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Abstract-Per-flow traffic measurement is a fundamental prob­
lem in the era of big network data, and has been widely used
in many applications, including capacity planning, anomaly detec­
tion, load balancing, traffic engineering, etc. In order to keep up
with the line speed of modern network devices (e.g., routers), per­
flow measurement online module is often implemented by using
on-chip cache memory (such as SRAM) to minimize per-packet
processing time, but on-chip SRAM is expensive and limited
in size, which poses a major challenge for traffic measurement.
In response, much recent research is geared towards designing
highly compact data structures for approximate estimation that
can provide probabilistic guarantees for per-flow measurement.
The state of art, called Counter Tree (CT), requires at least 2
bits per flow in memory consumption and more than 2 memory
accesses per packet in processing time. In this paper, we propose a
novel design of a highly compact and efficient counter architecture,
called Virtual Active Counter estimation (VAC), which achieves
faster processing speed (slightly more than 1 memory access per
packet on average) and provides more accurate measurement
results than CT under the same allocated memory. Moreover, VAC
can perform well even with a very tight memory space (less than 1
bit per flow or even one fifth of a bit per flow). Theoretical analysis
and experiments based on real network traces demonstrate the
superior performance of VAC.

I. INTRODUCTION

The rapid development of wired and wireless network
arises enormous amount of data that flows on the Internet.
Monitoring and measuring such big network data becomes a
daunting task requiring tremendous resources, while has many
important applications, including capacity planning, anomaly
detection, load balancing, traffic engineering, etc [1]-[10]. One
fundamental measurement problem over big network data is
per-flow traffic measurement, which is to measure the number of
packets in each flow (or called flow size) during a measurement
period [11]-[19]. The network data is modeled as abstract
flows, each representing a data subset defined depending on
measurement requirements. Each flow is uniquely identified
by a particular field in the packet header called flow label.

For example, if the flow label is the source address in the
packet header, then all the packets from the same source address
constitute a flow. Therefore, we have per-source flows. Similarly,
we can define per-destination flows, TCP flows, WWW flows,
or any other specific flows.
To keep up with the line speed of modem network routers,

per-flow measurement online module is often implemented by
using on-chip cache memory (such as SRAM) to minimize
per-packet processing time, but on-chip SRAM is expensive and
limited in size, which poses a major challenge for per-flow traffic
measurement. Moreover, today's network streams usually consist
of millions of flows. It is infeasible to exactly measure each

flow's size in modem routers [17], [20]. Therefore, much recent
research is geared towards designing efficient data structures for
approximate estimation that can provide probabilistic guarantees
for per-flow traffic measurement [15]-[26].
One representative work is Count-Min [20], [21]. It demon­

strated that giving each flow a separate counter in on-chip cache
memory cannot scale today's big network data. By contrast,
it uses hash functions to map flows to a frequency table of
flows, and reduces memory overhead by sharing counters among
different flows. Counter Braids (CB) [15], [16] improve on
Count-Min sketch by improving the estimation accuracy in
per-flow measurement. It maps each flow to k counters, and
increases the counters by one for each packet. Multiple flows
may be mapped to the same counter. Therefore, each counter
represents one linear equation over the sizes of some flows.
When there are enough counters, we may solve the equations
for the flow sizes. However, CB performs 2k (occasionally
4k) memory accesses for each packet, which may limit its
throughput. Moreover, it cannot give converged results when
the memory space is tight [17], [18].
Li et al. [17] proposed a counter sharing scheme called

randomized counter sharing. To record a packet, it only needs
to update one counter with two memory accesses and one hash
computation. Its major drawback is that the measurement range
is limited [18], e.g., no more than a few thousands for a typical
implementation. The state of art is a two-dimensional counter
sharing architecture called Counter Tree (CT) proposed by Chen
et al. [18], where counters are not only shared by different flows
but also among themselves. It achieves better memory efficiency
than previous work and extends the estimation range. However,
CT still requires more than 2 memory accesses per packet in
processing time, and cannot work well under very tight memory
space, e.g., less than 1 bit per flow.
Our Contribution: To further improve the memory and

processing time efficiency, in this paper, we propose a novel
counter architecture for per-flow traffic measurement. The main
contributions are summarized as follows. First, we propose a
new approximate per-flow measurement design based on virtual
active counter arrays (VAC), which is highly compact in space
and highly efficient in processing. To record a packet, VAC only
requires one hash computation and one memory access in most
cases (two in the worst case), while the previous approaches
require 2 memory accesses or more. Second, VAC can handle
large counting ranges without modifying preset parameters
(which is required by the best prior work [18] in order to
generate good measurement results when facing different traffic
situations). It provides a more robust and flexible solution to
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meet real-life network traffic measurement demands. Third, we
theoretically analyze the performance of VAC, and perform
extensive experiments with real network traces to compare VAC
with the best state of art. The experimental results demonstrate
the superior performance of VAC.

