
Missing-Tag Detection With Presence of Unknown

Tags

Youlin Zhang∗ Shigang Chen∗ You Zhou∗† Olufemi Odegbile∗

∗Department of Computer & Information Science & Engineering, University of Florida, Gainesville, FL 32611, USA,
†Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA, USA

Email: {youlin, sgchen}@cise.ufl.edu, {youzhou}@google.com, {oodegbile}@cise.ufl.edu

Abstract—Radio Frequency Identification (RFID) technology
has been proliferating in recent years, especially with its wide
usage in retail, warehouse and supply chain management. One of
its most popular applications is to automatically detect missing
products (attached with RFID tags) in a large storage place.
However, most existing protocols assume that the IDs of all tags
within a reader’s coverage are known, while ignoring practical
scenarios where the IDs of some tags may be unknown. The
existence of these unknown tags will introduce false positives in
those protocols, degrading their performance. Some prior art
studies this problem, but their time efficiency is low, especially
when the number of unknown tags is large. In this paper, we
propose a missing tag detection protocol based on compressed
filters, which not only reduces the filter size for better time-
efficiency but also helps dampen the interference of unknown
tags for high missing-tag detection accuracy. To further improve
the performance, we propose a new way for tags to report
their presence, greatly reducing collisions and thus improving
the detection probability. Extensive simulations demonstrate that
our compressed filter and collision-reduction method reduce the
protocol execution time by 83% to 92% under the same missing-
tag detection probability, when comparing with the best prior
work.

I. INTRODUCTION

In recent years, RFID technologies have been proliferating,

with numerous applications that have been developed includ-

ing supply chain management [5]–[7], [12], [14], [15], [17],

[20], [23], [24], [26], [27], [31], [36]–[38], object tracking

[30], [32], [33], theft prevention [13], [16], [18], [25], [29],

[34], [35] and so on [11], [22]. In an RFID system, objects

are attached with tags, each having a unique ID, which can

be identified by a reader that is connected with one or many

antennas deployed to monitor tags within a coverage area

and collect statistics. Comparing with traditional barcodes

which are read by laser scanners with line of sight in a very

short distance, RFID technologies have great advantages that

they can be read wirelessly over a longer distance without

line of sight and that they are capable of performing simple

computations.

One of the most popular applications using RFID tags is

to automatically detect missing products in a storage place.

According to [3], [28], shoplifting, employee theft and vendor

fraud have become the major causes of lost capital for retailers

like Wal-Mart. In practice, we may have someone walk around

to check and count items. This is not only laborious but

also error-prone, considering that the products may be stacked

together, goods on racks may need a ladder to access and they

may be blocked behind columns. However, if we attach each

item with an RFID tag, the whole detection process can be

automated with an RFID reader communicating with tags to

check whether any of them are missing.

In general, the missing tag detection problem can be classi-

fied into two types: deterministic detection [13], [16], [35] and

probabilistic detection [18], [25], [29], [34]. The deterministic

protocols identify exactly which tags are missing, while the

probabilistic ones report a missing tag event with a certain

detection probability. Usually a probabilistic detection protocol

runs faster with smaller overhead while a deterministic one

gives stronger results with larger overhead. In practice, these

two types of missing tag detection protocols are complemen-

tary to each other and can be used together to achieve better

results. For example, a probabilistic detection protocol can be

scheduled frequently to detect a missing tag event. Once it

detects some missing tags, a deterministic protocol can be

executed to find out exactly which tags are missing.

Most existing protocols assume that the IDs of all tags in the

coverage area are known, while ignoring practical scenarios

where the IDs of some tags may be unknown. Consider

an airport that deploys RFID technologies to monitor the

passenger baggages that belong to different airline companies,

with each passenger baggage attached with an RFID tag. Every

airline company will want to detect whether baggages of its

passengers are missing. However, in an area where baggages

of other companies are present, we will face the problem of

missing-tag detection for tags (baggages) of one airline, with

the presence of unknown tags from other airlines that are of no

interest but cause interference. In a more general warehouse

setting, many clients rent space to store their products, which

are tagged. Suppose a client deploys an RFID reader and

antennas to detect whether some of its products are missing.

Nearby tags on the products of other clients will respond to

the reader if they happen to be within the coverage area.

These tags are unknown to the client that performs missing-tag

detection.

This paper focuses on probabilistic missing tag detection

and considers a problem of practical significance: detecting

missing-tag events with presence of unknown tags. Many tradi-

tional methods such as [18], [19], [29] cannot handle unknown

tags. It is shown in [25] that the presence of unknown tags

will introduce false positives and compromise the detection

accuracy. The most related work is [25], [34], which can

978-1-5386-4281-8/18/$31.00 ©2018 IEEE



detect missing-tag events with unknown tags. The efficiency

of [25] drops greatly in the presence of a large number of

unknown tags because it does not filter out the unknown tags

in its operations. The performance of [34] is much better,

thanks to its use of Bloom filters to remove the unknown

tags, but it requires tags to implement a large number of hash

functions (which may be impractical). More importantly, its

Bloom filter design and in particular its use of Bloom filter

to communicate from tags to the reader are costly and result

in long execution time. Reducing execution time is important

for large RFID systems with numerous tags operating in low-

rate communication channels. This is particularly true in a

busy warehouse environment [5], [7], [20], [23], [24], [37],

[38], where we want to minimize disruptions caused by RFID

protocol execution to normal warehouse operations.

In this paper, we propose a new protocol that can achieve

reliable and time-efficient missing tag detection with the

presence of unknown tags. Our idea is to design a new type

of compressed filter that can work with any number of hash

functions (as low as one) available to the tags, yet with a

decreased filter size for better efficiency than the prior art.

More importantly, unknown tags are removed by the filter

without the need to decompress the filter. Tags perform lookup

directly on the compressed filter as it is received. The new

filter is suitable for resource-limited tags because it does not

use generic compression algorithms, but requires only simple

operations. To further improve the performance, we combine

sampling and multi-hashing for tags to report their presence,

greatly reducing collisions.

