
MARCH: A Distributed Incentive Scheme for
Peer-to-Peer Networks

Zhan Zhang Shigang Chen Myungkeun Yoon
Department of Computer & Information Science & Engineering, University of Florida

{zzhan, sgchen, myoon}@cise.ufl.edu

Abstract—As peer-to-peer networks grow larger and include
more diverse users, the lack of incentive to encourage cooperative
behavior becomes one of the key problems. This challenge cannot
be fully met by traditional incentive schemes, which suffer from
various attacks based on false reports. Especially, due to the
lack of central authorities in typical P2P systems, it is difficult to
detect colluding groups. Members in the same colluding group
can cooperate to manipulate their history information, and the
damaging power increases dramatically with the group size. In
this paper, we propose a new distributed incentive scheme, in
which the benefit that a node can obtain from the system is
proportional to its contribution to the system, and a colluding
group cannot gain advantage by cooperation regardless of its size.
Consequently, the damaging power of colluding groups is strictly
limited. The proposed scheme includes three major components:
a distributed authority infrastructure, a key sharing protocol,
and a contract verification protocol.

I. INTRODUCTION

Today’s P2P networks are designed based on the altruism of
participating nodes: users are assumed to share their resources
in exchange for the right to consume the resources of others.
As networks grow larger and include more diverse users, it has
been observed that many people consume resources without
contributing to the community, resulting in the “free riding”
problem. Consequently, as altruism breaks down, individual
players’ self interest may cause the systems to collapse.

To reduce free-riders, the systems have to incorporate
incentive schemes to encourage cooperative behavior. Some
recent works [1], [2], [3], [4], [5], [6] propose reputation
based trust systems, in which each node is associated with a
reputation established based on the feedbacks from others that
it has made transactions with. The reputation information helps
users to identify and avoid malicious nodes. An alternative is
virtual currency schemes [7], [8], [9], in which each node
is associated with a certain amount of money. Money is
deducted from the consumers of a service, and transferred to
the providers of the service after each transaction.

Both types of schemes rely on authentic measurement of
service quality and unforgeable reputation/money information.
Otherwise, selfish/malicious nodes may gain advantage based
on false reports. For example, a consumer may falsely claim to
have not received service in order to pay less or defame others.
More seriously, malicious nodes may collude in cheating
in order to manipulate their information. Several algorithms
are proposed to address these problems. They either analyze
statistical characteristics of the nodes’ behavior patterns and
other nodes’ feedbacks [2], [10], or remove the underlying
incentive for cheating [11]. However, in order to apply these

algorithms, the nodes’ history information must be managed
by a central authority, which is not available in typical peer-
to-peer networks.

Other works [12], [13] propose to find chains of trust
based on the history information shared among trusted nodes.
However, the communication overhead for discovering chains
of trust is very high, making these schemes not scalable.

In this paper, we focus on how to design an effective incen-
tive scheme suitable for P2P systems, which have no central
authority to maintain individual nodes’ history information.
The major contributions are listed below.

(1) We propose a new distributed incentive scheme, which
combines reputation and virtual money. It is able to strictly
limit the damage caused by malicious nodes and their col-
luding groups. The following features distinguish our scheme
from others.
• The benefit that a node can get from the system is limited

by its contribution to the system.
• The members in a colluding group cannot increase their

total money or aggregate reputation by cooperation, regardless
of the group size.
• Malicious nodes can only attack others at the cost of their

own interest.
(2) We design a distributed authority infrastructure to

manage the nodes’ history information with low overhead and
high security.

(3) We design a key sharing protocol and a contract
verification protocol based on the threshold cryptography to
implement the proposed distributed incentive scheme.

The rest of the paper is organized as follows. Section II
provides the motivation for our work. Section III defines the
system model. Section IV proposes a distributed authority
infrastructure. Section V presents our distributed incentive
scheme. Section VI studies the properties of the proposed
scheme. Section VII discusses several important issues. Sec-
tion VIII evaluates the scheme by simulations. Section IX
draws the conclusion.

II. MOTIVATION

A. Limitation of Prior Work

Any node in a peer-to-peer network is both a service
provider and a service consumer. It contributes to the system
by working as a provider, and benefits from the system as a
consumer. A transaction is the process of a provider offering
a service to a consumer, such as supplying a video file.

0743-166X/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1091

The purpose of an incentive scheme is to encourage the
nodes to take the role of providers. However, without central
authorities involved, the existing schemes cannot effectively
prevent malicious nodes, especially those in collusion, from
manipulating their history information by using false service
reports. Specifically, they have the following problems.

Reputation inflation: In the reputation schemes, malicious
nodes can work together to inflate each other’s reputation or
to defame innocent nodes, by which colluding nodes protect
themselves from the complaints by innocent nodes as these
complaints may be treated as noise by the systems.

Money depletion: In the virtual currency schemes, malicious
nodes may launch attacks to deplete other nodes’ money
and paralyze the whole system. Without authentic reputation
information, innocent nodes are not able to proactively select
benign partners and avoid malicious ones.

Frequent complainer: In many incentive schemes, nodes
will be punished if they complain frequently, which prevents
malicious nodes from constantly defaming others at no cost.
However, it also discourages innocent nodes from reporting
frequent malicious acts because otherwise they would become
frequent complainers.

Punishment scale: In most existing schemes, the scale of
punishment is related to the service history of the transaction
participants. Consequently, an innocent node may be subject
to negative discrimination attacks [1] launched by nodes with
excellent history.