II. PERFORMANCE METRICS

In this paper, we evaluate the performance of a per-flow
traffic measurement scheme based on following metrics, which
are also used in [18], [25].
Memory overhead: The total memory required for the per­

flow traffic scheme. As we explained in the introduction, the
scheme should be made as compact as possible.
Processing time: The average time required to encode a

packet. Generally, it is measured by the average number of
memory accesses and the number of hash value computations
as in [18].
Estimation accuracy: Let n be the actual size of a flow,

and en be the estimated flow size. The estimation accuracy is
determined by the relative bias Bias( ~ ) and relative standard

error StdErr ( ~ ):

III. PER-FLOW MEASUREMENT BASED ON VIRTUAL ACTIVE

COUNTER ARRAYS

A. Virtual Active Counter Arrays

When the memory space is limited and there are more flows
than the counters, we will have to share counters among different
flows. Count-Min [20] maps each flow to a number k of counters.
Many flows may be mapped to the same counter. Each packet
of a flow causes the k counters of the flow to increase by one.
The smallest of the k counters will be used as an estimation of
the flow size. However, the smallest counter may still be the
sum of multiple flows. Therefore, this approach has a positive
bias, which will become significant as the flow-to-counter ratio
increases. For on-chip ASIC implementation, memory access
can be the bottleneck for processing at the line speed. In Count­
Min, each packet causes 2k memory accesses, one read and one
write for every counter. In order to control the bias, the value of
k has to be reasonably large. In comparison, Counter Braids [15],
[16] increase k or occasionally 2k counters per packet, incurring
2k or 4k memory accesses. Randomized counter sharing [17]
updates one counter per packet with 2 memory accesses. Counter
Tree [18] updates one or (occasionally) more counters with 2
or more memory accesses; in the worst case, it has to update
O(1ogm) counters, where m is the total number of counters
used by all flows.
Although randomized counter sharing [17] incurs only 2

memory accesses per packet, it uses traditional counters and
the counting range is limited by the counter size. If it increases
counter size for range, the number of counters will be reduced,
which hurts the accuracy in flow-size measurement. If it uses
small counters for accuracy, the range will be reduced, which
limits its capability of measuring large flows. Counter Tree [18]
improves the range over randomized counter sharing with more
memory accesses. This paper provides a new counting design

en en
Bias( -) = E( - ) - 1,

n n

(
en) v=V~ar~( n-;:-;-')

StdErr - = .
n n

(1)

that reduces per-packet overhead further down to 1 memory
access for most packets, with 2 memory accesses in the worst
case, which may potentially double the throughput that can be
handled. In the meantime, we want the new design to use small
counters to achieve large counting range.

Active counters with adaptive sampling [27] can provide large
counting range with small counter size through probabilistic
counting [28], which will be briefly reviewed shortly. In a
straightforward design, each flow is assigned a separate active
counter. Each packet of the flow is recorded in the counter
probabilistically, requiring a read of the counter but only
occasionally a write-back. The number of counters is equal
to the number of flows. (There also needs space overhead for
an indexing structure that maps flows to counters.) This design
will not work in tight on-chip cache memory when the number
of bits is fewer than the number of flows; even though an active
counter is compact and takes a smaller number of bits than a
regular counter, one bit will not be enough.

Virtual Counter Virtual Counter Virtual Counter

r~2;Zr~

ACf [i] = AC* [H(J EB R[i])] ,OS; i < s, (2)

where HC) is a hash function whose range is [0, m), EB is
the XOR operator, and R is an array of s randomly-chosen
constants. We stress that ACf will not be explicitly constructed
during online operations of recording packets. It is a logical
construct that facilitates our description. Therefore, we call
ACf the virtual active counter array for flow f. Recording
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For example, suppose a = 4 and b = 5. If C.Q = 1001 and
c.f3 = 00101, the counter value is C = 288. (We omit the
subscript 2 for binary and 10 for decimal because the context
typically make it obvious which base is used.)

