Hindawi Publishing Corporation
Advances in Multimedia

Volume 2007, Article ID 64938, 10 pages
doi:10.1155/2007/64938

Research Article

A Hybrid Query Scheme to Speed Up Queries in
Unstructured Peer-to-Peer Networks

INTRODUCTION

Zhan Zhang, Yong Tang, Shigang Chen, and Ying Jian

Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611-6120, USA
Received 31 January 2007; Accepted 6 June 2007
Recommended by Ben Y. Zhao

Unstructured peer-to-peer networks have gained a lot of popularity due to their resilience to network dynamics. The core operation
in such networks is to efficiently locate resources. However, existing query schemes, for example, flooding, random walks, and
interest-based shortcut suffer various problems in reducing communication overhead and in shortening response time. In this
paper, we study the possible problems in the existing approaches and propose a new hybrid query scheme, which mixes inter-
cluster queries and intracluster queries. Specifically, the proposed scheme works by efficiently locating the clusters, sharing similar
interests with intercluster queries, and then exhaustively searching the nodes in the found clusters with intracluster queries. To
facilitate the scheme, we propose a clustering algorithm to cluster nodes that share similar interests, and a labeling algorithm to
explicitly capture the clusters in the underlying overlays. As demonstrated by extensive simulations, our new query scheme can
improve the system performance significantly by achieving a better tradeoff among communication overhead, response time, and
ability to locate more resources.
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tured networks [9]. Even with the use of super nodes in Mor-

Peer-to-peer networks surged in popularity in recent years.
The core operations in most peer-to-peer networks is to ef-
ficiently locate data items, in which the fundamental chal-
lenges are to achieve faster response time, smaller network di-
ameter, stronger ability of locating more resources, and bet-
ter resilience to network dynamics.

Structured P2P networks have been proposed by many
researchers [1-7], in which distributed hash tables (DHTS)
are used to provide data location management in a strictly
structured way. Whenever a node joins/leaves the overlay, a
number of nodes need to update their routing tables to pre-
serve desirable properties for fast lookup. While structured
P2P networks can offer better performance in response time
and communication overhead for query procedures, they
suffer from the large overhead for overlay maintenance due
to network dynamics.

Unstructured P2P networks such as Gnutella rely on a
random process, in which nodes are interconnected in a ran-
dom manner. The randomness offers high resilience to the
network dynamics. However, basic unstructured networks
rely on flooding [8] for users’ queries, which is expensive in
computation and communication overhead. Consequently,
scalability has always been a major weakness for unstruc-

pheus [10] and KaZaA [11], the traffic is still high, and even
exceeds web traffic.

Searching through random walks is proposed in [12—14],
in which incoming queries are forwarded to the neighbor
that is chosen randomly. In random walks, there is typically
no preference for a query to visit the most possible nodes
maintaining the needed data, resulting in long response time.

Interest-based shortcut [15] exploits the locality of inter-
ests among different nodes. In this approach, a peer learns
its shortcuts by flooding or passively observing its own traf-
fic. A peer ranks its shortcuts in a list and locates content by
sequentially asking all of the shortcuts on the list from the
top until content is found. The basic principle behind this
approach is that a node tends to revisit accessed nodes again
since it was interested in the data items from these nodes be-
fore. The concept of interest similarity is vague and it is dif-
ficult to make a subtle, quantitative definition based on it. In
addition, it may cause new problems as discussed later.

In this paper, we take the unstructured approach, and
propose a new query scheme to address these problems. The
main contributions of the paper include the following.

(i) We define a metric, independent of any global informa-
tion, to measure the interest similarity between nodes.
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Based on the metric, we propose a clustering algorithm
to cluster nodes sharing similar interests with small over-
head, and fast convergence.

(ii) We propose a distributed labeling algorithm to explicitly
capture the borders of clusters without any extra commu-
nication overhead.

