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Abstract--State-of-the-art cache compression methods 
compress multiple neighboring blocks often called as a sector 
into a single 64-byte block to effectively enlarge the cache 
capacity. A compressed block is created by storing 4-byte data 
patterns as dictionary entries and pointers to them for 
compressing multiple blocks. Furthermore, sector-based tag 
array maintains one-to-one mapping between tag and data 
arrays in order to preserve conventional cache access 
mechanism. We present a dual-block compression method 
which uses an entire uncompressed block as dictionary and 
compresses multiple neighboring blocks in a separate 
companion block to provide a larger dictionary for better 
compression ratios. Furthermore, we introduce the concept of 
buddy-set which expands the compressible candidate blocks 
across two adjacent cache sets to enlarge the scope of 
compression. Performance evaluations for the last-level cache 
show that the proposed dual-block compression with 
expansion of compressible candidates in the buddy-set can 
enlarge the cache by an average of 60% while current state-of-
art compression proposal has only 29% improvement. The 
proposed scheme demonstrates 8.9% speedup over caches 
without compression.  

 
Keywords — Cache compression, Shared dictionary 

compression, Data locality, Sector cache. 

 

I. INTRODUCTION 

New applications and emerging technologies are driving 
the advancement of microarchitecture innovations and 
designs. Emerging big data, cloud computing, and deep 
learning applications demand bigger storage and present 
profound challenges to future processors. Caches continue 
playing a critical role in hiding memory latency and 
alleviating constraints due to memory bandwidth in modern 
multicore processors. In this paper, we introduce a new 
cache compression method which can effectively enlarge 
the last-level cache capacity without changing conventional 
cache design and its access mechanism. 

It is well-known that memory references exhibit 
temporal and spatial address locality. After a data element 
is referenced, the data item (temporal) and its nearby data 
(spatial) tend to be referenced in the near future.  In addition, 
memory references also exhibit data locality. A repeated 
instruction has a good chance to produce data with constant 
or regular (stride) values in nearby memory locations [1]. 
Existing dictionary-based cache compression solutions 
[2][3] capture the repeated data patterns in a dictionary and 
compress a cache block by using pointers to link to these 
data patterns.   

The traditional approach of compressing multiple 
neighboring data blocks into a single block with 
conventional block size (e.g. 64 bytes) maintains the 
mapping between cache tags and data arrays and helps 
preserving conventional cache access mechanism. A recent 
cache compression proposal, dictionary-sharing (DISH) [2], 
compresses up to four neighboring blocks in a sector and 
compacts them into a single 64-byte block with shared 
dictionary of frequent data patterns. However, we discover 
that confining the compressed blocks and compacting them 
at 64-byte granularity limits the number of frequent data 
patterns and lowers the compression ratio. We also realize 
that data locality exists across neighboring blocks such that 
the content of one block varies slightly to the content of its 
neighboring blocks. By using the entire content of a block 
as dictionary, more repeated data patterns can be recorded 
for improving the compression ratio. We refer this approach 
as dual-block compression. 

We further learn that the compression ratio suffers when 
the number of compressible candidates is limited. In DISH, 
for example, only four neighboring blocks are considered as 
the candidates for compression. In this paper, we introduce 
a new concept of buddy cache sets which are a pair of 
adjacent cache sets where blocks of adjacent 4-block sectors 
are allocated. By expanding the compression candidates 
from 4 sector blocks to 8 blocks across the buddy sets, the 
compression ratio can further be improved.  

Performance studies show that dual-block compression 
using an entire block as dictionary can achieve 1.43 average 
compression ratio which effectively enlarges the cache size 
by 43%. By expanding the compressible blocks in the buddy 
set, the compression ratio reaches to 1.60, a 60% cache 
enlargement. In comparison with the state-of-the-art DISH 
compression method, the proposed schemes improve the 
compression ratios by 11% and 24% respectively. We also 
evaluate the speedups and results show that about 5.6% and 
8.9% average speedups can be achieved comparing with 
caches without compression. 