B. Motivation

There are two major kinds of bad behavior. First, a provider
may deceive a consumer by providing less-than-promised
service. Second, a consumer may defame a provider by falsely
claiming the service is poor.

Consider how these problems are dealt with in real life.
Before a transaction happens, the provider would want to know
if the consumer has enough money to pay for the service,
and the consumer would want to know the reputation of the
provider. With such information, they can control the risk
and decide whether to carry out the transaction or not. After
the transaction, if the provider deceives, it will be sued by
the consumer. Consequently, the malicious provider will build
up bad reputation, which prevents it from deceiving more
consumers. Now consider a consumer intentionally defames
a provider. It does so only after it can show the evidence of a
transaction, which requires it to pay money first. Consequently,
defaming comes with a cost. The ability of the malicious
consumer to defame others is limited by the amount of money
it has.

Inspired by the observation above, we propose a new
incentive scheme: MARCH, which is a combination of Money
And Reputation sCHemes.

The basic idea behind the scheme is simple: each node is
associated with two parameters: money and reputation. The
providers earn money (and also reputation) by serving others.
The consumers pay money for the service. If a consumer does
not think the received service worth the money it has paid,
it reports to an authority, specifying the amount of money it

believes it has overpaid. If the authority can determine who
is lying, the liar is punished. Otherwise, the authority freezes
the money claimed to have been overpaid. The money will
not be available to the provider and will not be returned
to the consumer either, which eliminates any reason for the
consumer to lie. If the provider is guilty, the consumer has the
revenge and the provider’s reputation suffers. If the provider
is innocent, the consumer does it at a cost because after
all it has paid the price of the transaction. In addition, the
falsely-penalized provider will not serve it any more. The
technical challenges are (1) how to establish a distributed
authority for managing the money and reputation, (2) how
to design the protocol of transaction that ensures authentic
exchange of money/reputation information and allows the
unsatisfied consumers to sue the providers, (3) how to analyze
the properties of such a system, and (4) how to evaluate the
system.

III. SYSTEM MODEL

The nodes in a P2P network fall in three categories: honest,
selfish, and malicious. Honest nodes follow the protocol ex-
actly, and they both provide and receive services. Selfish nodes
will break the protocol only if they can benefit. Malicious
nodes are willing to compromise the system by breaking
the protocol even when they benefit nothing and may be
punished. Selfish/malicious nodes may form colluding groups.
There may exist a significant number of selfish nodes, but
the malicious nodes are likely to account for a relatively
small percentage of the whole network. At a certain time, all
self/malcious nodes that break the protocol are called dishonest
nodes. A node is said to be rejected from the system if it
has too little money and too poor reputation such that no
honest providers/consumers will perform transaction with it.
We study the incentive scheme in the context of DHT-based
P2P networks, e.g., [14], [15], [16]. We assume the routing
protocol is robust, ensuring the reliable delivery of messages
in the network [17]. We also assume the networks have the
following properties.
• Random, non-selectable identifier: A node can not select

its identifier, which should be arbitrarily assigned by the
system. This requirement is essential to defending the Sybil
attack [18]. One common approach is to hash a node’s IP
address to derive a random identifier for the node [14].
• Public/private key pair: Each node A in the network has a

public/private key pair, denoted as PA and SA respectively. A
trusted third party is needed to issue public-key certificates.
The trusted third party is used off-line once per node for
certificate issuance, and it is not involved in any transaction.

IV. AUTHORITY INFRASTRUCTURE

A. Delegation

Who will keep track of the money/reputation information
in a P2P network? In the absence of a central authority for
this task, we design a distributed authority infrastructure. Each
node A is assigned a delegation, denoted as DA, which
consists of k nodes picked pseudo-randomly. For example,
we can apply k hash functions, i.e., {h1, h2, ..., hk}, on the

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1092

identifier of node A to derive the identifiers of nodes in DA.
If a derived identifier does not belong to any node currently
in the network, the “closest” node is selected. For example, in
[14], it will be the node clockwise after the derived identifier
on the ring. The j-th element in DA is denoted as DA(j).

DA keeps track of A’s money/reputation. Any anomaly
in the information stored at the delegation members may
indicate an attempt to forge data. The information is legitimate
only if the majority of the delegation members agree on it.
Therefore, as long as the majority of the delegation members
are honest, the information about node A cannot be forged.
Such a delegation is said to be trustworthy. On the other
hand, if at least half of the members are dishonest, then the
delegation is untrustworthy.

The delegation members are appointed pseudo-randomly by
the system. A node cannot select its delegation members,
but can easily determine who are the members in its or
any other node’s delegation. To compromise a delegation, the
malicious/selfish nodes from a colluding group must constitute
the majority of the delegation. Unless the colluding group is
very large, the probability for this to happen is small because
the identifiers of the colluding nodes are randomly assigned
by the system and the identifiers of the delegation are also
randomly assigned. Let m be the size of a colluding group and
n be the total number of nodes in the system. The probability
for t out of k nodes to be in the colluding group is

P (t, k,
m

n
) =

(
k
t

)
(
m

n
)t(1 − m

n
)k−t

where P (t, k, m
n) denotes the probability of t successes in k

trials in a Binomial distribution with the probability of success
in any trial being m

n . Let m∗ be the total number of distinct
nodes in all colluding groups, also including all malicious
nodes. The probability of a delegation being trustworthy is

at least
∑� k

2 �
t=0 P (t, k, m∗

n). In order to control the overhead,
we shall keep the value of k small.