(iii) We propose a new query scheme, which is able to deliver
a better tradeoff among response time, communication
overhead, and the ability to locate more resources by mix-
ing intercluster queries and intracluster queries.

The rest of the paper is organized as follows. Section 2
reviews the possible problems in prior approaches. Section 3
gives the overview of our scheme. Section 4 defines the inter-
est similarity and proposes a light-weight algorithm to clus-
ter nodes within the same interest group and a labeling algo-
rithm to explicitly border the clusters. Section 5 introduces
our query scheme in detail. Section 6 evaluates the scheme
with extensive simulations. Section 7 draws the conclusion.

2. INEFFICIENCY IN PRIOR WORKS

Small communication overhead and short response time are
the two main concerns in designing efficient query schemes
in peer-to-peer networks. However, current approaches suf-
fer various problems in achieving a better tradeoff between
them due to the blindness in searching procedures.

Flooding

Flooding [8, 16] is a popular query scheme to search a data
item in fully unstructured P2P networks such as Gnutella.
While flooding is simple and robust, its communication
overhead, that is, the number of messages, increases expo-
nentially with the hop number. In addition, most of these
messages visit the node that has been searched in the same
query, and they can be regarded as duplicate messages. Con-
sequently, communication overhead and scalability are al-
ways the main problems in this approach [9, 17].

Random walks

Random walks [12—-14, 18] rely on query messages randomly
selecting their next hops among neighbors with equal proba-
bilities to reduce the communication overhead. A query may
have to go through many hops before it successfully locates
the queried data item. Consequently, this approach takes a
long time to locate queried data items. If the networks are
well clustered (nodes with similar interests are densely con-
nected), it is expected that the query latency can be reduced
significantly. However, it is not true, because the number of
hops escaping out of the cluster decreases exponentially with
the ratio r of the number of intercluster edge to the number
intracluster edges, as shown in Figure 1.

In the case of a network with a small value of r, for ex-
ample, r < 0.01, if queried data items are in different clusters
from the source node, a query message has to walk a long dis-
tance to be able to traverse the cluster border and locate the
queried data items. In the case of a network with a large value

200 T T T T T T T T T

Number of hops
N
Do b (o)) [* (=1 oo > (=) ®
S & &8 &5 3 3 5 & 38

0 n
0 01 02 03 04 05 06 07 08 09 1

Ratio (no. intercluster edges/intraincluster edges)

—+— Uniform random walks

FiGURE 1: The number of hops of random walks escaping out of the
cluster decreases exponentially with the ratio of number of inter-
cluster edges to the number of intracluster edges.

of r, for example, r > 0.1, query requests may escape out of
the original cluster within a small number of hops, resulting
in a long response time if the queried data is in the origi-
nal cluster. These observations are also demonstrated by our
simulations in Section 6. Consequently, random walks may
suffer long response time regardless of the network having
been well clustered or not.

Interest-based shortcut

Interest-based shortcut, for example, [15], tries to avoid the
blindness in random walks by favoring nodes sharing similar
interests with the source, which can be regarded as a vari-
ation of Markov random walks, biased towards some spe-
cific nodes. Markov random walks may accelerate the query
process to some extent in some cases. However, it causes
new problems. Suppose that nodes in an interest group have
formed a cluster, and query messages can be artificially con-
fined in this specific cluster. In the sense of nodes in the clus-
ter share similar interests, any of them possibly maintains the
queried data. Thus, the query procedure should shorten the
covering time of the whole cluster instead of the hitting time
of some specific nodes in it. However, due to the bias in se-
lecting next hop in Markov random walks, it tends to keep
visiting some specific nodes, resulting in less distinct nodes
being covered comparing to uniform random walks, as il-
lustrated by Figure 2. Consequently, Markov random walks
work worse than uniform random walks if both of them can
be confined in specific clusters.