The main contributions of this paper are summarized as

follows: First, we provide an efficient solution to the missing-

tag detection problem under more general scenarios where

unknown tags are present.

Second, we propose a compressed filter that is suitable

for RFID systems, with low overhead and simple operations,

allowing tags to perform membership check without decom-

pressing the filter. The filter size is smaller than the optimal

Bloom filter used by the prior art.

Third, we formally analyze the performance of our protocol.

Finally, we conduct extensive simulations to complement

our theoretical analysis and evaluate the performance of our

protocol. The results demonstrate that our compressed filter

and collision-reduction method reduce the protocol execution

time by 83% to 92% under the same missing-tag detection

probability, when comparing with the best prior work.

II. SYSTEM MODEL AND PROBLEM DEFINITION

A. System Model

Consider a large RFID system, where each object is attached

with an RFID tag. Each tag has a unique ID by which we

can identify an object, and it is capable of performing certain

computations. An RFID reader is deployed in the system to

monitor the tags within its coverage and interrogates with the

tags using backscattered signal in a frame-slotted ALOHA

protocol. We also assume that the reader has access to a

backend server which stores the tag IDs of interest.

In one communication round, the reader will first initialize

the communication by broadcasting a request that includes

all necessary parameters such as a frame size and random

seeds. Each tag after receiving the request performs some

calculations and decides which slot(s) it will respond. The

request is followed by an ALOHA frame consisting of f

slots, in which tags can transmit their responses. Based on the

number of tags that respond in each slot, the time slots are

classified in two types: empty slots, where no tag responds,

and busy slots, where one or multiple tag respond. A busy

slot can be further classified into two types: a singleton slot,

where only one tag responds, and a non-singleton slot, where

multiple tags respond. The reader monitors the status of each

slot and converts the time frame into a bit array, zero for each

empty slot and one for each busy slot.

B. Problem Definition

Let E be the set of tags attached to all objects in an RFID

system and T be a subset of E, that consists of tags we want

to monitor and whose IDs are known. T ⊆ E. We denote the

cardinality of T as n and the set of E−T as U , which consists

of tags whose IDs are unknown. Note that tags in T and U

can all respond to the RFID reader in our system and there is

no difference with respect to their operations among tags in

these two sets except that the IDs of tags in T are known and

of our interest while the IDs of tags in U are unknown. In the

sequel, we will refer tags in U as unknown tags and tags in

T as known tags.

The problem of missing tag detection with presence of

unknown tags is to detect whether any tag(s) in T is missing

with the presence of tags in U . The requirement is that the

probability for detecting a missing tag event after one protocol

execution is at least α if M or more tags are missing, where

0 < α ≤ 1, M ≥ 1, which are two system parameters set by

users based on their practical need. We shall report a missing

tag event with a probability α if m ≥ M , where m is the

number of tags in T that are missing. If the number of tags

that are missing in T is smaller than M , we can still detect

a missing tag event, with a detection probability smaller than

α.

As an example, if we set α = 95% and M = 10, after an

execution of our protocol we shall be able to detect an event

of missing 10 or more tags with at least 95% probability. If

the protocol is executed w times, the detection probability will

be at least 1− (1− α)w, which will approach to 100% as w

increases. In this way, a missing tag event will eventually be

detected overtime no matter what the values of α and M are

[8], [9].

C. Performance Metrics

In this section, we describe the metrics for evaluating the

performance of a missing tag detection protocol.

1) Execution Time: As is stated previously, RFID systems

operate in low-rate communication channels. To apply such

protocols in a busy warehouse environment, it is desirable



that the execution time can be reduced as much as possible,

especially when the number of tags is very large.

2) Detection Probability: The probability of detecting a

missing tag event is another important performance metric.

The detection requirement is defined in Section II-B. In

practice, we want the detection probability α to be close to 1.

III. PROTOCOL DESIGN

Our protocol for missing tag detection with presence of

unknown tags consists of two phases: unknown tag filtration

and missing tag detection. In phase one, since the reader knows

the tag IDs in T , it can construct a filter that encodes the

membership of all tags in T and use this filter to filter out

unknown tags in U . Rather than using the original Bloom filter,

we adopt a segment design and implement an algorithm that

works on simple RFID tags to compress the Bloom filter into

a compressed filter. Through experiments, we show that our

compressed filter can achieve a lower false positive ratio than

[34] with a more compact space. In phase two, we combine

sampling and multi-hashing to reduce the tags’ collisions in

communication, which further improve the time efficiency. In

the following, we describe in detail our protocol for missing-

tags detection with presence of unknown tags.

A. Prior Work

The best prior work is BMTD [34] which uses a design

based on Bloom filters [10], a compact data structure that is

used to encode a set T = {t1, t2, ..., tn} of n elements (tags in

our context). A Bloom filter is a bitmap of f bits. Each tag is

encoded by mapping the tag ID to k bits using k independent

hash functions h1, h2, ..., hk and setting those bits to one. To

check whether a tag is a member in T , we hash it to k bits

in the filter and check whether these bits are all 1’s. There is

no false negative in a Bloom filter: A tag in T will always

pass the membership check. However, there is false positive:

A tag not in T may also pass the membership check. The false

positive ratio is given by [10]:

Pfp = (1− (1−
1

f
)kn)k ≈ (1− e−kn/f )k. (1)

Given the size n of T and the number k of hash functions,

BMTD uses the following optimal size f for its Bloom filter,

with its false positive ratio also given below.

f =
nk

ln 2
,

Pfp = (
1

2
)k.

(2)

The RFID reader will broadcast the above filter that encodes

the tags in T . Upon receipt of the filter, the unknown tags

will filter themselves out if they cannot pass the membership

check. The optimal Bloom filter may need to be broadcast

multiple times in order to achieve a desirable false positive

ratio.