Suppose we receive a new packet and want to record it
in an active counter. We cannot simply increase C.Q by one
because that will actually increase the counter value by 2C

' (3. To
circumvent this problem, we treat C as a probabilistic counter
with a sampling probability of ~ . To add one, we increase

C.Q by one with a probability of ~ . That is, on average, 2c .(3
arrival packets will cause C.Q to increase by one.

When C.Q has reached its largest value with all a bits being
ones, i.e., 1...1, if we increase it by one, it overflows. In this
case, C.Q becomes 10...0, still a bits with the last zero cut off,
and c.f3 is increased by one. For example, suppose C.Q = llll,

B. Active Counters

We briefly review active counters [28] in the context of this
paper's per-flow size measurement, and make an improvement
to it. The idea can be motivated from the scientific notation of
a decimal number. Consider a number 123456789. With two
significant figures, the number can be approximated as 1.2 x 108 ,
with an error of 2.8%. It takes three decimal digits to store 1, 2
and 8, cutting the space requirement to one third. Now consider
a 32-bit binary number 10101010101010101010101010101010.
With five significant bits, the number can be approximated as
10101 x 211011 , with an error of 1.6%. It takes 10 bits to store
10101 and 1l01l, with a range of 25+25

-
1 = 236

•

In general, each active counter C consists of a coefficient Q

and an exponent 13, which are a and b bits long, respectively.
The value of the counter is

a packet from f is logically performed on a counter in ACf ,

while physically it will be translated into an operation on a
counter in AC*, as we discuss later in the section.

We explain the reason of using a counter array (instead of a
single counter) for each flow. If we use one counter per flow,
in case when there are more flows than counters, each counter
will have to be assigned to multiple flows and record the sum
of the flows. We will not be able to know the individual flow
sizes in the counter. If we consider a flow's size information is
the noise to other flows in the same counter, the challenge is
how to remove such noise. Now if we use a large number s of
counters per flow, each counter carries a small portion of the
flow's information. All flows share counters in AC* uniformly
at random. Any flow's information has an equal chance of
causing noise to another flow. As all flows' information is split
into small pieces and randomly placed in AC*, the noise is
spread out in AC* roughly uniformly, if s is sufficiently large
and each flow's size is negligibly small when comparing with
the combined size of all flows. Such uniform noise can be
measured statistically and removed. From an arbitrary flow's
point of view, its virtual counter array ACf has s counters

from AC* and thus carries an expected :!n portion of the total
noise in AC*. The total noise is simply the sum of all other
flows' sizes, which can be approximately computed by adding

all counters in AC*.

(4)

C. Online Recording Module

Our per-flow traffic measurement function includes an online
recording module and an offline estimation module. The online
module records the flow size information to the physical active

counter array AC* in real time, while the offline estimation
module answers queries on flow sizes based on the data recorded
from online module. Below we first describe the operations of
the online module.

The measurement is performed periodically. At the beginning
of each measurement period, all counters in AC* are initialized
to zeros. For each arrival packet, the router extracts the flow
label f from the packet header. It generates a random integer
q E [0, s) to select a counter ACf[q] from the flow's virtual
active counter array, and then increase the counter value by one
probabilistically. Recall that ACf is logical and not actually
constructed during online operations. Hence, the actual operation

is performed on the corresponding physical counter AC* [H(j EEl
R[q])], to which ACf [q] is mapped. More specifically, the router

reads counter AC*[H(jEElR[q])], consisting of a coefficient and
an exponent. It increases the counter by one with probability

2AC* [H(jEBR[q])]j3 as described in the previous subsection. The
probability for writing the counter back is the same, which
decreases exponentially as the exponent increases.

The online recording module only incurs small per-packet
overhead, including one hash computation, one random-number
generation, and at most two memory accesses: reading a counter
and writing it back if the counter value is changed. Generally,
when the total number of packets mapped to each counter is
large, the sampling probability will be small for most packets. In
this case, only a small portion of packets will trigger write-back
memory accesses.

where the second term reflects the implicit bit in the coefficient
and the third term is the initial offset. With C.Q = 001 and
c.f3 = 00101, the actual counter value should be (1001) x
200101 - 8 = 280.

C.f3 = 00101, and the counter value is 480. If we increase
C.Q = llll by one, it will become 1000 and c.f3 will become
00110. The counter value will become 512. The difference in
counter value is 32. Recall that it takes 2c .(3 = 32 packets on

average to cause C.Q to increase by one. As the value of c.f3
increases, the sampling probability ~ decreases. Therefore,
an active counter performs adaptive sampling.