3. SYSTEM OVERVIEW

Researchers [15, 19] have found many peer-to-peer networks
exhibit small-world topology, and most of queried data items
are offered by the nodes, which share similar interest with the
source node.
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FIGURE 3: A query scheme mixing intercluster queries and intraclus-
ter queries (the nodes in the grey clusters fall into the same interest
group).

Intuitively, the nodes sharing similar interests with the
source node should have higher priority to be searched than
others. Practically, there are two challenges in designing such
a query scheme. The first one is how to cluster nodes with
similar interests based on the small-world property of P2P
networks. By saying “similar interests,” we actually mean that
two nodes are interested in a common set of data items.
Thus, the number of common accessed data items can serve
as a metric to measure the interest similarity between two
nodes. A clustering algorithm based on the metric can be eas-
ily designed to densely connect the nodes in the same inter-
est group. Moreover, each node u can explicitly pick up a set
of intercluster neighbors that have different interests from u,
and a set of intracluster neighbors that share similar interests
with u. Take Figure 3 as an example. The network consists of
5 clusters, and nodes in the same cluster fall into the same

interest group. Note that there exists an interest group con-
sisting of two clusters, 1 and 5.

Suppose the network has been well clustered, and each
node explicitly maintains a set of intercluster and intraclus-
ter neighbors. The second challenge is how to fast locate the
clusters that share similar interests with the source node and
how to exhaustively search nodes in the found clusters if the
queried data items are in the source node’s interest group.
We introduce two types of queries, intercluster queries and
intracluster queries. The intercluster queries are for the pur-
pose of discovering the clusters that share similar interests
with the source node, and they are issued by source node,
carry the interest information, and only travel on interclus-
ter neighbors. It can be expected that clusters sharing simi-
lar interests with the source node can be located quickly, be-
cause the number of cluster is much smaller comparing to
the network size, and intercluster queries only travel among
different clusters. The intracluster queries are spawned by in-
tercluster queries when a cluster sharing similar interest with
the source node is hit. An intracluster query thoroughly go
through nodes in the found cluster, where it is spawned, by
only traveling on intracluster neighbors. How to estimate to
what extent a cluster has been searched will be discussed later.
Note that intercluster queries and intracluster queries can be
easily implemented if each node explicitly knows the types of
its neighbors.

Occasionally, queried data may be out of the source
node’s interest group, and possibly maintained by a cluster(s)
with different interests. This problem is addressed by blind
search: intercluster messages randomly spawning intraclus-
ter messages when hitting clusters with different interests.

For example, in Figure 3, first inter-queries are initiated
by a node in cluster 1, which travel among different clusters.
By the interest information carried in the inter-queries, clus-
ter 5 is found to share similar interests when it is hit, and an
intracluster query is spawned, which then will exhaustively
search the nodes in it. In addition, an intracluster query is
spawned in cluster 2 by intercluster queries to support blind
search.

4. CLUSTERING ALGORITHM

4.1. Measuring the interest similarity between
two nodes

Cluster is generally formed by connecting nodes with simi-
lar interests in a network. Thus, we start our discussion with
the definition of interest similarity between two nodes in P2P
networks.

If node u and node v share similar interests, then it is
very likely that they have accessed same data items more or
less previously. Therefore, the size of the common subset of
accessed data items can serve as a metric to measure to what
extent the interests of two nodes are similar.

However, each node may offer hundreds of data items,
and hence, there may exist a large number of data items even
in a small network. As a result, only if u and v have visited
a large number of data items, respectively, they are able to
show some degree of similarity. An alternative to evaluate
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FIGURE 4: Interest similarity between nodes. The number of data items in 1, 2, and 7 is 50, 100, and 200, respectively. (a) No common
visited nodes (different interests), (b) u and v have visited node 2 (100 data items) with 8 and 5 times, respectively (a certain level of similar
interests), (¢) u and v have visited node n (200 data items) with 8 and 5 times, respectively (falls in between).

the interest similarity is by the number of common accessed
nodes, which may enable a clustering algorithm to converge
faster than the former approach. The problem in this ap-
proach is that two nodes visiting a common node does not
indicate they have similar interests, because a node may of-
fer data items belonging to multiple interest groups. For in-
stance, a user u may offer resources for two groups: a number
of mp3 music files for one group, and a number of research
literatures in P2P networks for the other group. It is possible
that two nodes that have visited u may be interested in data
items in different interest group. Thus, we have to address the
discrepancy between the common set of accessed nodes and
the common set of visited data items.