This paper makes three key contributions. First, to the 
best of our knowledge, this is the first work to explore block 
content locality among neighboring blocks and to use an 
uncompressed block as the dictionary for cache 
compression. Second, we recognize the importance to 
enlarge the scope of finding compressible blocks and 
compact them into a single 64-byte block. We introduce the 
buddy sets concept and include blocks from adjacent cache 
set as the candidates for compression. Third, performance 
evaluation shows significant improvement of the 
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compression ratio of our approach over the state-of-the-art 
DISH compression method. Although our studies focus on 
fundamental locality behavior on data content, it is 
applicable to many-core parallel systems since the target of 
compression is for the shared last-level cache. 

The paper is organized as follows. We first present the 
motivation and show content similarity among neighboring 
cache blocks in section 2. Section 3 describes the proposed 
dual-block compression and compaction schemes. We also 
demonstrate a compression example using real block 
contents extracted from soplex. Section 4 provides the 
performance evaluation methodology. Performance results 
are given in Section 5. This is followed by the related work 
in Section 6 and conclusion in Section 7.  

II. MOTIVATION USING BLOCK CONTENT 
SIMILARITY 

Cache compression has been researched in recent years 
[2][4][5][6][7][8][9][10][11]. Besides a high compression 
ratio, modern approaches can access a compressed cache the 
same way as accessing an uncompressed cache with the 
following three key features:  
 To maintain one-to-one mapping of cache tag and data, 

each tag in the tag array is associated with a 
corresponding 64-byte data block in the data array, either 
compressed or uncompressed. 

 To save tag space and exploit content-similarity of 
neighboring blocks, sector-cache design [12][13] has 
been adopted. Four blocks in a sector are allocated in the 
same cache set as the target for compression. 

 To adopt frequent pattern based compression, each 
compressed 64-byte block consists of several 4-byte data 
patterns (as the dictionary) and uses remaining space to 
record up to four pointer groups corresponding to each 
compressed original block, where pointers in each group 
link to the dictionary entries.  

One recent approach, DISH [2], demonstrates the above 
features and achieves decent compression ratios. DISH 
records up to eight 4-byte data in the dictionary and uses the 
remaining space to record pointer groups for up to four 64-
byte blocks. Each compressed block requires sixteen 3-bit 
pointers where each pointer refers to a   4-byte data entry in 
the dictionary. Sector-based tag array records the sector tags 
with individual block IDs to determine cache hit/miss. Each 
sector has 4 consecutive 64-byte blocks allocated in the 
same cache set. 

Based on cache block contents from SPECCPU 2006 
benchmarks [14], we observe two fundamental 
shortcomings in the DISH compression approach as 
described below. We also present innovative solutions to 
overcome such shortcomings. 
 First, we observe that many benchmark programs 

contain a large number of common data patterns 
(referred as keys) in the dictionary, the combined size of 

which may be beyond 64-byte capacity for compressing 
blocks in a sector. We also observe that these workloads 
reveal high inter-block content similarity such that the 
contents of neighboring blocks differ only by a small 
number of keys.  
In Table 1, we pick four snapshot examples from 
libquantum, mcf, perlbench, and soplex to demonstrate 
the existence of such inter-block content similarity 
among four sector blocks. For example, in soplex, the 
four sector blocks consist of 10, 9, 10, and 10 4-byte keys 
respectively and cannot be compressed. However, if we 
select the first block (bf80) as the base, the other three 
blocks have only 2, 3, and 3 different keys (marked in 
bold). Such behavior motivates us to pick one 
uncompressed block as the master block and compress 
other content-similar blocks in a separate companion 
block. The companion block records a few different keys 
and pointer groups to link to 16 4-byte data in the master 
block as well as the keys in the companion block. We 
call this approach as a dual-block compression, 
expanding the keys in two blocks. 

 Second, we observe that spatial locality among blocks in 
a sector is weak in some benchmark programs. As a 
result, not all blocks in a sector are present in cache 
during the life time of a sector, limiting the blocks that 
can be compressed. It is challenging to increase the 
sector size and allocate all sector blocks in the same 
cache set since it can cause thrashing among sectors and 
degrade cache performance. We present a novel idea 
which uses a pair of adjacent cache sets as buddy sets. 
The least-significant index bits of the buddy sets are 
complement of each other. In the dual-block 
compression described previously, the master block and 
its companion block can come from two adjacent 4-
block sectors located in a pair of buddy sets. Furthermore, 
each master block can serve more than one companion 
block located in the buddy sets. Compressing blocks 
across two adjacent sectors doubles the neighboring 
compression candidates without altering cache 
placement of sector blocks. 
We explore block content similarity behavior by 

measuring the number of 4-byte shared keys required to 
cover the contents of blocks in a sector. This experiment is 
performed using the GEM5 whole system simulation tool 
[15] running SPECCPU 2006 benchmarks. Detailed 
description of the simulation environment will be given in 
Section 4.  For a high compression ratio, the number distinct 
keys must be limited. In DISH, for example, when the 
number of keys is beyond 8, it cannot compress the cached 
blocks in a sector into a single 64-byte block. 