B. k-pair Trustworthy Set

A transaction involves two delegations, one for the provider
and the other for the consumer. They have to cooperate
in maintaining the money and reputation information, and
avoiding any fraud. To facilitate the cooperation, we introduce
a new structure, called k-pair delegation set, consisting of k
pairs of delegation members. Suppose node A is the provider
and node B is the consumer. The ith pair is (DA(i), DB(i)),
∀i ∈ [1..k], and the whole set is

{(DA(1),DB(1)), (DA(2),DB(2)), ..., (DA(k),DB(k))}
If both DA(i) and DB(i) are honest, the pair (DA(i),DB(i))
is trustworthy. If the majority of the k pairs are trustworthy,
the whole set is trustworthy. It can be easily verified that the
probability for the whole set to be trustworthy is

� k
2 �∑

t=0

P (t, k, 2
m∗

n
− (

m∗

n
)2)

As an example, when m∗ = 3, 000, the trustworthy proba-
bilities for a delegation and a 5-pair delegation set are 99.975%

and 99.815%, respectively. Even if a delegation (or k-pair
delegation set) is not trustworthy, we say it is compromised
only when the majority of the members happens to belong to
the same colluding group, which is very unlikely due to the
random selection of delegation members.

V. MARCH: A DISTRIBUTED INCENTIVE SCHEME

A. Money and Reputation

With the distributed authority designed in the previous sec-
tion, the following information about a node A is maintained
by a delegation of k nodes.

Total money (TMA): It is the total amount of money paid
by others to node A minus the total amount of money paid to
others by A in all previous transactions. The universal refilled
money (Section VII-B) will also be added to this variable.

Overpaid money (OMA): It is the total amount of money
overpaid by consumers. A consumer pays money to node A
before a service. If the service contract is not fulfilled by the
transaction, the consumer may file a complaint, specifying the
amount of money that it has overpaid. This amount cannot be
greater than what the consumer has paid.

When a new node joins the network, its total money and
overpaid money are initialized to zero. From TMA and OMA,
we define the following two quantities.

Available money (mA): It is the amount of money that node
A can use to buy services from others.

mA = TMA − OMA (1)

Reputation (rA): It evaluates the quality of service (with
respect to the service contracts) that node A has provided.

rA =

{
TMA−OMA

TMA
if TMA �= 0

1 if TMA = 0
(2)

To track every node’s available money and reputation, we
propose a set of protocols. Consider a transaction, in which
Alice (A) is the provider and Bob (B) is the consumer. The
transaction consists of five sequential phases.
• Phase one: Contract Negotiation. Alice and Bob negotiate

a service contract.
• Phase two: Contract Verification. Through the help of

their delegations, Alice and Bob verify the authenticity of the
information claimed in the contract.
• Phase three: Money Transfer. The amount of money

specified in the contract is transferred from Bob’s account in
DB to Alice’s account in DA.

• Phase four: Contract Execution. Alice offers the service
to Bob based on the contract specification.
• Phase five: Prosecution. After the service, Bob provides

feedback reflecting the quality of service offered by Alice.

B. Phase one: Contract Negotiation

Suppose Bob has received a list of providers through the
lookup routine of the P2P network. Each provider specifies its
reputation and its price for the service. Bob wants to minimize
his risk when deciding which service provider he is going to
use.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1093

Let L be the price specified by Alice and G be the fair price
estimated by Bob himself. According to the definition, rA can
roughly be used as a lower bound on the probability of Alice
being honest. Intuitively, the probability for Bob to receive the
service GB is at least rA, and the probability for Bob to waste
its money LA is at most (1−rA). We define the benefit for Bob
to have a transaction with Alice as GB × rA −LA × (1− rA).
We further normalize it as

R = rA − L

G
(1 − rA) (3)

To avoid excessive risk, Bob takes Alice as a potential
provider if R is greater than a threshold value T . The use
of threshold helps the system reject dishonest providers with
poor reputation. Among all potential providers, Bob picks the
one with the highest normalized benefit.

Both the value of L and the value of rA are given by the
provider A. If L is set too high, R will be small and the
provider runs the risk of not being picked by Bob. Providers
with poor reputation can improve their R values by setting
their prices low. In this way, they can recover their reputation
by selling services at lower prices. If Alice lies about its rA,
she will be caught in the next phase and be punished.

Now suppose Bob chooses Alice as the best service
provider. They have to negotiate a service contract, denoted
as c, in the following format.

< A,B, S,Q,L, SeqA, SeqB , rA,mB >

where A, B, S, Q, and L specify the provider, the consumer,
the service type, the service quality, and the service price re-
spectively. SeqA and SeqB are the contract sequence numbers
of Alice and Bob, respectively. After the transaction, Alice and
Bob each increase their sequence numbers by 1. The values of
rA and mB in the contract will be verified by the delegations
in the next phase.

C. Phase two: Contract Verification

After negotiating a contract, Alice and Bob should exchange
an authenticatable contract proof, so that Alice is able to
activate the money transfer procedure and Bob is granted the
prosecution rights. In addition, the information in the contract,
e.g., rA and mB , should be verified by the delegations of Alice
and Bob.