Suppose that there are n nodes N = {1,2,...,n} in the
whole P2P network. Suppose a node i offers a number of data
items to others. It categorizes (maps) all of these data items
into «; different categories, denoted as C' = {ci,c},..., 3.
Suppose a data item x in i is mapped to a category c'(x),
where ¢'(x) € C'. How to categorize the data items is de-
termined by the node i independently. For instance, node i
may classify music files as category 1, while another node
may classify music files as category 2. On the other hand,
node i may fall into multiple interest groups, denoted as
G = (gl gh--. g

For a node u, the access history with respect to each of
its interest groups, for example, g{', can be specified by a set
of data items x, denoted as (i, c’(x)), where i represents the
node offering the data item, and c(x) is the category in C'
defined by i. If two nodes u and v share “similar interests,”
for example, g{' = g, their histories for g{" and g; tend to
consist of a common set of (7, ¢(x)).

Note that in the above definitions, each node determines
its interest groups and categories independently, indicating a
node need not maintain any global information.

For easy explanation, we study a basic approach by as-
suming each user only falls into one interest group, and of-
fers one category of data items. In this scenario, the access

history can be represented by the accessed nodes alone. This
approach can be easily extended to the multicategories and
multigroups based on the definitions above.

One node u may access another node multiple times for
different data items, and hence, the access history of node u
can be represented by a vector V¥* = (v{,...,v*),! where v
represents the number of times u has visited node x. To can-
cel out the number of queries a node has issued, the access
vector V* is normalized to the frequency vector F*, in which
the ith element in F* is denoted as f;, computed by V* as
fi* = v/ X jen v}, representing the frequency of the corre-
sponding node 7 having been accessed.

Note that the value in F* falls into the range [0,1]. If u
has never accessed node i, the corresponding element f* is
equal to 0. The summation of all elements is equal to 1.

Furthermore, if the number of data items in node i, de-
noted as d;, is large, the chance that two nodes u and v have
visited common data items in i may be small even if both
of them have visited i multiple times. As an example, in the
middle and right parts in Figure 4, u and v have visited one
common node. But # and v in the middle part have more
chance of having visited common data items because the
number of data items in node 2 is half of that in node n. To
account for this issue, we introduce a weighted diagonal ma-
trix W with (4, i)th value w;; equal to 1/d,. It represents the
probability of both u and v visiting a common data items, if
both of them visit i once.

Now we define the following metric to evaluate the inter-
est similarity between two nodes:

A% = FUTWEY = Zf,.“f,.%. (1)

! The real size of the data structure maintaining V* is much smaller than
the network size n, and can be fixed to only record the nodes accessed
most frequently by u.
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Take Figure 4 (middle) as an example:

A% = F*TWFY
2NT/02 0 000 0\ /0
8 0 00000 0|5
0 0 ds 00 0
0 0 0 -0 0
: 0 0 00- 0 :
0 0 0 0 00 .005 \5
= 0.004.

Similarly, the interest similarity in Figure 4(c) (right) is
0.002, which means nodes in the middle example show more
interest similarity.

If we view f;" and f;” as the probabilities of nodes u and v
visiting node i, and 1/d; as the probability of u and v visiting
a common data items if both of them visit i, then the sum-
mation A™” can be used to predict the probability that both
u and v will visit a common data item in their future queries.