In Figure 1, we separate the sectors into 4 groups based 
on the average number of keys: 1-8, 9-16, 17-24, and 25-64 
measured during the life time of a sector. We can observe 
that although the percentages of 1-8 keys are low in several 
benchmarks, the percentages of 9-16 and 17-24 keys are 
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high in these benchmarks. Therefore, the compression ratio 
can be improved by increasing the number of sharing keys. 
These results provide justification to use the dual-block 
compression to supply more keys. 

In the second experiment, we measure the average 
number of cached blocks in a sector. As observed in Figure 
2, astar, gobmk, gcc, GemsFDTD, omnetpp, perlbench 
show poor spatial locality with an average of 1.6 – 2.8 
blocks presented in cache during the life time of a 4-block 
sector, which limits the candidate blocks for compression. 
In this paper, we expand candidate blocks in adjacent sectors 
located in a pair of buddy sets to take advantage of the 
proposed dual-block compression.  

III. NEW DUAL-BLOCK COMPRESSION 

To simplify our presentation without loss of generality, 
we introduce our proposal on an 8MB, 16-way sector-based 
LLC with 64-byte blocks. A conventional sector cache 
design is used with 4 blocks per sector [12]. The physical 
address has 48 bits. The addressing scheme and the tag array 

layout are given in Figure 3. Each tag entry consists of a 3-
bit function code (FC), a 29-bit sector tag, 4 valid bits for 
presence of sector blocks, and 4 coherence states (CS) for 
the 4 blocks. The tag entry for a companion block records 
individual block ID and the coherence state for three 
compressed blocks. The definition of the FC and the content 
of a companion block will be given later. 

3.1. Dual-Block Compression 
Dual-block compression is attempted when multiple 

blocks in the same sector are not compressible into a single 
block. When there are three uncompressed sector blocks, 
dual-block compression is tested to select a master block and 
two other blocks which are compressible in a separate 
companion block using shared keys in both blocks. Since 
the master block is in an uncompressed form, we select the 
one which contains the most keys. With 4-block sectors, a 
3-block companion can achieve a compression ratio of 2. 
With a 2-block companion, the ratio is 1.5. 

TABLE 1. EXAMPLES OF 4-BYTE HEX CONTENTS IN 4-BLOCK SECTORS FROM 4 WORKLOADS (libquantum, mcf, perlbench and soplex). 

4-byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
libquantum 

(92214) 3a3504e8 0 01004008 001b2278  3a3504e8 0 01000000 001b2280 3a3504e8 0 01004008 001b2288 3a3504e8 0 01000000 001b2290 

(92215) 3a3504e8 0 01004008 001b2298  3a3504e8 0 01000000 001b22a0 3a3504e8 0 01004008 001b22a8 3a3504e8 0 01000000 001b22b0 

(92216) 3a3504e8 0 01004008 001b22b8  3a3504e8 0 01000000 001b22c0 3a3504e8 0 01004008 001b22c8 3a3504e8 0 01000000 001b22d0 

(92217) 3a3504e8 0 01004008 001b22d8  3a3504e8 0 01000000 001b22e0 3a3504e8 0 01004008 001b22e8 3a3504e8 0 01000000 001b22f0 

mcf 
(8d397c) 0 0 1e 0  1e 0 003ac708 0 00155a70 0    1   0 23313410 0 2342fed0    0 

(8d397d) 0 0 1e 0  1e 0 003ac638 0 00155a70 0 1   0 233c3a10 0 2342ff10    0 

(8d397e) 0 0 1e 0  1e 0 003ac3c8 0 00155a70 0 1   0 233ddbd0 0 2342ff50    0 

(8d397f) 0 0 1e 0  1e 0 003ac228 0 00155a70 0 1   0 233ee450 0 2342ff90    0 

perlbench 
(60604) 0 0 450ba8b6 0  2030fbe8 1  6 0 0 0 aefcbc10  0 20f182e8 1 c    0 