We make an improvement to active counters as follows:
Consider an example with a = 4 and b = 5. It is easy to see
that once the value of C.Q reaches 1000, its value will cycle from
1000 to III 1 and then back to 1000. The highest bit is always
one. Therefore we do not have to store it. With this implicit
bit of one, we can cut a from 4 to 3 without sacrificing the
counting capacity. For example, if C.Q = 001 and c.f3 = 00101,
the counter value is (1001) x 200101 = 288, with the bold bit
being implicit. One problem is that initially when C.Q = 000
and c.f3 = 00000, the counter value is (1000) x 200000 = 8

while it should have been O. Hence, when we determine the
counter value, we should remove this initial value. In general,
the formula for the value of the improved active counter is

(3)C = C.Q x 2c .(3.
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Hence, the expected number of noise packets in ACf is E(Y) =

s(Nr:
n
) . Applying (5), we have

where the instance value n v is estimated as nv from the observed
counter values in ACf based on (4), i.e.,

m-l

N = L AC*[ij.a x 2AC*[i] (5 + 2a+AC*[i] (5 - 2a , (8)

i=O

s-l
nv = LACf[ij.a x 2ACj [i] (5 + 2a+ACj [i] (5 - 2a . (10)

i=O

(12)
E(N) = N Var(N) = li(1 _ 1)

1, s ' 1, s s '

Cov(NiNj ) = -~, i #j.

1) Relative Bias ofN:
We first analyze the expectation of N. Since the expectation

ofN satisfies

IV. VAC PERFORMANCE ANALYSIS

In this section, we perform thorough analysis on VAC with
regard to its measurement accuracy. We first analyze the active
counter array size estimator, which is used to estimate the
number of packets recorded in an active counter array. Then
we provide relative bias and relative standard error of our VAC
approach.

A. Analysis ofActive Counter Array Size Estimator

We first provide a theorem on the accuracy of active counter
estimation, which can be proved by similar mathematical method
in [27], [28]. (we omit the proof due to paper length limitation).
Theorem 1: Let n! be the number of packets that are recorded

in an active counter with (a +b) scheme, and n! be the estimate
given by (4). Then,

E(n!) = n!, S t d E r r ( ~ ; ) = ~.

Based on this theorem, we now analyze the estimation
accuracy of our active counter array size estimator. Suppose
that N packets are recorded in an active counter array C with
s active counters through online recording module. Let the
random variable N i (0 ::; i < s) be the number of packets
recorded in the ith active counter of C. Since each packet has
the same probability i to be mapped in any active counter of
C, the joint law of No, N l , ... ,Ns- l follows a multinomial
distribution with parameters Nand p, where p = (i,· .. , i).
Its probability mass function is

Pr(No=no, N l =nl,···, N s- l =ns-d

{
( N ) ~ I::~5 ni =N, (11)

= nO,nl,···,ns-l

o otherwise,

where no, nl, . .. , n s-l are non-negative integers. The expected
value and covariance matrix of No ,... , Ni , ..., Ns- l are

thereby we have

E(N)= I:no"ns-l E(NINo = no, ... ,Ns- l = n s-l)

·Pr(No = no,···, N s - l = ns-d (14)

= I: +...+ -N ( N ) -drE(Nlno, ... ,ns-l),
no ns-l- no, ... , ns-l S

where E(Nlno, ... ,ns-d is the abbreviation of E(NINo =
no, ... , Ns- l = ns-d for simplicity.
Let ni (0 ::; i < s) be the estimate of the number of packets in

the ith active counter by (4). Then, N = I::~5 ni. In addition,
the estimate for each active counter only depends on the number
of packets mapped to this counter. Hence, under the condition of

No = no, ... ,Ns- l = n s-l, the estimations of no, ..., n s-l
are independent. Therefore, combining Theorem 1, we have

E(Nlno, ... ,ns-l) = E(I::~5 ni Ina, ... ,ns-l)
(15)

= I : : ~ 5 E(nilNi =ni) = I::~5 ni·

E(N) = E(E(NINo, N l , ... , N s- l )), (13)

(5)

(9)

(7)

(6)

Y = n v -no

n= ~ ( n v _ N),
m-s s m

s
Y ~ Binom(N - n, -).