Note that if a node i has not been visited by both u and v,
then f* = 0 and/or f” = 0, indicating that a node does not
need to maintain any information of the nodes it has never
visited. As we have discussed, the size of the vector V* is fixed.
Hence, both the storage for access history and the computa-
tion overhead for A*" are constant.

Our definition is advantageous in manyfold. First, nodes
u and v need not maintain any global information to com-
pute A*”. Second, the frequency vector cancels out the effect
of the number of queries that a node has issued, enabling
a clustering algorithm based on this definition to converge
fast with the average number of queries. Third, the defini-
tion prefers the nodes with good properties. For instance, if
two nodes i, j maintaining the same data items can be ac-
cessed by 1 Mp/s and 56 Kbp/s, respectively, i obviously will
be accessed more often, resulting in a larger value of f* and
f". Fourth, it reduces the impact of the possible discrepancy
in the category definitions by nodes. For instance, if a cate-
gory in node i is poorly defined, and consists of data items
belonging to various interest groups, then the category will
be seldom accessed comparing to its size, resulting in a small

value of f* f"(1/d;).

4.2. Clustering nodes with similar interests

Given the metric to evaluate the interest similarity between
two nodes, we propose a light-weight clustering algorithm to
connect nodes sharing similar interests.

In our strategy, each node i maintains a list L with limited
size, for example, 30, to record the nodes that possibly share
same interests with itself. Each time a query message is pro-
cessed, the similarity between the querying node itself and
the node that owns the data items is computed. The over-
head of similarity computation is fixed given that the size of
the list L is predefined. The newly obtained interest similar-
ity, and the corresponding node’s address are inserted into
the list L. If the list is full, the stored neighbor with the lowest
interest similarity is dropped.

By assuming that interests of nodes will not shift in a lim-
ited time frame, the nodes collected in L possibly fall into the

same interest group as i, and will serve as candidates of its
intracluster neighbors.

4.3. Bounding clusters

Although a small-world topology can be formed along
with queries by the above clustering algorithm, existing
query schemes, for example, random walks, can only bene-
fit marginally from it as we discussed in Section 3.

To exploit the characteristics of the small-world topol-
ogy, our approach is to explicitly capture the clusters in the
underlying topology by each node i maintaining a set of in-
tercluster neighbors in other interest groups, and intracluster
neighbors in its own interest group.

For intercluster neighbors, a node i can learn them easily.
For example, i can issue a certain number of random-walk
messages only traveling on other nodes’ intercluster neigh-
bors, and choose the nodes hit by the messages as its inter-
cluster neighbors. Note that the list L collects candidates of
its intracluster neighbors and should not overlap with the set
of intercluster neighbors.

Thus, it is of the most importance to learn the intraclus-
ter neighbors, which can be selected from the nodes collected
in the list L. The purpose of intracluster neighbors is to con-
fine intracluster queries within a specific interest group. Two
nodes falsely regarded as intracluster neighbors may create a
dramatic impact because an intracluster query may traverse
to another cluster with different interests. On the contrast,
two nodes i and k that are falsely regarded as intercluster
neighbors will only have limited impact, because i and k may
be connected by other intermediate intracluster neighbors j.
In addition, the chance of i and k falling into the same cluster
tends to become larger along with query procedures if they
are in the same interest group.

Based on this observation, we propose a labeling algo-
rithm, which ensures that if a link (4, j) is labeled as an intra-
cluster edge, then i and j are in the same interest group with
high probability.

For a node i, we normalize the interest similarity of its
neighbors j in L as follows, where k is the neighbor of i:

AP

pij = S, Ak’ (3)

If a matrix P is organized such that its i, jth element is
pij» then the rows in P sum to 1 as the matrix P is row
stochastic. Intuitively, p;; can be viewed as the transition
probabilities for the Markov random walk.