We use the notation [x]y for the digital signature signed on
message x with key y and {x}y for the cipher text of message
x encrypted with key y. After Phase two, if the contract is
verified by the delegations, Alice should have the following
contract proof

cA = [c]SB

cA should not be produced by Bob, who may lie about mB .
Instead, Alice must receive cA from Bob’s delegation after
the members confirm the value of mB . Bob has k delegation
members. Each of them will produce a “piece” of cA and send
it to Alice, who will combine the “pieces” into a valid contract
proof. Similarly, Bob must receive the following contract proof
from Alice’s delegation

cB = [c]SA

The contract proofs will be used by Alice for money transfer
and by Bob for prosecution.

It is important to ensure that either both Alice and Bob,
or none of them, receive the contract proofs. Otherwise,
dishonest nodes may take advantage of it. It can be shown that
ensuring both or neither one receives her/his contract proof is
impossible without using a third party (the delegation of Alice
or Bob in this case).

Key Sharing Protocol

A k-member delegation is not a centralized third party.
One possible approach for producing a contract proof by a
delegation is to use threshold cryptography [19]. A (k, t)
threshold cryptography scheme allows k members to share
the responsibility of performing a cryptographic operation, so
that any subgroup of t members can perform this operation
successfully, whereas any subgroup of less than t members
can not. For digital signature, k shares of the private key
are distributed to the k members. Each member generates a
partial signature by using its share of the key. After a combiner
receives at least t partial signatures, it is able to compute the
signature, which is verifiable by the public key.

In our case, the problem is to produce cB (or cA) by
the k-member delegation of Alice (or Bob). We employ
a (k, �k

2 � + 1) threshold cryptography scheme to produce
the contract proof. Alice distributes shares SA(i) of her
private key SA to her delegation members DA(i), which will
produce partial signatures [c]SA(i) and forward them to Bob
for combination.

When applying threshold cryptography, we have to defend
against dishonest nodes, which may intentionally distribute
incorrect secret shares. The incorrect partial signatures cannot
yield a valid signatures. We propose a protocol for distributing
the key shares. Take Alice as an example. The protocol
guarantees that either all delegation members receive the
correct shares, or they all detect that Alice is dishonest.

Step 1: Alice sends a key share SA(i) to each delegation
member DA(i), encrypted by the member’s public key PDA(i).
The messages are shown below.

MSG1 Alice → DA(i): [{SA(i)}PDA(i)]SA
,∀DA(i) ∈ DA

Step 2: After all members receive their key shares, they
negotiate a common random number s (possibly by multi-party
Diffie-Hellman exchange with authentication). Each member
sends the number s as a challenge to Alice, signed by the
member’s private key and then encrypted by Alice’s public
key.

MSG2 DA(i) → Alice: {[s]SDA(i)}PA
, ∀DA(i) ∈ DA

Step 3: Alice signs s with SA(i) and then with SA before
sending it back to DA(i).

MSG3 Alice → DA(i): [[s]SA(i)]SA
, ∀DA(i) ∈ DA

Step 4: After authentication, if the received [s]SA(i) value
matches the locally computed one, DA(i) forwards the mes-
sage to all other members in DA. 1

1Note that DA(i) knows s and learns SA(i) from MSG1.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1094

MSG4 DA(i) → DA(j): [[s]SA(i)]SA
, ∀DA(j) ∈ DA

Otherwise, DA(i) files a certified complaint to other mem-
bers.

MSG5 DA(i) → DA(j): [“SA(i) is invalid”]SDA(i) ,
∀DA(j) ∈ DA

Step 5: DA(i) needs to collect [s]SA(j), ∀DA(j) ∈
DA, which are the partial signatures on s. If it receives
MSG4 [[s]SA(j)]SA

from DA(j), the value of [s]SA(j) is in
the message. If it receives MSG5 from DA(j), there are two
possibilities: either Alice or DA(j) is dishonest. To resolve this
situation, DA(i) forwards the certified complaint to Alice. If
Alice challenges the complaint, she must disclose the correct
value of SA(j) to DA(i) in the following message (then DA(j)
can learn SA(j) from DA(i)).

MSG6 Alice → DA(i): [{SA(j)}PDA(i)]SA

Learning SA(j) from this message, DA(i) can compute
[s]SA(j). After DA(i) has all k partial signatures on s, it
can determine that Alice is honest if any (�k

2 � + 1) partial
signatures produce the same signature [s]SA

, which can be
verified by Alice’s public key. Otherwise, Alice must be
dishonest.

Since the value of k is typically set small (e.g. 5) and the
key distribution is performed once per node, the overhead of
the above protocol is not significant. Due to space limitation,
we omit the proofs of all theorems in the paper.

Theorem 1: The key sharing protocol ensures that all dele-
gation members will either obtain the correct shares of Alice’s
private key or detect Alice’s fraud.

Contract Verification Protocol

Both Alice and Bob must register the contract with their
delegations so that the money transfer and the optional prose-
cution can be performed through the delegations at later times.
The delegations must verify the information claimed by Alice
and Bob in the contract and generate the contract proofs that
Alice and Bob need in order to continue their transaction. We
design a contract verification protocol to implement the above
requirements. The protocol consists of four steps, illuminated
in Figure 1 (the left portion), and the number of messages is
O(k) for normal cases.

A procedure call is denoted as x.y(z), which means to
invoke procedure y at node x with parameter(s) z. If x is
a remote node, a signed message carrying z must be sent to
x first.

Step 1: Alice sends the contract c and a digital signature
c′ to the delegation DA for validation. c′ may be a signature
of the contract concatenating the identifier of the receiver, i.e.,
c′ = [c|DA(i)]SA

. Bob does the same thing.