(60605) 0 0 ef94b794 0  20416008 1  4 0 0 0 450ba8b6  0 2030fbe8 1 6    0 

(60606) 0 0 aefcbc10 0  20c49c78 1  12 0 0 0 21534396  0 20416008 1 4    0 

(60607) 0 0 450ba8b6 0  2030fbe8 1  6 0 0 0 aefcbc10  0 210a2fa8 1 12    0 

soplex 
(bf80)  0 bff00000  00001bb5  00000b00   0  40000000  2 0 0 3ff00000   0000375e  00000700  0 bff00000 0000372c   00000b00 

(bf81)  0 40000000  2  0   0  3ff00000  000052d5    00000700 0 bff00000   000052a3  00000b00  0 40000000 2   0 

(bf82)  0 3ff00000  00006e4c  00000700   0  bff00000  00006e1a 00000b00 0 40000000   2  0  0 3ff00000 000089c3   00000700 

(bf83)  0 bff00000  00008991  00000b00   0  40000000  2 0 0 3ff00000   0000a53a  00000700  0 bff00000 0000a508   00000b00 

 
Figure 1. Distribution of sectors on number of keys 

 
Figure 2. Average cached blocks in a 4-block sector 
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Offset(6)Bk-id(2)Index(11)Tag(29)

  (a)  48-bit address  (Sector-indexing with 4-block sector):

Sec tag(29) FC(3) Bk-valid(4) CS(8)

Sec tag(29) FC(3) B0(2) C0(2)B1(2) B2(2) C1(2) C2(2)

(b) Tag – Sector cache

(c) Tag – Companion block

8 4-byte Keys Pointer 0 Pointer 1 Pointer2

8 x (32 + 1)= 33B 3 x (16 x 5+1) = 30 3/8B

(d) Data – Companion block

Figure 3. (a) 48-bit address; (b) tag for 4-block sector cache;
                       (c) tag for companion block; (d) data for companion block 

The detailed bit layout of a companion block is given in 
Figure 3(d), in which we can record 8 different keys and use 
them as extra dictionary for the companion block. Up to 3 
pointer groups are used to compress 3 blocks, which is 
sufficient to cover the remaining 3 blocks in a sector. Since 
there are a total of 24 keys (16 in the master block and 8 in 
the companion block), 16 pointers of 5 bits each are needed 
for each pointer group to record a compressed block. The 
total companion block size is 63 and 3/8 bytes. Note that for 
the companion block, as shown in Figure 3(c), three block 
IDs and their coherence states are encoded in the tag array, 
thus free from recording as a part of the pointer groups in 
the companion block. When a master block is replaced from 
the cache, its companion block must also be invalidated. 
Therefore, when a companion block is referenced, both the 
master and the companion are promoted to the MRU 
positions. 

3.2. Buddy Sets 
Buddy sets are two adjacent cache sets, whose indices 

are identical except for the least-significant bit being 1 and 
0 respectively. For simplicity, consider a 4-block sector 
cache with only 6 index bits in 10-bit block address in Figure 
3(a). Two block addresses, aa-000000-xx and aa-000001-yy, 
represent block xx of sector aa in set 000000 and block yy 
of sector aa in set 000001 respectively. These two sets, 
indexed by 000000 and 000001, are formed the buddy sets. 
Sectors aa in both sets are two consecutive 4-block sectors 
located in the pair of buddy sets, henceforth referred as 
buddy sectors. Note that the buddy sectors have identical 
tags located in the buddy sets. 

To enlarge the compressible blocks beyond blocks in a 
4-block sector, we can double the candidates from both 
buddy sectors. When a missed block is uncompressible in 
the original cache set, a search in the buddy set is carried out 
if another uncompressible sector block already exists in the 
original set. All blocks in the buddy sectors are tested for 
dual-block compression. If successful, the block with the 
most keys among all blocks in the buddy sectors is selected 
as master block. The remaining blocks are compressed into 
a companion block. The master block can be in one set, 

while two or more blocks from the buddy sectors can be in 
a companion block placed in the other set.  