The transition probability p; ; can serve as a good metric
to determine whether i and j are in the same interest group
or not by introducing a threshold, denoted as T, as a lower
bound. T can be set as a relatively larger value, because the
false negative has limited impact as discussed. Suppose there
are « neighbors in L that are possibly in the same interest
group with i. T can be set as 1/a. Note that p;; and T are
computed by node ilocally. Thus, the labeling algorithm does
not involve any extra communication.
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5. A HYBRID QUERY SCHEME

5.1. Mixing intercluster queries and
intracluster queries

By explicitly capturing the cluster structures in the underly-
ing network, we can formally define the following three types
of query messages.

The first one is called I-query message, which is a spe-
cial type of intercluster message only traveling on intercluster
neighbors. The purpose of it is to quickly locate the clusters
that may share similar interests with the source node and dis-
perse intra-queries among different clusters. Messages in this
type are issued by the source node, and walk among differ-
ent clusters randomly. Moreover, if the queried data is in the
source node’s interest group, [-query messages should piggy-
back the source node’s frequency vector, such that nodes hit
by the messages can determine whether their clusters share
similar interests with the source node.

The second one is called s-query message, which is a spe-
cial type of intracluster message confining itself within a spe-
cific cluster by doing uniform random walks only on intra-
cluster neighbors. s-query messages are only spawned/issued
in the clusters that share similar interests with the source
node. The purpose of it is to exhaustively search nodes that
fall into the same interest group as the original node. Mes-
sages in this type are spawned by I-query messages when clus-
ters sharing similar interests are hit.

Now the problem is how a node estimates to what extent
the cluster has been covered. If the cluster has been well cov-
ered, the s-query message should be discarded in order to re-
duce the query overhead. Accurately estimating the covering
time of a cluster is difficult and resource-consuming in a dis-
tributed system. Heuristically, if the message has been con-
secutively hitting a certain number, denoted as h, of nodes
that have been visited before, it indicates that most of nodes
have been covered, and hence, the message should be dis-
carded. This information can be maintained by a counter in
each s-query message.

The last one is called b-query message, which is also a
special type of intracluster message similar to s-query mes-
sage. But b-query messages may be spawned in clusters that
have different interests. The purpose of it is to support blind
search, because occasionally, the queried data may be out of
the source node’s interest group. The chance that the queried
data item in a cluster has different interests is very small.
Thus, once a b-query message hits a node that has been vis-
ited by intracluster messages before, the message is discarded
in order to reduce the query overhead.

To control the communication overhead, the total num-
ber of concurrent query messages has to be limited. The
source node needs to count the number of I-query, s-query,
and b-query messages, denoted as my, m;, and my, respec-
tively. The overhead to maintain the counter is negligible
given that the counter needs to be updated only if s-query
message or b-query message is spawned or discarded. Only
if the summation of my, ms, and my is smaller than a cer-
tain number, denoted as m, a new b-query message can be
spawned to support blind search. s-query messages can be

spawned without restriction, and thus, the total number of
concurrent messages may be larger than m temporarily. In
addition, all messages need to periodically check the status
of the source node so that they can stop if the query has been
successfully returned.

With these three types of messages, a query scheme is de-
signed as follows.

Initialization

To initiate a query request, a node u issues a number m; of
I-query messages. If the queried data item falls in «’s inter-
est group, [-query messages carry the source’s frequency vec-
tor, and a certain number m; of s-query messages are issued
to exhaustively search its own cluster. Otherwise, a b-query
message is issued in the meantime.

Receiving an l-query message

In the case of a node u receiving an /-query message, it calcu-
lates the interest similarity with the source node. If u shares
similar interests, for example, the similarity is larger than a
small value, it spawns a new s-query message and update
maintained by the source node. Otherwise, a new b-query
message is spawned if the node has not been hit by s-query
messages and b-query messages, and m; + m; + my < m. Fi-
nally, node u forwards the received message to a randomly
selected intercluster neighbor.