m

E (n
v
_ n) = s (N - n)

m

_ ms (E(nv ) N)n--- ----
m-ssm

We consider the aggregation of all flows as a grant flow whose

size is N. We treat AC* as the active counter array for the
grand flow. Hence, we can estimate the value of N by adding

the m counter values in AC*. We denote the estimate as N.
From (4), we have

Let N be the total size of all flows. The number of packets
from flows other than f is N - n. This noise is spread on all
m counters in AC*. The chance for a noise packet to belong to
ACf is approximately :!n, when both sand m are sufficiently
large. Hence, Y approximately follows a binomial distribution:

where a is the number of bits in the coefficient AC* [ij .a. In
(7), replacing N with Nand E(nv ) with the instance value nv,
we have an estimator n for the flow size

D. Offline Estimation Module

At the end of each measurement period, the active counter
array AC* stores the size information of all flows. It is offloaded
to an offline server for long-term storage. The server uses AC*
to estimate the sizes of flows under query. We propose an offline
virtual active counter estimation architecture (VAC) to estimate
the flow sizes.

For an arbitrary flow f under query, we explicitly construct
its virtual active counter array ACf based on (2). Note that
offline operations do not have the same overhead requirement
as real-time online operations. Let n be the actual flow size
of f, and n v be the number of packets recorded by the virtual
active counter array ACf. Due to counter sharing, we know
that n v is the flow 1's size plus the noise introduced by other
flows. Let random variable Y be the number of 'noise' packets
(from other flows) that are recorded by the s counters in ACf.

We have
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By combining (14) with above formula, we can calculate

2) Relative Standard Error ofN:
Next, we derive the variance and relative standard error of

N. Similar to formula (14), we have

-a=2
-a=4
-a=8

~ ~ ~ ~ _ - - - - - - ~ - - - - -
- - - - - - - - _ ~ _ - _ ~ _ - - -
-0.1%

~ . i . : : ..~ ..8 _ _ _ _ .

o
1~ 1~ 1~ 1~

Actual Flow Size

O.............o 4 4 o l l . . o - o l - - ~ _ - - - . J

10° 102 104 106

Actual Flow Size

0.01,--------------, 0.01,--------------,

-8 = 128

-8 = 512

f/) -8 = 2048 f/)

m m
iii +0.1% iii
~ 0 --------A-----r.,=.--.~ 0

~ ~O~1 0/0- - - - - - - - - - - - - - - - ~

~ ~

-0.01 -0.01 L-_~ ~ _ ___.J

10° 102 104 106 10° 102 104 106
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(a) Bias(!jt,) with a = 4 (b) Bias(!jt,) with s = 512

Fig. 2: Relative bias of active counter array size estimator.

0.03 0.03,----------------,
__8=128 __a=2

g ---8 = 512 g ---a = 4

UJ --8 = 2048 UJ --a = 8

1i 0.02 ~ J ~ ..~ ~~~!........................... 1i 0.02 .o.:.~?.~~ ..~ .. ~) .
~ ~
C c
~ ~w w
Q) 0.82 (8 = 512) Q) 0.82 (a = 4)
> 0.01 ~ _ _ _ _......... > 0.01 .•.1.? .._ _ _ _ _ .

iii 0.82 (3 ~ 2048 ]1
~ ~ .._ _ _ _ _ _. ~

(17)

(16)

, E(N)
Bias(%) = -----;r::r- - 1 = O.

Hence, the estimator N is unbiased for N.

, 2 ' 2
E(N ) = 2: E(N INo = no, ... ,N8- 1 = n 8-dno,···,ns-l

.Pr(No = no, ... ,N8- 1 = n 8-d (18)

(
N ) 1 '2

=2:no++ns-l=N SJVE(N Ino, ... ,n8-d·
no,···,ns-l

Combining Theorem 1 and the estimation independence under
the condition of No = no, .. . , N8- 1 = n 8-1, we have

E(n; INi = ni)= Var(nilNi = ni) + E(nilNi = ni)2

= (0.67 + 1)n2 0 < i < S2a 1,' - ,

Therefore, we have

E(ninjlNi = ni, N j = nj)= E(nilNi = ni)E(njINj = nj)

= ninj, for i # j. (19)

Hence, we can obtain

(a) StdErr(!jt,) with a = 4 (b) StdErr(!jt,) with s = 512

Fig. 3: Relative standard error of active counter array size
estimator.

var(N) ~ 0 ~ ~ - : : 2 .

Therefore, we have the variance of the estimator N:

Var(N) = E(N2) - E(N)2 = °2~7 (N(l - i) + ~2).