Alice.SendContract(Contract c, Signature c′)
1. for i = 1 to k do
2. DA(i).ComputePartialProof(c, c′)

Step 2: Then the delegation member DA(i) verifies the
reputation claimed by Alice in the contract (denoted as

c.rA) and computes a partial signature (denoted as psi) on
the contract with its key share established by the previous
protocol.

DA(i).ComputePartialProof(Contract c, Signature c′)
1. if rA ≥ c.rA then
2. ContractList.add(c, c′)
3. psi = [c]SA(i)

4. DB(i).DeliverPartialProof(c, psi)
5. else punish(A)

Line 1 verifies whether c.rA is over-claimed or not. Line
2 saves the contract for later use in Step 3. The signature c′

will be used in a procedure called detect(). Line 3 produces a
partial signature on the contract by using SA(i). Line 4 sends
the partial signature to the ith member of DB . If c.rA is over-
claimed, Alice will be punished at Line 5.

The delegation members in DB execute a similar procedure
except that the condition in Line 1 should be mB ≥ c.mB .

Step 3: When DB(i) receives the contract c and the partial
signature spi from DA(i), it executes the following procedure.

DB(i).DeliverPartialProof(Contract c, PartialSignature psi)
1. wait for a timeout period
2. if c is found in ContractList then
3. Bob.ProcessPartialProof(psi)
4. else
5. detect()

Line 1 waits for a timeout period to ensure that the contract
from Bob has arrived. Line 2 checks if the received contract
c is also in the local ContractList. If that is true, Bob has
announced the exact same contract as Alice does, and DB(i)
forwards the partial signature psi to Bob. Otherwise, DB(i)
believes that Alice and Bob do not have the same contract,
and detect() procedure is executed to detect the malicious
participant. Due to the space limitation, we omit the details of
the detect procedure.

Step 4: After Alice (Bob) receives t or more correct partial
signatures, she (he) can compute the contract proof cA (cB),
which can be verified by using Bob’s (Alice’s) public key.

Theorem 2: If both Alice and Bob are honest and their
k-pair delegation set is trustworthy, the contract verification
protocol ensures that they will both receive the correct contract
proofs. Otherwise, with high probability, neither one will
receive a valid contract proof and the transaction is aborted.

D. Phases three and four: Money Transfer and Contract
Execution

Before providing the service, Alice requests its delegation
to transfer money, which is illuminated in the middle portion
of Figure 1. Upon receiving a money transfer request from
Alice, the delegation member DA(i) invokes the following
procedure.

DA(i).TransferMoneyProvider(Contracts c, ContractProof cA)
1. if valid(c, cA) and DB(i).TransferMoneyConsumer(c, cA)
2. TMA = TMA + c.L
3. else verify()

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1095

BobAlice Alice AliceBob Bob

ProsecutionMoney Transfer

Contract Verification

(Alice Bob)

c

c

cA

c

Yes/No

Yes/No

AA

A
cB

Bc
c ps

psi

j

c

Members in Alice’s Delegation set Members in Bob’s Delegation set

psi

psj

Fig. 1. Protocols for contract verification and exchange (left), money transfer (middle), and prosecution (right).

In Line 1, both DA(i) and DB(i) need to validate the
contract by using Bob’s public key, which can be queried
from Bob if it is not locally available. After validation, DA(i)
increases Alice’s earned money in Line 2.

Note that DB(i) may be malicious. If DA(i) cannot get a
positive answer from DB(i), it must verify the validity of the
contract further (Line 3), which can be designed as follows.
DA(i) asks other members in DA. If the majority of DA have
received a positive answer from DB , the contract is considered
to be valid (DB(i) is malicious). Otherwise, the contract is
considered to be invalid and Alice is punished.

When DB(i) receives a money transfer request from DA(i),
it performs the following operations.

DB(i).TransferMoneyConsumer(Contract c, ContractProof cA)
1. if valid(c, cA) then
2. if mB > c.L then
3. TMB = TMB − c.L
4. return true;
5. else
6. punish(B)
7. return false;
8. else return false;

First, if the contract is valid (Line 1) and Bob has enough
money to pay the service (Line 2), then Bob’s spent money is
increased and a positive answer is returned to DA(i) (Line 3
and 4). Second, it is possible that the contract is valid but Bob
does not have enough money. This happens when Alice and
Bob are colluding nodes and Alice gets the contract proof cA

directly from Bob instead through her delegation. In such a
case, Bob is punished and a negative answer is returned (Line
6 and 7). Third, if the contract is invalid, a negative answer is
returned (Line 8).

DA(i) and DB(i), ∀i ∈ [1..k], perform money transfer at
most once for each contract. They keep track of the sequence
numbers (SeqA and SeqB) of the last contract for which the
money has been transferred. All new contracts have larger
sequence numbers.

E. Phase five: Prosecution

After Bob receives the service from Alice, if the quality of
service specified in the contract is not met, Bob may issue a
prosecution request to Alice’s delegation, as illustrated in the
right portion of Figure 1. The request specifies the amount of
money f that Bob thinks he has overpaid.

Upon receiving a prosecution request from Bob, if DA

cannot evaluate the service quality, it punishes both Alice and

Bob by freezing the money overpaid by Bob. The procedure
is given as follows.