Receiving an s-query message

In the case of a node u receiving an s-query message, if u
has been hit by s-query messages or b-query messages, it in-
creases the counter in the message by 1. Otherwise, it resets
the counter to 0. Next, if the counter is larger than the thresh-
old h, the node discards the message and notifies the source
node to update the counter m;,. Otherwise, it forwards the
message to a randomly selected intracluster neighbor.

Receiving a b-query message

In the case of a node u receiving a b-query message, if it has
been hit by messages in s-query messages and b-query mes-
sages, the node discards the message and notifies the source
node to update the counter m;. Otherwise, it forwards the
message to a randomly selected intracluster neighbor.

Our scheme can be considered to be stateful, in which if
the same queries are reissued multiple times, less intracluster
queries will be spawned in the clusters that have been well
searched, and in contrast, more intracluster queries will be
spawned in the less-searched clusters, resulting in stronger
ability to discover more resources/replicas.

5.2. Reducing the communication overhead

By mixing intercluster and intracluster queries, it can be ex-
pected that the system performance can be improved signifi-
cantly. Because the access vector V* of a node u can be fixed
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FIGURE 5: The effect of the average number of queries on the cluster
size.

to a small size, the extra overhead will not increase largely
(only I-query messages need to carry the frequency vector).

Moreover, [-query messages only travel among different
clusters, and the number of clusters, especially in a well-
clustered network, is much smaller comparing to the real
network size. It can be expected that most of clusters can
be covered by I-query messages within a small number of
hops. Thus, I-query messages can remove the frequency vec-
tor from the payloads after a certain number of hops. In the
meantime, a source node can specify one [-query message
to keep the frequency vector for the case that some clusters
sharing similar interests with the source node have not been
discovered after the specified number of hops.

6. SIMULATION

In this section, the performance of the proposed clustering
algorithm and query scheme is studied by simulations. If not
explicitly defined, the default number of nodes is 10 000, and
each node maintains 1000 data items, which are randomly
generated. The number of nodes in each interest group is
150, the average number of queries issued by each node is 30,
and the threshold 4 is equal to 10. We set m to be 32, and m
to be 16. Moreover, the probability of a node incorrectly clas-
sifying its queries or data items is 0.1. We also simulate other
scenarios, in which nodes classify its queries or data items
with various probabilities. The simulation results are similar,
except that it takes a few more queries for the converge of the
clustering algorithm.

We compare our scheme to random walks, in which
a source node issues 32 random walk messages in each
query, correspondingly. We also have compared our scheme
to flooding schemes. As expected, we observe the flooding
schemes suffer from very large communication overhead.

In Figures 7-10, the legend “Uniform random walks
(0)”/“Uniform random walks (1)” denotes that the queried
data items are out of/in the source node’s interest group in
the uniform random walks query scheme, and similarly “In-

Group size
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FiGure 6: The interest association is a good metric to estimate in-
terest similarity.
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ter/intra (0)”/“Inter/intra (1)” denotes that the queries are
out of/in the source node’s interest group in the proposed
scheme.

First, we study the effectiveness of the metric measuring
interest similarity and the clustering algorithm. In Figure 5,
it is observed that when the average query number is larger
than 10, the algorithm reaches a stable state and almost all
nodes in the same interest group form a single cluster. It indi-
cates that our algorithm converges fast with the average num-
ber of queries, which is especially useful in P2P networks,
where nodes tend to join/leave the system more frequently.

By Figure 6, it can be observed that the average number
of nodes in a cluster is almost the same as group size, demon-
strating that A*" can effectively measure the nodes’ interest
similarity.
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FIGURE 8: The percentage of returned query within a specific mes-
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Second, we study the performance of our scheme with
respect to query latency and communication overhead.