Each master can serve one or more companions. When 
searching for dual-block compression, an existing master 
may be found for serving the new companion. Therefore, 
ideally, a master block can serve two 3-block companions, 
one in each set to achieve a compression ratio of 7/3=2.33. 
A master block can also serve one 3-block companion in the 
same set and two other 2-block companions in the buddy set 
to achieve the compression ratio of 8/4=2.  

3.3. Putting It All Together 
With different compression options, a 3-bit function 

code (FC) is associated with each tag in the sector tag array. 
The definition of FC is given in Table 2 where five FCs are 
defined for master and companion block identification as 
well as the locations of their counterparts.  

TABLE 2. FUNCTION CODE DEFINITION 

Function Code (FC) Description 
000 Uncompressed 
001 64-byte compression 
010 Master, companion in same set 
011 Master, companion in buddy set 
100 Master, companions in both sets 
101 Companion, master in same set 
110 Companion, master in buddy set 

 
During cache access, in case of a tag match, the 

corresponding data block is fetched from the data array. For 
an uncompressed block with FC = 000, 010, 011, or 100, the 
data block is accessed normally. For single compressed 
block with FC = 001, the data block is fetched and 
decompressed using the correct pointer group and the keys 
in the dictionary. In case that the hit is to a companion block, 
the master block must be fetched. The master block has the 
same tag as the companion block and located either in the 
same set, FC=101, or in the buddy set, FC=110. The data 
block is then decompressed using the keys in both blocks 
and the correct pointers in the companion block. 

In summary, when a cache miss occurs, a new block is 
moved into cache. The first attempt is to compress it with an 
existing compressed block either a single compressed block 
or a companion block. If unsuccessful, DISH-like search to 
find compressible blocks in another sector and tries to 
compress them into a single 64-byte block. In case that this 
still fails, dual-block compression is tested, first in the same 
set, and then in the buddy set. The missed block is allocated 
into cache as an uncompressed block to replace the LRU 
block if none of the above attempts is successful.  

Upon receiving a data writeback that updates a 
compressed block, the compressed block could become 
uncompressible. When it happens, we need to invalidate the 
single compressed block or the companion block and 
allocate new cache frames in the set for holding the 
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decompressed blocks. If the writeback is performed at a 
master block, we need check if the companion block can still 
be compressed with the updated master using the same 
compression process. Note that decompression and re-
compaction in response to cache writebacks is a necessary 
step for cache compression methods. Fortunately, a dirty 
block writeback is not on the performance critical path.  

3.4. Example 
In this section, we use a snapshot of four block contents 

in a sector taken from soplex to illustrate how dual-block 
compression works. As shown in Table 1, four blocks in a 
sector with block addresses: bf80, bf81, bf82, and bf83 have 
10, 9, 10, and 10 distinct keys. No pair of blocks can be 
compressed into a 64-byte block using the DISH 
compression scheme. However, if we select the first block 
bf80 which has the highest number of keys as the master 
block, the other three blocks can be compressed in a 
companion block since only 2, 3, and 3 additional keys are 
required for these three blocks. Figure 5 shows the content 
of the uncompressed master block and the compressed 
companion block. Each pointer group has 16 5-bit pointers 
to link either to the 16 4-byte dictionary in the master block, 
or to the 8 4-byte dictionary in the companion block. We use 
the most significant bit to differentiate the keys in the master 
(‘0’) or in the companion (‘1’). 

We further examine the buddy sector content in this 
example to illustrate the benefit of expanding compression 
candidates in the buddy set. As shown in Table 3, four 
blocks, bf84, bf85, bf86, and bf87, in the buddy sector have 
9, 10, 10, and 9 distinct keys. Again, no pair of the blocks 
can be compressed into a single 64-byte block. When any 
two blocks arrive in cache, a search in the buddy set may 
find the existing master block bf80. This master block can 
serve both the companion block containing bf81, bf82, and 
bf83 in the same set as well as another companion block 
consisting of any three blocks of bf84, bf85, bf86, and bf87 
in the buddy set. Given bf80 as the master, the four blocks 
in the buddy sector require additional 2, 3, 3, and 2 extra 

keys, as are marked bold in Table 3. Since the companion 
block provides three pointer groups, only three blocks can 
be compacted into the companion block with additional 7 or 
8 keys. Therefore, seven blocks can be compressed and 
compacted into three blocks, with one master and two 
companions in this real example. 