The k hash functions used in each Bloom filter must be

independent, and the hash functions of different filters must

also be independent. For example, in order to achieve a

positive ratio of 0.001, there will need 10 independent hash

functions, which is a burden for simple hardware of a tag. If

a tag can only afford a fewer number k of hash functions, we

cannot use optimal filters as BMTD does, whose false positive

ratio is limited to ( 1
2
)k. We have to use non-optimal filters.

An optimal filter has 50% zeros, and therefore its false

positive ratio is ( 1
2
)k. In (1), we can reduce Pfp to an

arbitrarily small number by increasing the filter size f . By

increasing f , we increase the ratio ρ of zeros in the filter,

and the false positive ratio becomes ρk, which can be made

arbitrarily small when ρ is driven down.

The problem is that a larger filter takes more time for the

reader to broadcast, which degrades time efficiency. Fortu-

nately, if the filter contains a large number of zeros, we can

compress it to a smaller size. In fact, according to [21], the

size of the compressed filter can be smaller than the size of the

optimal filter with the same false positive ratio. However, there

arise two different problems. First, tags are resource-limited

and cannot perform generic compression and decompression

algorithms such as Huffman compression and LZ compression

[1]. Second, more importantly, tags do not have the memory

to hold the decompressed filter (with its original size) to

perform membership check. Therefore, we need to design a

compressed filter to work with limited resources. Moreover,

tags should be able to directly work with the compressed filter

for membership check without decompression. The operations

for tags should be simple.

B. Phase One: Unknown Tag Filtration by Compressed Filter

To reduce the interference of unknown tags, the reader uses

a compressed filter with a small pre-set false positive ratio p1
such that the majority of unknown tags are filtered and do not

participate in phase two. We design a compressed filter that

can work with any value of k1 (as low as one) hash functions,

achieve any specified false positive ratio p1, require simple

operations by tags, and perform membership check without

decompression.

Given the values of p1 and k1, the reader constructs a Bloom

filter whose size is determined by (1). The smaller the value

of k1 is, the larger the value of f1 will be, and the more the

number of zeros will be in the filter, which gives opportunity

for compression, allowing the reader to broadcast a smaller

filter to tags and save execution time.

For compression, the reader divides the Bloom filter into

segments of consecutive zeros that are separated by the bits

of ones. We replace each segment of consecutive zeros by the

number of zeros in the segment. For example, a segment of 20

zeros is replaced by the number 20, which compresses 20 bits

to a number l1 of bits that represents 20 in binary. Different

segments may have different numbers of zeros. The reader

finds the maximum number Lmax of zeros in all segments.

It sets l1 = ⌈log
2
(Lmax + 1)⌉. The reader converts each

segment of zeros to an l1-bit number, and converts the whole

Bloom filter into a sequence of l1-bit numbers, which form

the compressed filter. The bits of ones in the original filter are



0 0

0 0 1 0

0 0 0 0

1 0 0 0 0 1 0 0 1 0 1 0

8 bits 4 bits 10 bits

Original Bloom filter

Compressed filter

00

2 bits

1 1 1 1

(a) An example of how to compress an original Bloom filter

0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0

Tag 1

2+1=3

Compressed filter

Tag 2

8+1=9 4+1=5 10+1=11

(6,12) (3,17)(-6,0) (0,0)

(b) An example of how to use a compressed filter for membership check

Fig. 1: An illustration of how to compress an original Bloom

filter and use a compressed filter for membership check.

implied in the compressed filter, one such bit between any two

consecutive segments.

The reader broadcasts a request with parameters including

the size of the filter. It then transmits the compressed filter to

all tags. If the filter is too long, the reader may divide it into

parts and transmit each part in a time slot. For example, if we

use time slots of size for transmitting 96-bit tag IDs, each slot

can carry 96

l1
segments.

For membership check, each tag maps itself to k1 bits in

the original Bloom filter by k1 hash functions. It then checks

whether those k1 bits are all ones. However, it does not possess

the original Bloom filter, but only receives the compressed

filter from the reader. For each of the k bits, the tag loads

the hash position of the bit in the filter into a counter. As

it receives the compressed filter from the reader, for each l1-

bit number received, it subtracts the number plus one from the

counter, where the number represents a segment of consecutive

zeros and the one represents a bit 1 between two segments.

This process continues until the counter is reduced to zero or a

negative number. If the counter is reduced to zero, it means that

the bit that the tag is mapped to in the original Bloom filter is

located right between two segments of zeros; that bit must be

one. If the counter becomes negative, it means that the bit that

the tag is mapped in the original Bloom filter must be zero.

There are k1 counters for the tag. If all k1 counters are reduced

to zeros, it means that the tag has passed the membership

check and it is claimed to be a member in T . If any of

the counters becomes negative, the tag fails the membership

check. All tags that pass the check will participate in phase

two. All tags that fail the check, including the majority of

unknown tags in U , are filtered out and will stay silent in

phase two.

Fig. 1 shows an example of how to compress an original

Bloom filter and how to use a compressed filter for member-

ship check. In Fig. 1a, the upper bit array is the original Bloom

filter and the lower array is the resulting compressed filter. As

we can see, there are four ones in the original Bloom filter,

and thus the compressed filter has four segments. The numbers

of zeros in those segments are 2, 8, 4 and 10 respectively.

We have Lmax = 10 and l1 = ⌈log
2
(Lmax + 1)⌉ = 4. The

compressed filter consists of 2, 8, 4 and 10 in 4-bit binary

format. The compression ratio is 28

16
= 1.75. Fig. 1b shows

an example of how to perform membership check using the

compressed filter. Let k1 = 2. The hash values of two tags are

(6, 12) and (3, 17) respectively. The expression below each l-

bit number is the sum of the number and 1. When performing

membership check, each tag will subtract these sums from the

hash values until the results are non-positive. As we can see,

for tag 1, its hash values will be subtracted to (-6, 0), while

for tag 2, they are subtracted to (0, 0). Thus, tag 2 passes the

membership check and tag 1 does not.