In Figure 7, it is observed that if the queried data items
fall into the original node’s interest group, the number of
hops needed for the majority of the queries is significantly
reduced to about 20, while in the uniform random walks, it
takes a much longer time. Correspondingly, the number of
messages is also much smaller in our scheme than that in
random walks, as shown in Figure 8. The figures also show
that if the queried data are out of the source node’s interest
group, the performance of our scheme is similar to uniform
random walks. Note that a longer response time is accept-
able since only a few queries will be out of source node’s in-
terest group in many P2P networks. In addition, these two
figures also demonstrate that random walks for queries in
the source node’s interest group can only benefit marginally
from the underlying clustered topology, for example, only a
little larger percentage of them can be returned than those
out of source node’s interest group within the same number
of hops (messages).

We also have studied the performance of a network, in
which each group consists of multiple different clusters, as
shown in Figures 9 and 10. The results show the similar
trends, which keeps true with respect to all other metrics
that will be studied later. Moreover, comparing Figure 7 with
Figure 9, and Figure 8 with Figure 10, it can be observed that
the performance of random walks in two different (well-
clustered and poor-clustered) networks is similar, which fur-
ther verifies our argument in Section 3.

As have been observed, when the queried data items are
in the source nodes’ interest group, our scheme works much
better than random walks. The reason behind it is that our
scheme can discover more distinct nodes in the source nodes’
interest groups within the same number of messages or hops,
as shown in Figures 11 and 12. In these figures, it can be ob-
served that within the first 1 000 messages or 30 hops, more
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FIGURE 9: The percentage of returned query within a specific hop
number in a less-clustered network.
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Fi1GURE 10: The percentage of returned query within a specific mes-
sage number in a less-clustered network.

than 120 nodes in the source node’s interest group have been
searched by query messages. Consequently, the majority of
queried data falling into the node’s interest group can be
found with smaller overhead and shorter latency. It also in-
dicates that our scheme has a strong ability to locate more
replicas since it can discover a much larger number of nodes
sharing similar interests.

Occasionally, the queried data item may be maintained
by nodes in other interest groups, or classified into wrong in-
terest group by source node. In the former case, I-queries will
not carry any interest information, but in the latter case, I-
queries will carry wrong interest information. In both cases,
the efficiency of our query scheme can be evaluated by the
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FiGure 11: The number of distinct nodes discovered in the same
group within a certain message range.
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FiGure 12: The number of distinct nodes discovered in the same
group within a specific hop number.

number of distinct nodes discovered by queries, including
those out of the source node’s interest group, within a certain
number of messages and hops. Note that whether the queries
are in or out of the original node’s interest group makes no
difference to random works. Figures 13 and 14 show that in
the first 1000 messages, if the queries carry interest infor-
mation, fewer distinct nodes can be searched in our scheme.
The reason is that s-query messages mistakenly exhaustively
search the nodes in the clusters that share “similar” inter-
ests in the beginning, which has been demonstrated by our
previous simulations. Consequently, the number of b-query
messages is limited. Along with the increment of the num-
ber of messages/hops, our scheme works similar to the uni-
form random walks. It is because after most of nodes sharing
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- +- Uniform random walks
-x- Inter/intra (1)
-.%-- Inter/intra (0)

FiGure 13: The percentage of messages discovering distinct nodes
within a certain message range.
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F1GURE 14: The total number of distinct nodes discovered within a
specific hop number.

similar interests are covered, more b-query messages will be
spawned to search clusters with different interests, which are
able to discover more distinct nodes. In addition, by the fig-
ures, if the queries carry no interest information, our scheme
works similar to uniform random walks.

7. CONCLUSION

In this paper, we strictly define the metric to measure the in-
terest similarity between nodes. A distributed clustering algo-
rithm has been also presented, which gives P2P networks bet-
ter resilience to network dynamics. We propose an algorithm
to explicitly capture clusters in the underlying networks
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without any extra communications. A query scheme mix-
ing intercluster and intracluster queries has been designed
for unstructured P2P networks. It can achieve a better trade-
off among communication overhead, response time, and the
ability to locate more resources (replicas). The performance
of the algorithms has been demonstrated by simulations.
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