By combining (18) with above formula, we have

(N2) '" (N) 1 (0.67 ",8-1 2E =LJno+..+ns_l=N n n SJV 2""" LJi=O n i
0,···, 8-1

+ ( 2 : : ~ 5 n i ) 2 ) =N2+ 0~:8 (~(1- i) + ~22). (21)

8-1 3) Simulation Results: We use some numerical results

E(N2In o, ... , n8-d = E( ("'"' ni)2 Ino , ... , n 8-1) to illustrate the interplay between the different sources of
L.J estimation bias and estimation error. We run 1000 simulations
i=O

8-1 for each case. The simulation results of relative bias are given

- "'"' E(n21N - n) + 2 "'"' E(n' n ·1 N = n N = n .) in Figure 2. Clearly, the relative bias of the estimator is very- L...J i 1, - 1, L...J 1, J 1, 1" J J

i=O 0<;i<j<8-1 small « 0.1%) with respect to different values of s, a and N.

0.67 ",8-1 2 (",8-1 )2 By (22), we.know the measurement a c c u ~ a c y (i.e., relative
=2""" LJi=O n i + LJi=O ni . (20) standard error) 1S affected by two factors: one 1S the total number

s of active counters in C, the other is the size a of coefficient
in the active counter. We analyze the impact of s and a in the
estimator, and the corresponding simulation results are shown
in Figure 3a and Figure 3b, respectively. The reference line
Y = o~ of theoretical relative standard error in (22) is also

v s2 a

shown for each case.
Figure 3a shows that the estimation accuracy improves as

the increase of s. Similar trends can be observed when the
coefficient part a grows. With regard to the total packet number
N, in each figure, we can find that there is no error for our active
counter array size estimator when N is small. Starting from a
certain point, as N grows, the estimation error also increases.
However, when N becomes large enough, the error reaches
it upper bound and becomes stabilized. Clearly, the relative
error of all simulation results is lower than the theoretical line,
thereby formula (22) can be treated as an upper bound error.
Through the theoretical analysis and the simulation results, we
can see that our active counter array size estimator can estimate
large range flow sizes with high accuracy.

According to the simulation results, when the total number N
of packets is smaller than s x 2a - 1

, the sampling probability
is 1 for almost all active counters. Thus, our estimator is very
accurate in this case. Therefore, we only need to consider
the estimation error resulted from small sampling probability
when N is relatively large (i.e., N » s). Then we can do the
approximation:

The relative standard error of the estimator N is

StdErr(fI) = ~ ~ 0.82.
N N VS2"

(22)

B. VAC Estimation Accuracy

We now analyze the relative bias and relative standard error
of VAC. According to (17) and (22) in the analysis of the active
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Fig. 4: Relative standard error of VAC with respect to s, a, N and n. Memory size M = 0.25MB.

counter array size estimator, we have the following theorem.

Theorem 2: Let N be the number of packets that are mapped
to an active counter array C of s active counters. We have

E(N) = N StdErr(.N) ~ 0_82.
N -IS2U

2) Relative Standard Error:
Next we derive the relative standard error of n. By Theorem 2

and (23), we have

E (n; IY = I) = Var (n; IY = I) + E (nv IY = I) 2

~ °67};a+ I)2 + (n + 1)2 = (~~: + 1)(n+ 1)2, (27)

V ar(N) ~ 0 ~ 7 2 ~ 2 . (28)

Combining (6) with the above equations, we have

E(n;) = ~[':~n E(n;1Y = I)Pr(Y = I) (29)

~ ~ [ ' : ~ n ( ~ 2 6 : + 1)(n + 1)2Pr(Y = I)

= (~~: + 1)((n+ s(Nr:n))2 + s(Nr:n)(I_ ~ ) ) .

1) Relative Bias:
Recall that n v packets are recorded in the virtual active

counter array ACj , and random variable Y indicates the number
of 'noise' packets that are mapped to the virtual active counter
array ACj. Combining (5) and Theorem 2, under the condition
of Y = I, I E [0, N - n], we have

E(nv IY = I) ~ n v = n + I. (23)

By (6) and (23),

E(nv) = ~[':~n E(nv IY = I) . Pr(Y = I)

~ ~[':~n(n + I) . (N~n) . (~)I(1 _ ~)N-n-l

= n + s(N - n). (24)
m

The value of N is estimated based on active counter array AC*.