DA(i).Prosecution(Contract c, ContractProof cB , Overpaid f)
1. if valid(c, cB) and f ≤ c.L then
2. OMA = OMA + f
3. notify(A)

First DA(i) validates the prosecution request by checking if
the contract proof is authentic (Line 1). If the contract is valid,
it increases Alice’s overpaid money by f (Line 2). Finally, it
notifies Alice so that Alice is able to determine whether to sell
service to Bob in the future.

VI. SYSTEM PROPERTIES AND DEFENSE AGAINST

VARIOUS ATTACKS

A. System Properties

We study the properties of MARCH, which solves or
alleviates the problems in the previous approaches.

First, according to the money transfer procedures in Sec-
tion V-D, transactions among members in the same colluding
group cannot increase the total amount of available money of
the group. We have the following property, which indicates
that the malicious nodes cannot benefit by cooperation.

Property 1: Regardless of its size, a colluding group cannot
increase its members’ money or reputation by cooperation
without decreasing other members’ money and/or reputation.

Second, unlike some other schemes [1], [2], [4], [5],
MARCH does not maintain the history of any consumer’s
complaints, and does not punish frequent complainers. Thus,
we have the following property.

Property 2: If a consumer is deceived, it is not restricted
by the system in any way from seeking prosecution against
the malicious providers.

Third, the overpaid money is not returned to the complain-
ing consumer, which eliminates any reason for the consumer
to lie if the consumer is not malicious. If the consumer is
malicious and intends to defame the providers, it has to pay the
price for the transactions before committing any harm, which
serves as an automatic punishment. Consequently, its ability
of defaming is limited by the money it has, which cannot be
increased artificially by collusion, according to Property 1.

In addition, by Property 2, a deceived consumer can seek
revenge with no restriction, which means a malicious provider
cannot benefit from its action. We have the following proper-
ties.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1096

Property 3: A malicious provider cannot benefit by de-
ceiving the consumers, and a malicious consumer will be
automatically punished for defaming the providers.

Property 4: The maximum amount of loss for an innocent
provider or consumer in a transaction with a malicious node
is limited by the price specified in the contract.

Property 3 removes financial incentives to cheat. A provider
can make money only by serving others; a consumer will
not be refunded for cheating. Property 4 makes sure that an
innocent node will not be subject to negative discrimination
attacks [1], in which nodes with excellent reputation can
severely damage other nodes.

In summary, the malicious nodes cannot increase their
power (in terms of available money) by cooperation, and
they can only attack others at the cost of their own interests,
i.e., money and/or reputation. Consequently, the total damage
caused by the malicious nodes is strictly limited. They will
eventually be rejected from the system due to poor reputation
or be enforced to serve others for better reputation in order to
stay in the system.

B. Defending Against Various Attacks

In the following, we consider four different types of attacks
launched by a colluding group [1].

Unfairly high ratings: The members of a colluding group
cooperate to artificially inflate each other’s reputation by false
reports, so that they can attack innocent nodes more effectively.
In MARCH, a colluding group can inflate the reputation of
some members only by moving the available money from
other members to them. According to Property 1, the total
money in the group cannot be inflated through cooperation.
Therefore, although some members’ reputation can be made
better, other members’ reputation will become worse, making
them ineffective in attacks.

Unfairly low ratings: Providers collude with consumers
to “bad-mouth” other providers that they want to drive out
of the market. Because MARCH requires all consumers to
pay money for their transactions before they can defame the
providers, the malicious consumers lose their money (and
reputation) for “bad-mouthing”, which in turn makes it harder
for them to stay in the system.

Negative discrimination: A provider only discriminates
a few specific consumers by offering services with much
lowered quality than what the contract specifies. It hopes to
earn some “extra” money without damaging its reputation
since it serves most consumer honestly. In MARCH, a provider
cannot make such “extra” money because of the prosecution
mechanism and Properties 2-3.

Positive discrimination: A provider gives an exceptionally
good service to a few consumers with high reputation and an
average service to the rest consumers. The strategy will work
in an incentive scheme where a consumer’s ability of affecting
a provider’s reputation is highly related to the consumer’s
own reputation, and vice versa. MARCH does not have this
problem. The provider’s reputation changes after a transaction
is determined by how much money it receives for the service,
not by the reputation of the consumer.

VII. DISCUSSIONS

In this section, we discuss other important issues on imple-
menting MARCH. Due to space limitation, we will not discuss
them in details.

A. Rewarding Delegation Members

The system should offer incentive for the delegation mem-
bers to perform their tasks. A simple approach is for the
provider and the consumer of a transaction to reward their
delegation members with a certain amount of money.

B. Money Refilling

Because the overpaid money will be frozen forever, the total
amount of available money in the whole system may decrease
over the time. As a result, the system may enter into deflation
and lack sufficient money for the providers and the consumers
to engage in transactions. This problem can be addressed by
money refilling. The delegation members of a node A will
replenish the total money TMA of the node at a slow, steady
rate. In this way, a minimal amount of service is provided
to all consumers, even the free-riders, at all time, which we
believe is reasonable. For additional service, a consumer has
to contribute to the P2P network by also serving as a provider.

C. System Dynamics and Overhead

In a P2P network, nodes may join/leave the network at any
time. When a node X leaves the network, its DHT table will be
taken over by the closest neighbor X ′. In MARCH, suppose X
is a delegation member of A. After X leaves the network, X ′

will become a new member in A’s delegation. In order to deal
with abrupt departure, X ′ should cache the information kept
at X , or it can learn the information from other delegation
members after X leaves. Moreover, the maintenance of the
delegation may be free for a specific DHT network.