C. Motivation for Phase Two

After phase one filters out most of unknown tags, we use

phase two for the remaining tags (particularly those in T )

to report their presence to the RFID reader. In BMTD [34],

these tags together transmit a Bloom filter to the reader, with

each tag encoded as k1 ones in the filter. In order to achieve

a low false positive ratio, the filter size has to be large. For

example, by (1), if k1 = 3, the filter must be at least 12.4n
bits to ensure a false positive ratio of 0.01, which means 12.4

bits per encoded tag, where n is the total number of tags.

The time for delivering each bit in the filter to the reader

can be costly. In practice, it is difficult for numerous tags

to synchronize their transmissions at bit level, especially for

a long filter of many bits. Many prior works resort to more

robust designs with one time slot delivering a single bit [7],

[12], [15], [17], [23], [24], [27], [31]. We have implemented

such a design that conforms to the EPC C1G2 standard [2]

following [4], which works as follows: The reader initiates a

time frame of a specified number of slots. Each tag chooses

a random slot to transmit its ID, and the slot structure is

QueryRep → RN16 → ACK → tag ID, where QueryRep is

a command transmitted by the reader to start a slot, RN16

is a 16-bit random number transmitted by a tag for collision

detection, ACK is transmitted by the reader and carries the

received RN16, and ID is transmitted by the tag, which is

followed by another QueryRep from the reader to start the

next slot. We have reconfigured the reader to skip ACK/tag

ID and immediately send QueryRep after RN16 to start the

next slot. In this way, each slot does not carry any ID but

instead just one bit information: If any tag transmits RN16,

the reader observes a busy channel and registers a bit 1; if no

tag transmits, the reader sees an idle channel (empty slot) and

registers a bit 0. The time frame of slots will thus be turned

into a bitmap. In case of BMTD [34], if each tag transmits

in k1 randomly chosen slots, the bitmap is a Bloom filter

encoding the tags. The slot structure is now QueryRep →
RN16, denoted as Tshort. Tshort translates into 2.69ms based

on the settings in [4]. In comparison, the original slot structure

for tag ID, denoted as TID, takes 14.37ms.

BMTD [34] is inefficient because it requires many bits



0 0 1 0 1 0 0 1

Tag 1

10th Sub-frame

h(ID1, r) =  1010 111 010 100⸱⸱⸱

Fig. 2: An illustration of multi-hashing, where k2 = 3 and

l2 = 8. The first four bits of h(ID1, r) are used to decide

in which sub-frame (the 10th in this example) the tag will

transmit. The first three bits after those four bits are used to

decide the first mapped slot of this tag in this sub-frame. The

next three bits are used to decide the second mapped slot, and

the following three bits are used to decide the third mapped

slot.

(slots) per tag. We argue that the minimum number of slots

needed to report the presence of a tag is actually one. In our

design, a tag not filtered in phase one will transmit at most

once, using a single slot. Suppose we assign each tag to a

single slot by hashing. The slots can be classified into three

types: singleton slots, collision slots, and empty slots, which

have a single tag, multiple tags, and zero tag in T , respectively.

The reader knows the IDs of tags in T , and thus it can predict

which slots are singletons, which have collisions, and which

are empty. Monitoring the status of the slots, if the reader

observes that an expected singleton/collision slot turns out to

be empty, it knows that the tags in T that are supposed to

transmit in this slot must be missing and thus it detects a

missing-tag event successfully. For now, we will ignore the

unknown tags that pass phase one; they may cause noise to

make detection fail probabilistically. Their number is small,

and our analysis will consider the noise that they introduce

into our detection and make sure that the accuracy requirement

will be met under such noise.

Among the three types of slots, singletons are most produc-

tive. If a tag in a singleton slot is missing, the slot will become

empty and the reader will detect a missing tag. For a collision

slot, two or more tags must be all missing in order for the slot

to become empty, which happens with a smaller probability.

We want to design our solution that maximizes the number of

singleton slots in order to improve detection probability, while

reducing the number of empty slots in order to improve time

efficiency. To do so, we map each tag to multiple slots and

choose the one that makes a singleton for the tag to transmit.

Moreover, to make the solution more time efficient, we

sample the tags so that only a portion of them will report

their presence. This is fine for probabilistic detection as long as

the sampling probability is large enough to meet the accuracy

requirement of missing-tag detection.

D. Phase Two: Missing Tag Detection

In phase two, the reader first samples the tags in T and

constructs a bitmap that is expected to receive from these

sampled tags if all of them are present and there is no unknown

tag (noise). Let the size of the bitmap be f2. The bitmap

will be collected by using a time frame of f2 slots, which is

divided into sub-frames of l2 slots each, where l2 is divisible

by f2. The reader knows the IDs of tags in T . For each tag, it

performs a hash h(ID, r), where ID is the tag’s ID and r is

a random seed. The reader uses the first log
2

f2
l2

hash bits to

map the tag to a sub-frame, and uses the following hash bits

to further map the tag to l2 slots in the sub-frame, each slot

taking ⌈log
2
(l2)⌉ hash bits to locate. These slots are called the

first mapped slot, the second mapped slot, ..., the k2th mapped

slot of the tag, respectively, as is illustrated in Fig.2.

After the reader maps all tags to slots, it determines in

which mapped slot each tag will actually transmit: To begin

with, the reader considers only the first mapped slots of the

tags in T , identifies the singleton slots, and assigns these slots

to the tags mapped to them. These slots are given an index

value of 1, indicating that they are the first mapped slots of

the assigned tags. Then the reader removes these slots/tags

from further consideration. It repeats the above process for

the second mapped slots of the remaining tags: identifying

the singleton slots, assigning these slots to the tags mapped to

them, and removing them from further consideration. These

slots are given an index value of 2. This process is repeated

all the way through the k2th mapped slots. In the end, each

tag is assigned to at most one slot to report its presence. After

determining the slot-tag assignment, the reader produces an

expected bitmap, which contains a bit one for each assigned

slot (expected to be busy) and a bit zero for each unassigned

slot (expected to be empty). Next the reader must inform the

tags about the assignment for their reporting.