Hence E(N) = N. Combining (9) with above, we have

(30)StdErr(T!:.) = ~ ~ _m_.n n n(m-s)

The relative standard error of the estimator n is

Var(n) = (:~J2 (va:~nv) + va:~N))

~ (----"-'--'-----)2(0_67(n+ S(N-n))2
m-s s2 a m

+(~~: + 1) s(Nr:n)(1 _ ~) + (~)2 0~72~2).

From (9) (24) (28) and (29), we have the variance of the
estimator n:

3) Numerical Results of S t d E r r ( ~ ) : The relative standard
error (or error in short) StdErr ( ~) is affected by several
factors including N, n, sand a. We use some numerical results
to illustrate the interplay between the different sources of
estimation error.

Suppose the allocated memory is M = 0.25MB and a
particular flow size of n = 104 . The active counters utilize the (4

+ 4) scheme (a = 4, b = 4) by default. Hence, the default number
of active counters is m = a~b = 218 . We first analyze the
impacts of the number of counters in each virtual active counter
array s and the total size of all flows N, and the corresponding
numerical results of relative standard error in (30) with respect
to s and N for different curves are shown in Figure 4a and
Figure 4b. Clearly, when N increases, the relative standard
error increases too. At the beginning, the relative standard error
drops quickly as s grows. When s becomes further larger, the
estimation accuracy improves slowly as the error caused by
noise increases. Combining these two observations, we find that
when s is relatively large, the error for VAC is very small.

Figure 4c and Figure 4d show the numerical results of the
relative standard error in (30) with respect to a (the number of
bits in the coefficient part of the active counters). Clearly, the
relative standard error drops quickly as a grows. In addition,
when a becomes further larger (e.g., 10), the error becomes very
small and stabilized, which can also be predicted by Theorem 2

with its factor of improvement being J-a.
From Figure 4a to Figure 4b, we observe that the relative

standard error decreases as the flow size n of the target flow
grows we increase. Clearly, the relative standard error is smaller
for flows of larger sizes. The same trends are observed from
Figure 4c to Figure 4d.

(26)

- i'f)
(25)

, s(N-n)
E(n) = ms (E(n v ) _ E(N)) ~ ms (n+ =

m-s s m m-s s

= ~ (2: - ~ ) = n.
m-s s m

Bias(~) = E~n) - 1 ~ O.

Hence, the VAC estimator n is approximately unbiased.

Therefore,
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V. EXPERIMENTAL EVALUATION

In this section, we compare the performance of our VAC
scheme and the most related work CT [18] through extensive
experiments using real network traces captured by the main
gateway of our university. The performance metrics in Section II
are employed in our experimental evaluation, including memory
overhead, processing time, and estimation accuracy.

A. Experiment Setup

Without loss of generality, we consider TCP flows and
measure the size for each flow. The network trace used in
our experiments contains 126,569,701 packets generated by
11,453,043 flows. Hence, the average flow size is 11.05 packets
per flow.
We conduct two sets of experiments to evaluate the perfor­

mance of our scheme. In our first experiment set, we evaluate
the processing time and measurement accuracy of CT and VAC
with regard to the memory size of the physical active counter
array. For CT, we use the same settings as Chen et al. [18] did
in their experiments: degree with value 3, virtual counter size
with value 100, and node counter size fixed to 4 bits. For VAC,
the active counters utilize (4+4) scheme, and we fix the virtual
active counter array size s to 512. The available memory size
M for CT and VAC is varied from 0.25MB, 0.5MB, 1MB to
2MB. In our second experiment set, we evaluate the impact of
the number of counters in each virtual active counter array sand
the number of bits in the coefficient part of the active counters a
on the estimation accuracy of VAC. We fix the memory size M

to 1MB, and vary the values of s and a to observe its accuracy.

B. Processing Time

We first compare the performance of CT and VAC in terms
of processing time in our first experiment set. Generally, the
processing overhead is measured by the average number of
memory accesses and the number of hash value computation­
s [17], [18]. The average results of encoding a packet are shown
in Table I. CT requires more than 2 memory accesses per packet
and 1 hash computation in processing time. As we mentioned
in Section III-C, VAC requires 1 memory access to read the
value in one active counter, and only needs to write it back with
corresponding adaptive sampling probability, which becomes
smaller as the total number of packets mapping to this active
counter grows. Therefore, VAC only needs slightly more than
1 memory access per packet on average, which is consistent
to the results in Table I. Moreover, as the available memory
space decreases, the average number of memory accesses of
VAC also decreases. This is because each active counter is
shared by more flows, which incurs higher sampling probability
and thereby reduces the updating frequency. Clearly, VAC can
achieves faster processing speed than CT.