The communication overhead of a transaction (excluding the
actual service) consists of O(k) control messages. This over-
head is quite small when comparing to the services themselves,
such as downloading video files of many gigabytes. More
importantly, the overhead does not increase with the network
size, which makes MARCH a scalable solution, comparing
with other schemes [12], [13].

VIII. SIMULATION

In our simulations, the dishonest nodes fall into three
categories with equal probability.

Category one: These nodes never offer services to others
after receiving money, and always defame the providers after
receiving services.

Category two: When these nodes find that they may be
rejected from the system, they behave honestly. Otherwise,
they behave in the same way as the nodes in category one.

Category three: When these nodes find that they may be
rejected from the system, they behave honestly. Otherwise,
they cheat their transaction partners with a probability taken
from [0.5, 1] uniformly at random.

If not explicitly specified otherwise, the system parameters
are set as follows. The number of nodes is 100,000 and k is

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1097

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000

nu
m

be
r

of
 u

nt
ru

st
w

or
th

y
de

le
ga

tio
ns

number of dishonest nodes

k=3
k=5
k=7

Fig. 2. Trustworthiness of delegation

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 500 1000 1500 2000 2500 3000

pr
ob

ab
ili

ty
 o

f
k-

pa
ir

 s
et

 b
ei

ng
 u

nt
ru

st
w

or
th

y

number of dishonest nodes

3-pair delegation set
5-pair delegation set
7-pair delegation set

Fig. 3. Trustworthiness of k-pair delegation
set

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400 450 500

nu
m

be
r

of
 r

ej
ec

te
d

no
de

s

avg. number of transactions performed by each node

honest nodes
dishonest nodes

Fig. 4. Most of malicious nodes are rejected
within the first 50 transactions.

 0

 0.005

 0.01

 0.015

 0.02

 0 50 100 150 200 250 300 350 400 450 500ra
tio

 o
f

ov
er

pa
id

 m
on

ey
/f

ai
le

d
tr

an
sa

ct
io

ns

avg. number of transactions performed by each node

failed transaction ratio
overpaid money ratio

Fig. 5. The failed transaction ratio and the
overpaid money ratio drop quickly to small
percentages within the first 100 transactions.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0 500 1000 1500 2000 2500 3000

ra
tio

 o
f

ov
er

pa
id

 m
on

ey

number of dishonest nodes

overpaid money ratio

Fig. 6. The overpaid money ratio (measured
after 250 transactions) increases linearly with
the number of dishonest nodes.

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000 2500 3000

nu
m

be
r

of
 r

ej
ec

te
d

no
de

s

number of dishonest nodes

honest nodes
dishonest nodes

Fig. 7. The number of rejected dishonest nodes
(measured after 250 transactions) increases lin-
early to the number of dishonest nodes.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.4 0.5 0.6 0.7 0.8 0.9 1

ra
tio

 o
f

ov
er

pa
id

 m
on

ey

threshold

overpaid money ratio

Fig. 8. The overpaid money ratio with respect to the threshold

 0

 200

 400

 600

 800

 1000

 1200

 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r

of
 r

ej
ec

te
d

no
de

s

threshold

honest nodes
dishonest nodes

Fig. 9. The number of rejected nodes with respect to the threshold

5. The average number of dishonest nodes is 1,000. Initially,
the total money for a node is 500, and the overpaid money is
0. The service price G estimated by the consumers is 10. The
threshold T is 0.9. To satisfy the threshold requirement, the
maximum selling price for a provider is denoted as max (max
is the maximum value of L that keeps R above the threshold,
calculated based on Eq. (3). If max is negative, then the node
can no longer be a provider. If a dishonest node in Category
two or three finds that its max value may become negative
after additional malicious acts, it will behave honestly). The
actual selling price is a random number taken uniformly from
(0,max]. If a node can neither be a provider (due to poor
reputation), nor be a consumer (due to little money), it is said
to be rejected from the system.

If one participant in a transaction tries to deceive the other
one, the transaction is called a failed transaction. We define

“failed transaction ratio” as the number of failed transactions
divided by the total number of transactions, and “overpaid
money ratio” as the total amount of overpaid money divided
by the total amount of money paid in the transactions. These
metrics are used to assess the overall damage caused by
dishonest nodes.

A. Effectiveness of Authority

The first set of simulations study the trustworthiness of the
delegations and the k-pair delegation sets. Figure 2 shows
the number of untrustworthy delegations with respect to the
number of dishonest nodes, and Figure 3 shows the probability
for an arbitrary k-pair delegation set to be untrustworthy. By
the figures, out of 100,000 delegations/delegation sets, only a
few of them are untrustworthy. Even when there are 3,000
dishonest nodes, the number of nodes with untrustworthy
delegations for k = 5 is just 23, and the 5-pair delegation

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1098

set is trustworthy with a probability larger than 99.8%.
Note that when a delegation is untrustworthy, the dishonest
members may not belong to the same colluding group. Without
cooperation, the damage they can cause will be smaller.

B. Effectiveness of MARCH

The second set of simulations study the effectiveness of our
incentive scheme. Figure 4 presents how the number of re-
jected nodes changes with the average number of transactions
performed per node, which can be used as the logical time as
the simulation progresses. Recall that the default number of
dishonest nodes is 1,000. The figure shows that most dishonest
nodes are rejected from the system within 50 transactions per
node. Because of money refilling, some rejected nodes will
recover after enough money is refilled, but they will be rejected
again after performing malicious transactions. No honest nodes
are rejected from the system during the simulation.