The function code in the tag directory differentiates the 
master and the companion blocks (Table 2). In the above 
example, let’s assume that the master bf80 and three sector 
blocks bf81, bf82, and bf83 arrive in cache first and satisfy 
dual-block compression. Both the master and the companion 
are in the same set with identical address tag. They differ 
only in the block ids. The master and the companion block 
are coded FC=010 and FC=101 indicating that the 
respective master and companion blocks are located in the 
same set. When the companion block in the buddy set is 
compressed successfully, the FC for the master is changed 
to 100 indicating existence of two companions located in 
both sets. In this case, the companion in the buddy set is 
coded FC=110 denoting where the master is.  

Upon a hit to a companion, proper FC provides where to 
fetch the master and to adjust master’s replacement position. 
Similarly, with proper FC, the master knows where to 
invalidate the companion when master is evicted. It is 
important to note that the master and the companions always 
have identical address tag regardless whether they are in the 
same set or in the buddy sets. There is no need for extra links 
between the master and the companions. 

3.5. Overhead Analysis 
With one-to-one tag and data mapping, only 3-bit 

function code is added and there is no other storage 
overhead for storing the compression related meta-data. We 
estimate the area and latency overhead using CACTI 6.5 
[16]. With a 32-nm technology, for a 4MB cache that 
occupies 34mm2 (both tag and data array), the area used by 
the compressor and de-compressor is less than 0.7mm2, 
which counts for only 2% extra in terms of space overhead.  

 

Master block

0x00000000 0xbff00000 0x00001bb5 0x00000b00 0x00000000 0x40000000 0x00000002 0x00000000 0x3ff000000x00000000 0x0000375e 0x000000000x00000700 0x0000372c0xbff00000 0x00000b00

Companion block

0x000052d5 0x000052a3 0x00006e4c 0x00006e1a 0x000089c3 0x00008991 0x0000a53a 0x0000a508 11111111

001100010100000 0000000000 00000 01001 10000 0000001011 00001 10001 0000001111 0011000101

111

100100100100000 0101101011 00000 00001 10011 0000001111 00101 00110 0000000000 1010001001

101010000100000 0001100011 00000 00101 00110 0000000000 01001 10110 0000001011 1011100001

Pointer 0 Pointer 1 Pointer 2

valid (v) v v v

 
Figure 5. Dual-block compression for 4-block sector in soplex 
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TABLE 3. BUDDY SECTOR CONTENT FROM soplex 

4-byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
(bf80) master  0  bff00000 00001bb5 00000b00  0   40000000  2  0 0 3ff00000 0000375e   00000700  0  bff00000  0000372c 00000b00 

(bf84)  0 40000000 2 0  0     3ff00000  0000c0b1  00000700 0 bff00000    0000c07f   00000b00  0  40000000  2   0 

(bf85)  0 3ff00000  0000dc28  00000700  0   bff00000  0000dbf6  00000b00  0 40000000   2  0 0  3ff00000   0000f79f    00000700 

(bf86)  0 bff00000  0000f76d  00000b00   0   40000000 2 0 0 3ff00000    00011316  00000700 0  bff00000   01120000   00000b00 

(bf87)  0 40000000 2 0  0   3ff00000  73 00000700 0 bff00000    3  00000b00  0  40000000  2   0 

According to CACTI, a read or write to 4MB SRAM cache 
with 32-nm technology takes 40 cycles. The main latency 
overhead is from accessing two blocks during a hit to a 
compressed companion block. If both the master and the 
companion blocks are in the same set, the normal tag array 
search can locate both the companion block and its master. 
Fetching the companion and master blocks can be overlapped 
with multiple banks in the data array. We estimate it takes 1 and 
25 cycles for decompression and compression, respectively. In 
the worst case when the master is from the buddy set, an 
immediate accessing to the master block in the buddy set is 
triggered. It takes 2 cycles in decompression as a result and the 
compression takes 27 cycles due to buddy set operations. This 
compression process is off the cache access critical path. Upon 
a L3 miss, data from DRAM is sent back to L1/L2 to satisfy 
CPU requests before compression operations. Obviously, there 
is no extra latency for uncompressed master block. 

IV. EVALUATION METHODOLOGY 

Gem5 [15], a cycle accurate system simulator, is employed 
to evaluate different compression schemes. The cache model of 
Gem5 is modified to support the compression and 
decompression with extra latency. The processor model is 
configured as a processor with a three-level cache hierarchy. 
Cache compression techniques are applied to the third and last 
level cache. The architecture parameters of the CPU and 
memory are in Table 4. 