The reader initiates communication with a broadcast request

carrying ps and r. The request is followed by a sequence of f2
l2

sub-frames. The reader begins each sub-frame by transmitting

a slot-index array, which contains one index value for each of

the l2 slots. The index value of an unassigned slot is zero. Each

index is ⌈log
2
(k2 + 1)⌉ bits long, and the total length of the

array is l2⌈log2(k2+1)⌉. For example, if k2 = 3 and l2 = 48,

the slot-index array takes 96 bits. The reader can broadcast

such an array using a time slot of size for transmitting a 96-

bit tag ID in 14.37ms.

All tags receive ps and r. Sampling can be performed

pseudo-randomly using the method in [5], [19], [20], [25],

which is predictable by the reader. The tags know which sub-

frames they are mapped to by computing h(ID, r). Each tag

waits for its sub-frame, and receives the corresponding slot-

index array at the beginning of the sub-frame. It knows its

first mapped slot through k2th mapped slot from the hash bits

in h(ID, r). The tag examines its first mapped slot. If the

corresponding slot index (from the received array) happens to

be 1, the tag knows that it is assigned to this slot and should

report its presence by transmitting in this slot. Otherwise, it

examines its second mapped slot to see if the slot index is

2, and if so transmits in that slot. This process repeats until

an assigned slot is identified, or otherwise the tag will not

transmit.



The reader monitors the status of all slots in each sub-frame,

converting every busy slot to bit 1 and every empty slot to bit 0.

If it observes any expected busy slot to be empty, i.e., that a bit

1 in the pre-computed bitmap turns out to be 0, it announces a

missing tag event. By increasing the sampling probability ps or

increasing the frame size f2, we can make more tags to report

in singleton slots, thus increasing the missing-tag detection

probability in order to meet a pre-specified requirement, even

under the presence of unfiltered unknown tags, as our analysis

will show.

E. Cardinality Estimation

As we will discuss later, in order to obtain some parameters

in our protocol, we need to first perform cardinality estimation

on the entire set E. There are many solutions [5], [20], [24],

[37] for fast cardinality estimation in RFID systems. In this

paper, we adopt state-of-the-art SRC estimator proposed in [5]

to estimate the number of tags in E. As is proven in [5], the

overhead of SRC estimator is at most Θ( 1

ϵ2 + loglog(|E|)),
which is relatively small compared with the overhead of

missing tag detection. After estimation of |E|, we can use

it to obtain the cardinality of unknown tags as |U | = |E| −n,

which will be used later in our optimization of execution time.

IV. PERFORMANCE ANALYSIS

In this section, we formally analyze the performance of our

protocol and derive the execution time for each phase. As is

discussed in [34], when the number of unknown tags is small,

the interference from U can be neglected and phase one does

not need to be executed. Therefore, we only consider the case

when |U | is large such that phase one is always needed.

A. Execution Time in Phase One

We first analyze the execution time in phase one.

From (1), we know that for a given false positive ratio p1,

the size of an original Bloom filter can be calculated as

f = −
nk1

ln(1− p
1

k1

1
)
. (3)

After the construction of the original Bloom filter, we segment

it based on the set bits. For a Bloom filter encoding n elements

with k1 hash functions, the number of ones in it is at most

n · k1. Thus, on average the length L1 of each segment will

be

L1 =
f

nk1
= −

1

ln(1− p
1

k1

1
)
. (4)

As a result, the size of each segment in our compressed filter

is l1 = log
2
(L1 + 1) bits and the total number of segments

f1 = n ·k1. Therefore, if we use TID to carry our compressed

filter, the execution time t1 in phase one can be calculated as:

t1 = TID·
f1
96

l1

=
f1 · l1
96

·TID =
nk1

ln 2
·
TID

96
·ln(1−

1

ln(1− p
1

k1

1
)
).

(5)

Using this compressed filter, the majority of unknown tags

in U will be filtered out. Let N∗ be the tag set which consists

of tags that remain active after phase one and its cardinality

be n∗ = |N∗|. We know that N∗ consists of two parts:

1) tags in T that are not missing.

2) tags in U that are false positives.

For the first tag set, its cardinality n∗

1
is the number of tags

in T that are present, that is

n∗

1
= n−m. (6)

For the second tag set, since the false positive ratio of our

compressed filter is p1, the number n∗

2
of unknown tags that

can pass our Bloom filter can be calculated as:

n∗

2
= |U | · p1. (7)

Combining (6) and (7), we have

n∗ = n∗

1
+ n∗

2
= n−m+ |U | · p1. (8)

This number will be used later for our analysis of the execution

time in phase two.

B. Execution Time in Phase Two

Now, we move forward to analyze the execution time in

phase two. Since the false positive ratio p1 is very small, we

assume that n∗

2
≪ n and n∗ ≈ n.

First we need to derive the detection probability after one

execution of phase two. The probability that any sampled tag is

successfully assigned to a singleton slot after the ith mapping

is given by

Pi =(1− Pi−1)

n
∑

j=0

(

n

j

)

(ps
l2

f2
)j(1− ps

l2

f2
)n−j ·

(1−
1− Pi−1

l2
)j−1 · (1−

jPi−1

l2
) + Pi−1, 1 ≤ i ≤ k2.

(9)

where the first term is the probability that a tag which is

not assigned to a singleton slot after the (i − 1) mappings

is assigned to a singleton slot in the ith mapping, the second

term is the probability that a tag is assigned to a singleton

slot after i− 1 mappings, and the rest parameters are already

defined in previous sections. Therefore, after k2 mappings, the

detection probability in phase two is:

p2 = 1− (1− ps × Pk2
)m. (10)

where Pk2
is the probability that any sampled tag is assigned

to a singleton slot after k2 mappings. Pk2
can be computed

recursively from (9) with P0 = 0.

