
m

+ ε2(x) + o(1)), (46)

where ε1, ε2 ≤ 0.00005 when m ≥ 16 and βm = 1.046 when m ≥ 128.
Consider the logical estimator Lf of m registers which records elements from both flow f

and other flows (noise). Since all (X − k) noise elements are randomly distributed among
m× w registers, the distribution of the noise elements recorded by Lf follows a Binomial
distribution, i.e., n ∼ Bino(X − k, 1

w ). Because n = x− k, we have

Prob{x− k = i} =

(
X − k

i

)
(
1

w
)i(1− 1

w
)X−k−i. (47)

From (45),
E(x̂|x− k = i) = (k + i)(1 + ε1(k + i) + o(1)) ≈ k + i (48)

The expectation of x̂ can be derived as

E(x̂) =

X−k∑
i=0

E(x̂|x− k = i)Prob(x− k = i)

≈
X−k∑
i=0

(k + i)

(
X − k

i

)
(
1

w
)i(1− 1

w
)X−k−i

= k +
X

w
.

(49)

From (46),
√

V ar(x̂|x− k = i) = (k + i)(
βm√
m

+ ε2(k + i) + o(1))

= (k + i)
βm√
m

≈ (k + i)
1.04√
m

,

(50)

where βm = 1.04 and m >= 128. So we have

V ar(x̂|x− k = i) ≈ 1.042

m
(k + i)2. (51)

Therefore,

E(x̂2|x = k + i) = V ar(x̂|x− k = i) + (E(x̂|x− k = i))2

≈ ((k + i)
1.04√
m

)2 + (k + i)2

= (
1.042

m
+ 1)(k + i)2.

(52)
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E(x̂2) =

X∑
i=0

E(x̂2|x = k + i)Prob(x− k = i)

≈
X∑
i=0

(
1.042

m
+ 1)(k + i)2

(
X

i

)
(
1

w
)i(1− 1

w
)X−i

= (
1.042

m
+ 1)(k2 + 2kE(x− k) + E((x− k)2))

= (
1.042

m
+ 1)((k +

X

w
)2 +

X

w
(1− 1

w
)).

(53)

For the super flow F which is recorded in the super estimator LF of m HLL registers, from
[21],

V ar(X̂) ≈ 1.042

m
X2. (54)

Finally, by applying (49), (53) and (54) to (44), we have

V ar(k̂) ≈ 1.042

m
(k +

X

w
)2 +

1.042

mw2
X2

+ (
1.042

m
+ 1)

X

m
(1− 1

w
).

(55)

4. Case of vSkt(FM)

For vSkt(FM), following a process similar to vSkt(HLL) and applying the analysis results

from [22], we can derive the variance of its estimate k̂ as

V ar(k̂) ≈ 0.782

m
(k +

X

w
)2 +

0.782

mw2
X2

+ (
0.782

m
+ 1)

X

m
(1− 1

w
).

(56)
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