TABLE 4. PARAMETERS OF THE SIMULATED SYSTEM 

Components Configurations 

Processor 3GHz, out-of-order, 8-issue 
L1 D/I private, 32 KB each, 4-way, 64B blocks 

L2, L3 private 256 KB, 8-way L2, and shared 4MB, 16-way, non-
inclusive L3 

MSHRS 16, 16, 32 MSHRs at L1, L2, L3 

DRAM 8GB, DDR4-2400, 64bit I/O, 8 banks, 2KB row buffer 
tCL-tRCD-tRP-tWR: 13-13-13-14 

DISH 8 4-byte keys, 4 16×3-bit pointer arrays 
Companion 8 4-byte keys, 3 16×5-bit pointer arrays 

The cache compression helps retaining more blocks in cache, 
which is more useful for applications with high MPKI and 
sensitive to the cache size. From SPECCPU 2006 [14] 
benchmark, we test and select workloads with relatively high 
MPKI, along with gobmk and perlbench for comparison 
purpose. These two applications demonstrate interesting inter-
block locality. A set of 13 benchmarks are used in our 
experiment. To locate the most representative phase of whole 
program execution, we use SimPoint [17]. We collect statistics 
for 500M instructions after a warm-up of 1B instructions from 
the checkpoints. Without the help from SimPoint, DISH 

simulated a different phase of the programs by fast forward 20 
billion instructions for each application. As a result, their 
compression performance is different from what we obtained 
using Simpoint. 

We also notice that L2 prefetcher is used in modern cache 
design. Stream-based prefetcher [18] can bring in more 
neighboring blocks and help the compression ratio. However, 
in Figure 2, for workloads such as astar and omnetpp with weak 
spatial locality, the prefetcher may fetch useless neighbors and 
inflate the compression ratio. So, we exclude the prefetcher 
from our simulation model. 

V. PERFORMANCE RESULTS 

5.1. Compression Ratio 
We first compare the compression ratio, which is defined as 

the effective cache size compared to a cache without 
compression. We calculate the compression ratio at the set level 
and take the average across all the cache sets [2]. Figure 6 
shows the compression ratios achieved by compression with 
buddy-set (Buddy-set), dual-block for home set only (Dual-
block), and DISH. The compression ratios are 1.60, 1.43, and 
1.29 respectively for the three schemes. Buddy-set and Dual-
block, show about 24%, and 11% improvement over DISH. 

The compression ratio varies quite significantly among 
workloads using three compression schemes. Astar, gcc, 
libquantum, mcf, omnetpp, perlbench, soplex have substantial 
improvement from Buddy-set and for these workloads, the 
effective cache size improvements are ranging 25-86% over 
that of DISH. At the same time, we notice that some of these 
workloads, such as astar, libquantum, mcf, omnetpp, and 
perlbench, have poor compression ratios for DISH due to lack 
of sufficient space for 9 or more keys to be recorded in a single 
block. Zeusmp and cactusADM show high compression ratios  
(>2) with DISH alone by efficiently compacting multiple 
blocks into one with only 8 keys, so there is no much room for 
improvement for our proposed scheme. 

  
Figure 6. Compression ratios for different schemes 
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Figure 7. Distribution of techniques used in compression 

For Buddy-set based algorithm, the improvement also 
comes from additional compressible blocks in the same set or 
from the buddy set, while the Dual-block scheme can benefit 
only from compressible ones within same set. Figure 7 shows 
the distribution of the compression techniques when Buddy-set 
is used. As expected, workloads with significant amount of 
dual-block compressions show higher compression ratios. 
Dual-block has little impact on workloads which is dominated 
by single 64-byte compression and/or uncompressed blocks, 
such as bzip2, cactusADM, GemsFDTD and zeusmp. 

 

 
Figure 8. Average number of blocks compacted in a block 

We collect the average number of blocks compressed into a 
single 64-block or compressed into a companion block. As 
shown in Figure 8, the average number of blocks is ranging 
from 2 to 3.9. Workloads such as astar, libquantum, mcf, and 
omnetpp display inefficient single 64-byte block compression 
with an average close to two out of four blocks. For companion 
blocks, libquantum and mcf have an average of 3 and 2.9 
respectively, which are close to the maximum 3 compressed 
blocks using Buddy-set and show higher compression ratio in 
Figure 6 too. Among all other workloads, the average 
compacted blocks range from 2.2 to 2.5 per companion block. 