Recall in Section II-B that our system requires a detection

probability of at least α for reporting a missing tag event. In

order to satisfy the requirement of our system, we need to set

p2 = α. (11)

Combining (10) and (11), we can obtain f2. The execution

time of phase two can be obtained as

t2 = f2 · Tshort +
f2

l2
· TID. (12)



P
theo
fp

0.005 0.001 0.0005 0.0001

optimal size 11027 14377 15820 19170

compressed size 10879 13174 13912 16511

actual P
opt

fp
0.0050 0.0010 0.00053 0.00010

actual P
cmp

fp
0.0050 0.0010 0.00050 0.00008

TABLE I: Comparison between the optimal Bloom filter and

our compressed filter.

V. SIMULATION RESULTS

We conduct extensive simulations to evaluate the perfor-

mance of our protocol. There is limited work on missing tag

detection with presence of unknown tags. Only RUN [25] and

BMTD [34] can detect a missing tag event with the required

probability in our scenario, while most of the existing work

cannot handle the interference of unknown tags. Thus, we

compare our protocol with RUN and BMTD. For each set of

experiments, we repeat 100 times under the same simulation

settings. The parameters of RUN and BMTD are set based on

[25] and [34], respectively.

A. Efficiency of Compressed Filter

The first set of experiments study the efficiency of our

compressed filter. In our simulation, we set the size of set

T as 1000 and set the false positive ratios as 0.005, 0.001,

0.0005 and 0.0001 respectively. We use 10000 elements to

test the actual false positive ratio of the filters.

Table I shows the performance of the optimal Bloom filter

and our compressed filter. In this table, the first row shows the

theoretical false positive ratio that we set in the simulations.

The second row lists the sizes of the optimal Bloom filter

that are calculated based on (2). These results agree with

our analysis that the size of the Bloom filter increases when

Pfp becomes lower. The third row shows the sizes of our

compressed filter using our compression algorithm, which are

much smaller than the sizes of the optimal Bloom filter in the

second row under the same false positive ratio requirement.

This proves that our compressed filter is more efficient than the

optimal Bloom filter. Specifically, when the false positive ratio

is required to be 0.0001, our compressed filter saves 13.8%

space compared with the optimal Bloom filter. The last two

rows show the actual false positive ratio of the optimal Bloom

filter and our compressed filter, respectively. We can observe

that the false positive ratios of both filters are close to the

theoretical one, while the false positive ratio of our compressed

filter can be lower than that of the optimal one. These results

show that our compressed filter can achieve an even smaller

false positive ratio, which can filter out more unknown tags,

with a smaller size than the optimal Bloom filter. All these

results demonstrate the effectiveness of our design.

However, this does not mean that the design of original

Bloom filter and optimal Bloom filter is not compact. We want

to point out that for the problem of missing-tag detection with

presence of unknown tags, when the required false positive

ratio is very small, we can compress the Bloom filter to

save more space. While for other problems, the required false

50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

m

d
e
te

c
ti
o
n
 p

ro
b
a
b
ili

ty

(a) α = 0.9.

50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

m

d
e
te

c
ti
o
n
 p

ro
b
a
b
ili

ty

(b) α = 0.99.

Fig. 3: Reliability of our protocol.

positive ratio may not be as small, the design of original Bloom

filter is still capable of space-efficiently representing the data

set.

B. Accuracy

The second set of experiments investigate the accuracy of

our protocol. We want to verify that our protocol can detect

an missing tag even with the required detection probability α,

which is satisfied by RUN and BMTD.

In our simulations, we set n = 10000, M = 1 and |U | =
50000. We vary the number m of missing tags in our system

from 50 to 100 at a step size of 10 and set the detection

probability α as 0.9 and 0.99 respectively. Other parameters

of our protocol are set as is described in Section IV.

Fig. 3 shows the actual detection probability of our protocol

with different detection probability. The left plot shows the

actual detection probability when α = 0.9 and m varies from

50 to 100, while the right one corresponds to the accuracy

requirement of α = 0.99. In each plot, the x coordinate is

the number m of missing tags and the y coordinate is actual

detection probability. The red line is the required detection

probability and each bar represents the average actual detection

probability of 100 runs under the given setting. We can observe

that the actual detection probability is always higher than the

required one. Besides, as the number of missing tags increases,

the detection probability becomes higher, which is expected

since it is easier to detect a given number of tags when more

tags are actually missing.

C. Execution Time

We evaluate and compare the execution time of our protocol

with RUN and BMTD through simulations. In our simulation,

we set M = 1, and let α = 0.9 and 0.99, respectively. We

vary m, n and |U | to investigate their impact on the time-

efficiency of these three missing-tag detection protocols. We

use real time (in seconds) for evaluation. Recall that in Section

III-C, we configure the EPC standard to transmit two different

types of slots: Tshort and TID. For RUN, we use Tshort for

tags to transmit their responses and the total execution time is

fRUN ×Tshort, where fRUN is the optimal frame size that is

obtained from [25]. For BMTD, we use TID for the reader to

broadcast the Bloom filter in 96-bit segments and use Tshort

for tags to transmit their responses. The total execution time



50 60 70 80 90 100
0

100

200

300

400

500

m

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

 

 

BMTD
RUN
Our protocol

(a) Impact of m.

5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

n

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

 

 

BMTD
RUN
Our protocol

(b) Impact of n.

5 6 7 8 9 10

x 10
4

0

100

200

300

400

500

|U|

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

 

 

BMTD

RUN

Our protocol

(c) Impact of |U |.

Fig. 4: Execution time of different protocols when α = 0.9.

50 60 70 80 90 100
0

100

200

300

400

500

m

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

 

 

BMTD

RUN

Our protocol

(a) Impact of m.

5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

n

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

 

 

BMTD

RUN

Our protocol

(b) Impact of n.