TABLE I: Comparison of processing time for encoding a packet by
CT and VAC.

memory size number of number of

(MB) memory accesses hash computations

CT VAC CT VAC

0.25 2.13 1.11
0.5 2.13 1.19
1 2.12 1.31
2 2.11 1.48

C. Estimation Accuracy W.r.t Memory Overhead

In the first set of experiments, we also evaluate the estimation
accuracy of CT and the proposed scheme VAC with regards to
the memory overhead M. The experiment results are presented
in Figure 5-6, where the allocated memory in each scheme is
0.25MB in the first plot, 0.5MB in the second plot, 1MB in the
third plot, and 2MB in the fourth plot. Since the total number
of TCP flows is above 10 million, average memory per flow is
about 0.2 bit in the first plot, 0.4 bit in the second plot, 0.8 bit
in the third plot, and 1.6 bits in the fourth plot.

The experiment results of CT are shown in the four plots of
Figure 5, where each point in each plot represents a particular
flow, with the x coordinate being the actual flow size nand
the y coordinate being the estimated flow size n. The equality
line y = x is also shown in each plot for reference. Clearly, the
closer a point is to the equality line, the better the measurement
is. From Figure 5, we observe that CT cannot produce accurate
result when the allocated memory is tight (i.e., 0.2 bit per
flow). When we increase the memory size, CT starts to work
as the points become more clustered towards the equality line.
However, the estimate results of CT are still not accurate enough.
The four plots in Figure 6 show the experiment results of VAC.
We observe that VAC can produce accurate estimates for all
flows even under tight memory as shown in the first plot. As
expected, VAC becomes more accurate when more memory
space is available. We also discover that although the relative
standard errors for small flows can be large, the absolute errors
of these small flows remain relatively small. Hence, VAC can
still be useful for small flows.

The four plots in Figure 7 show the relative bias in the
estimations for CT and VAC under different memory availability.
In each plot, we can see that the relative bias decreases rapidly
toward 0 as the actual flow size increases. We also observe that
VAC has smaller relative bias than CT. The similar observation
is made in Figure 8, where the performance metrics is the
relative standard error. Therefore, VAC can yield more accurate
per-flow traffic measurement than CT.

D. Impact of Virtual Active Counter Array Size s

In the second set of experiments, we first study the impact of
the virtual active counter array size s on the estimation accuracy
of VAC, while the available memory size M is fixed to 1MB.
We repeat the experiments in Figure 6 with memory overhead
M = 1MB, and vary the value of s from 512 to 128, 256
and 2048, respectively. The corresponding estimation results
are presented in the first three plots of Figure 9, while the
fourth plot shows the relative standard errors with different
values of s. We observe that, as s increases, the estimation
accuracy increases for large flows but decreases for small flows.
The above observations are consistent with our analysis and
numerical results in Section IV-B3. Hence, it is practical to
choose a virtual active counter array size s of 512.

E. Impact ofActive Counter Coefficient Size a

Finally, we study the impact of the coefficient size a in active
counters on the estimation accuracy of VAC while fixing the
available memory size M to 1MB and the value of s to 512. We
repeat the experiments in Figure 6 with memory overhead M =
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1MB, and vary the value of a from 4 to 1, 2 and 8, respectively.

The corresponding estimation results are presented in the first

three plots of Figure 10, while the fourth plot shows the relative

standard errors with different values of a. We observe that

when a is relatively small at 1, the estimation accuracy is worse

when comparing with a = 2 or a = 4. This observation is

consistent with our analysis in Section IV-B. However, when a

becomes large enough (a = 8), the relative standard errors are

larger than when a = 4. This is because the total number m of

active counters drops as a increases, which incurs more noise.

Therefore, it is practical to choose a coefficient size a of 4.

VI. CONCLUSION

This paper proposes a highly compact and efficient counter

architecture VAC for per-flow traffic measurement through active

counter sharing. VAC achieves faster processing speed (slightly

more than 1 memory access per packet) and provides more

accurate measurement results on per-flow size estimation than

the existing work. Moreover, VAC can yield good estimates

even under a very tight memory space (less than 1 bit per flow

or even one fifth of a bit per flow). Extensive experiments with

real network trace data as well as rigorous theoretical analysis

demonstrate the superior performance of VAC.
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