5.2. Speedup  
Next, we measure speedups of execution time by effectively 

increasing the LLC size with different cache compression 

schemes. Figure 9 shows that the average speedups of 8.9%, 
5.6% and 3.6% can be achieved for Buddy-set, Dual-block, and 
DISH respectively, normalized to an uncompressed baseline 
4MB cache. Again, the speedup varies widely from different 
workloads and different compression methods. Astar and 
soplex display the highest speedup about 34-39% for Buddy-
set compression, zeusmp has about 18%, while most others 
only experience 1-9% improvement. Besides, DISH is 
especially worse since many workloads have insignificant 
improvement on compression ratios. Mcf shows negative 
improvement due to overheads from compression and 
decompression. 

 

 
Figure 9. Speedup over a 4MB LLC 

VI. RELATED WORK  

IBM MXT [19] uses real-time main memory compression 
to effectively double the main memory capacity. Another 
efficient memory compaction scheme is also reported [20] 
which handles zero value compaction as well as avoids indirect 
memory mappings. X-Match [20] is a dictionary-based 
compression algorithm. It uses content-addressable memory 
and allows partial matching with dictionary entries for variable-
size encoded data. C-Pack [4] uses a single shared dictionary of 
64 bytes for cache compression. It compresses frequently 
appearing words into few bits. It can pack multiple compressed 
blocks into a single uncompressed block frame. CPACK+Z [10] 
is a variation of C-PACK with feature that detects zero blocks. 

Prior work has proposed compression algorithms for last-
level cache (LLC) with variable block sizes [7]. Instead of 
recording frequent data patterns, Base-Delta-Immediate [21] 
uses one base value for a cache block, and replaces the other 
data values of the block in terms of their respective delta 
(differences) from the base value. It compresses a cache block 
by exploiting the data value correlation property with minimum 
decompression latency.  

Decoupled Compressed Cache (DCC) [10] proposes 
tracking compressed blocks at super-block (sector) level. DCC 
compresses each 64-byte block into zero to four 16-byte sub-
blocks and uses a decoupled tag-data mapping [13] to allow 
blocks to be stored anywhere in a cache set. Skewed 
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Compressed Cache (SCC) [5] stores neighboring compressed 
blocks in a power-of-two number of 8-byte sub-blocks in a 
compressed 64-byte block. It only allows the blocks with the 
same compressibility to be compressed into a 64-byte block. It 
uses sparse super-block tags and a skewed associative mapping 
[22] that preserves a one-to-one direct mapping between tags 
and data.  

Yet Another Compressed Cache (YACC) [6] is similar to 
SCC while eliminates skewing. It uses sector tag array and an 
unmodified data array with direct tag and data mapping. YACC 
allows the use of any replacement policy and is able to store 
neighboring blocks in one data entry if they have similar 
compressibility to fit into a single data block. The latest 
Dictionary Sharing (DISH) is similar to SCC. It can compress 
multiple sector blocks into a single 64-byte block. Each 
compressed 64-byte block records up to eight 4-byte frequent 
data patterns in the dictionary. It uses the remaining space to 
build 4 pointer groups pointing to the 4-byte data blocks in the 
dictionary.  

VII. CONCLUSION 

We propose an efficient cache compression method which 
compresses and compacts neighboring blocks into a single 64-
byte cache block. As in other compression approaches, it 
records multiple 4-byte data (keys) in a dictionary and uses 
pointers to compress multiple cache blocks in a sector. 
However, it is different from other approaches as it proposes 
scheme that can use two blocks for compaction when the 
number of distinct dictionary keys are too big to be compacted 
into a single block. This dual-block compression uses one 
uncompressed block as the master and compacts other sector 
blocks in a separate companion block. Furthermore, we propose 
the idea of buddy sets where two adjacent sectors are allocated. 
By expanding the compressible candidates across the buddy 
sets, it helps the compression ratio. The performance evaluation 
using SPECCPU 2006 workloads demonstrates the proposed 
compression method can effectively increase the cache capacity 
by 60%. 
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