5 6 7 8 9 10

x 10
4

0

200

400

600

800

1000

|U|

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

 

 

BMTD

RUN

Our protocol

(c) Impact of |U |.

Fig. 5: Execution time of different protocols when α = 0.99.

is fBMTD1 ×
TID

96
+ fBMTD2 × Tshort, where fBMTD1 and

fBMTD2 are the optimal frames size of phase one and phase

two in BMTD that are obtained from [34]. The parameters for

our protocol are set based on Section IV.

1) Impact of m: The third set of experiments study the

impact of the number of missing tags. In our simulations, we

set n = 10000, |U | = 50000 and vary m from 50 to 100 at a

step size of 10. The experiments are conducted under accuracy

requirement of both α = 0.9 and 0.99.

Fig. 4a and Fig. 5a show the results of our simulations

under different accuracy requirements. In each plot, the x

coordinate is the number of missing tags and the y coordinate

is the overall execution time (in seconds). It is expected that

the execution times of these three protocols increase as the

detection probability increases. Besides, we can observe that

the execution times of these three protocols decrease (but

slowly) with the increase of m, which is expected since for

a given threshold, the more tags are missing, the faster we

can detect a missing-tag event. In addition, our protocol takes

less time than BMTD and RUN for detection. The execution

time is reduced by 83% compared with the state-of-the-art

(BMTD), when α = 0.9. When α = 0.99, our protocol is even

better compared with BMTD and RUN. Specifically, when

α = 0.9,m = 50, the execution times of our protocol, BMTD

and RUN are 25.82, 178.90 and 258.68 seconds, respectively.

This comes from the fact that RUN does not filter out any

unknown tags in its detection, thus will waste much time on

these tags. BMTD tries to filter out these unknown tags, but

the Bloom filter it uses is less efficient than our design. As a

result, our protocol outperforms RUN and BMTD in missing-

tag detection with presence of unknown tags.

2) Impact of n: The fourth set of experiments study the

impact of the number of tags in T . In our simulations, we set

m = 100, |U | = 50000 and vary n from 5000 to 10000 at a

step size of 1000. The experiments are conduct under accuracy

requirement of both α = 0.9 and 0.99.

Fig. 4b and Fig. 5b show the results of our simulations under

different accuracy requirements. Similarly, the execution times

increase as the detection probability increases. Besides, the

execution times of all three protocols increase with respect

to n, but our protocol still outperforms BMTD and RUN

and consumes much less time (6 times shorter than BMTD

and 15 times short than RUN when α = 0.9). The raise of

execution times is expected since a larger frame needs to be

allocated to maintain the detection accuracy, when the number

of known tags increases. In specific, when α = 0.9, n = 5000,

the execution times of our protocol, BMTD and RUN are

13.44, 89.55 and 237.13 seconds, respectively. Overall, our

protocol outperforms RUN and BMTD in missing-tag de-

tection with presence of unknown tags under both accuracy



requirements.

3) Impact of |U |: The fifth set of experiments study the

impact of the number of unknown tags. In our simulations,

we set n = 10000, m = 100 and vary |U | from 50000 to

100000 at a step size of 10000. The experiments are conduct

under accuracy requirement of both α = 0.9 and 0.99.

Fig. 4c and Fig. 5c show the results of our simulations under

different accuracy requirements. We can observe that as the

number of unknown tags increases, the execution time of RUN

increases drastically, while the execution time of our protocol

and BMTD increases slowly. This agrees with our analysis that

the performance of RUN drops a lot when dealing with large

tag sets since it does not filter out unknown tags. While both

our protocol and BMTD filter out the inference of unknown

tags, the design of our compressed filter is more efficient as is

analyzed previously. All these results above demonstrate that

our protocol can more time-efficiently perform reliable missing

tag detection than RUN and BMTD with large unknown tag

sets.

VI. CONCLUSION

In this paper, we propose a new protocol that performs

reliable and efficient missing-tag detection with presence of

unknown tags. We design a compressed filter which achieves

a comparable false positive ratio to Bloom filter with a smaller

size and propose new collision-reduction methods to increase

our efficiency. Extensive simulations show that our protocol

outperforms existing works and that when comparing with the

best prior work, more than 83% execution time is saved in

detecting a missing-tag event with presence of unknown tags,

while the accuracy requirement is still satisfied.

VII. ACKNOWLEDGEMENTS

This work was in part supported by the National Science

Foundation under grants CNS-1409797 and CNS-1718708.

REFERENCES

[1] Data Compression. https://en.wikipedia.org/wiki/Data compression.

[2] EPC Radio-Frequency Identity Protocols Class-1 Gen-2 UHF RFID
Protocol for Communications at 860MHz-960MHz, EPCglobal. http:

//www.epcglobalinc.org/uhfclg2.

[3] National Retail Federation, National retail security survey. https://nrf.

com/resources/retail-library/national-retail-security-survey-2015.

[4] M. Buettner and D. Wetherall. A software radio-based UHF RFID reader
for PHY/MAC experimentation. Proc. of IEEE RFID, 2011.

[5] B. Chen, Z. Zhou, and H. Yu. Understanding RFID Counting Protocols.
Proc. of Mobicom, 2013.

[6] M. Chen, S. Chen, Y. Zhou, and Y. Zhang. Identifying State-free
Networked Tags. IEEE/ACM Transactions on Networking, 2017.

[7] M. Chen, W. Luo, Z. Mo, S. Chen, and Y. Fang. An Efficient Tag Search
Protocol in Large-Scale RFID Systems. Proc. of IEEE INFOCOM, April
2013.

[8] D. Ciuonzo, A. D. Maio, and P. S. Rossi. A systematic framework
for composite hypothesis testing of independent Bernoulli trials. IEEE

Signal Processing Letters, 22(9):1249 – 1253, 2015.

[9] D. Ciuonzo and P. S. Rossi. Decision fusion with unknown sensor
detection probability. IEEE Signal Processing Letters, 21(2):208 – 212,
2014.

[10] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary cache: A scalable
wide-area web cache sharing protocol. Proc. of SIGCOMM, 1998.

[11] J. Han, Q. Chen, P. Yang, D. Ma, Z. Jiang, W. Xi, and J. Zhao.
GenePrint: Generic and Accurate Physical-Layer Identification for UHF
RFID Tags. IEEE/ACM Transactions on Networking, 24(2):846 – 858,
2016.

[12] Y. Hou, J. Ou, Y. Zheng, and M. Li. PLACE: Physical Layer Cardinality
Estimation for Large-Scale RFID Systems. IEEE/ACM Transactions on

Networking, 2010.
[13] T. Li, S. Chen, and Y. Ling. Identifying the Missing Tags in a Large

RFID System. Proc. of ACM Mobihoc, 2010.
[14] J. Liu, Y. Zhang, M. Chen, S. Chen, and L. Chen. Collision-resistant

Communication Model for Stateless Networked Tags, poster paper. Proc.

of IEEE ICNP, 2016.
[15] X. Liu, K. Li, S. Guo, A. X. Liu, P. Li, K. Wang, and J. Wu. Top-K

Queries for Categorized RFID Systems . IEEE/ACM Transactions on

Networking, 2016.
[16] X. Liu, K. Li, G. Min, Y. Shen, A. X. Liu, and W. Qu. Completely

pinpointing the missing RFID tags in a time-efficient way. IEEE

Transaction on Computers, 64(1):87 – 96, 2015.
[17] X. Liu, B. Xiao, K. Li, J. Wu, A. X. Liu, H. Qi, and X. Xie. RFID

Cardinality Estimation with Blocker Tags. Proc. of IEEE INFOCOM,
2015.

[18] W. Luo, S. Chen, T. Li, and S. Chen. Probabilistic Missing-tag Detection
and Energy-Time Tradeoff in Large-scale RFID Systems. Proc. of ACM

Mobihoc, 2012.
[19] W. Luo, Y. Qiao, S. Chen, and T. Li. Missing-Tag Detection and Energy-

Time Tradeoff in Large-Scale RFID Systems with Unreliable Channels.
IEEE/ACM Transactions on Networking, 2014.

[20] W. Luo, S. Wu, S. Chen, and M. Yang. Energy Efficient Algorithms for
the RFID Estimatino Problem. Proc. of IEEE INFOCOM, 2010.

[21] M. Mitzenmacher. Compressed Bloom Filters. IEEE/ACM Transaction

on Networking, 10(5):604 – 612, 2002.
[22] J. Ou, M. Li, and Y. Zheng. Come and Be Served: Parallel Decoding

for COTS RFID Tags. Proc. of ACM MobiCom, 2015.
[23] S. Qi, Y. Zhang, M. Li, Y. Liu, and J. Qiu. Scalable Data Access Control

in RFID-Enabled Supply Chain. Proc. of IEEE ICNP, 2014.
[24] M. Shahzad and A. X. Liu. Every Bit Counts - Fast and Scalable RFID

Estimation. Proc. of ACM Mobicom, 2012.
[25] M. Shahzad and A. X. Liu. Expecting the Unexpected: Fast and Reliable

Detection of Missing RFID Tags in the Wild. Proc. of IEEE INFOCOM,
2015.

[26] M. Shahzad and A. X. Liu. Fast and Accurate Tracking of Population
Dynamics in RFID Systems. Proc. of IEEE ICDCS, 2017.

[27] L. Shangguan, Z. Zhou, X. Zheng, L. Yang, Y. Liu, and J. Han.
ShopMiner: Mining Customer Shopping Behavior in Physical Clothing
Stores with Passive RFIDs. Proc. of IEEE INFOCOM, 2016.

[28] A. D. Smith, A. A. Smith, and D. L. Baker. Inventory management
shrinkage and employee anti-theft approaches. International Journal of

Electronic Finance, 5(3):209 – 234, 2011.
[29] C. C. Tan, B. Sheng, and Q. Li. How to monitor for missing RFID tags.

Proc. of IEEE ICDCS, 2008.
[30] G. Wang, C. Qian, L. Shangguan, H. Ding, J. Han, N. Yang, W. Xi,

and J. Zhao. HMRL: Relative Localization of RFID Tags with Static
Devices. Proc. of IEEE SECON, 2017.

[31] Q. Xiao, S. Chen, and M. Chen. Joint Property Estimation for Multiple
RFID Tag Sets using Snapshots of Variable Lengths. Proc. of ACM

Mobihoc, 2016.
[32] L. Yang, Y. Chen, X. Li, C. Xiao, M. Li, and Y. Liu. Tagoram: Real-

Time Tracking of Mobile RFID Tags to High Precision Using COTS
Devices. Proc. of ACM MobiCom, 2014.

[33] L. Yang, Q. Lin, X. Li, T. Liu, and Y. Liu. See Through Walls with
COTS RFID System. Proc. of ACM MobiCom, 2015.

[34] J. Yu, L. Chen, R. Zhang, and K. Wang. Finding needles in a
haystack: Missing tag detection in large rfid systems. IEEE Trans. on

Communication, 65(5):2036 – 2047, 2017.
[35] R. Zhang, Y. Liu, Y. Zhang, and J. Sun. Fast Identification of the missing

tags in a large RFID system. Proc. of IEEE SECON, 2011.
[36] Y. Zhang, S. Chen, Y. Zhou, and Y. Fang. Anonymous Temporal-Spatial

Joint Estimation at Category Level over Multiple Tag Sets. Proc. of IEEE

INFOCOM, 2018.
[37] Y. Zheng and M. Li. Fast Cardinality Estimation for Large-scale RFID

Systems. Proc. of IEEE INFOCOM, 2013.
[38] Y. Zheng, M. Li, and C. Qian. PET: Probabilistic Estimating Tree for

Large-Scale RFID Estimation. Proc. of IEEE ICDCS, 2011.