Figure 5 shows that the failed transaction ratio drops quickly
from 1.4% to 0.3% within the first 100 transactions per node,
and the overpaid money ratio drops from 1.4% to 0.2% in
the same period. As the time progresses, these ratios become
even more insignificant. Note that the overpaid money ratio
is smaller than the failed transaction ratio. This is because
the dishonest providers have to lower their prices in order
to compete with honest providers, which in turn lowers their
ability to cause significant damage. Ironically, if a dishonest
node with poor reputation wants to stay in the system, not
only does it have to behave honestly to gain reputation, but
also it has to do so with lower price in order to get consumers,
which “repairs” the damage it does to the system previously.

Next, we study how the number of dishonest nodes affects
the system performance. Figure 6 shows the overpaid money
ratio after 250 transactions per node. We find that the ratio
increases linearly with the number of dishonest nodes. How-
ever, even when there are 3,000 dishonest nodes, the overpaid
money ratio remains very small, just 0.15%. Figure 7 shows
that the more the number of dishonest nodes, the more they
are rejected.

Last, we study the impact of the threshold on the system
performance. The threshold is used by a consumer to select
the potential providers (Section V-B). Figure 8 shows that
the overpaid money ratio decreases linearly with the threshold
value, which means the system performs better with a larger
threshold. Figure 9 shows that the number of rejected dishonest
nodes is largely insensitive to the threshold value. However,
when the threshold is too low, some honest nodes may be
rejected by the system because a smaller threshold allows
the dishonest nodes to do more damage on the honest nodes,
which may even cause some honest nodes to be rejected from
the system due to defamed reputation. The numbers in the
above two figures are measured after 250 transactions per
node.

IX. CONCLUSION

We propose a distributed incentive scheme (called MARCH)
for P2P networks. The scheme uses a distributed authority
infrastructure with delegations, instead of a centralized server,

to maintain the money/reputation information of the nodes.
We use a five-phase transaction framework to incorporate
both virtual money and reputation into our scheme, which
solves a number of problems that the previous schemes
have. We also present a key sharing protocol and a contract
verification protocol to produce the contract proofs that are
authorized by the delegations of the provider and the consumer
of a transaction. We analyze the system properties and use
simulations to evaluate the system performance. The results
demonstrate that MARCH has the potential to solve the free-
riders problem in today’s P2P networks.

REFERENCES

[1] C. Dellarocas, “Immunizing online reputation reporting systems against
unfair ratings and discriminatory behavior,” Proc. of EC’00: the 2nd
ACM conference on Electronic commerce, 2000.

[2] M. Srivatsa, L. Xiong, and L. Liu, “Trustguard: Countering vulnera-
bilities in reputation management for decentralized networks,” Proc. of
WWW’05, May 2005.

[3] P. Dewan and P. Dasgupta, “Securing reputation data in peer-to-peer
networks,” Proc. of Parallel and Distributed Computing and Systems,
2004.

[4] Y. Wang and J. Vassileva, “Bayesian network trust model in peer-to-peer
networks,” Proc. of AP2PC’03, 2003.

[5] M. Venkatraman, B. Yu, and M. P. Singh, “Trust and reputation
management in a small-world network,” Proc. of ICMAS’00, 2000.

[6] S. Marti and H. Garcia-Molina, “Identity crisis: Anonymity vs. rep-
utation in p2p systems,” in Third IEEE International Conference on
Peer-to-Peer Computing, 2003.

[7] M. Jakobsson, J. Hubaux, and L. Buttyan, “A micropayment scheme
encouraging collaboration in multi-hop cellular networks,” Proc. of
Financial Crypto’03., 2003.

[8] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer, “Karma: A secure
economic framework for p2p resource sharing,” Proc. of the Workshop
on the Economics of Peer-to-Peer Systems, June 2003.

[9] Y. Zhang, W. Lou, and Y. Fang, “Sip: a secure incentive protocol against
selfishness in mobile ad hoc networks,” Proc of WCNC’04, March 2004.

[10] J. C. L. T.B. Ma, Sam C.M. Lee and D. K. Yau, “A game theoretic ap-
proach to provide incentive and service differentiation in p2p networks,”
Proc. of ACM SIGMETRICS/PERFORMANCE, June 2004.

[11] L. Buttyn, “Removing the financial incentive to cheat in micropayment
schemes,” IEE Electronics Letters, Vol. 36 No. 2, pp.132-133, January
2002.

[12] S. Lee, R. Sherwood, and B. Bhattacharjee, “Cooperative peer groups
in nice,” Proc. of INFOCOM’03, Apr 2003.

[13] M. Feldman, K. Lai, I. Stoica, and J. Chuang, “Robust incentive
techniques for peer-to-peer networks,” in ACM Electronic Commerce.,
2004.

[14] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
Proc. of ACM SIGCOMM’01, pp. 149–160, August 2001.

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content addressable network,” Proc. of ACM SIGCOMM’01,
August 2001.

[16] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” Proc. of
Middleware’01, November 2001.

[17] M. Castro, P. Drushel, A. Ganesh, A. Rowstron, and D. Wallach, “Secure
routing for structured peer-to-peer overlay networks,” Proc. of OSDI’02,
2002.

[18] J. R. Douceur, “The sybil attack,” Proc. of IPTPS’01: Revised Papers
from the First International Workshop on Peer-to-Peer Systems, pp. 251–
260, 2002.

[19] Y. G. Desmedt and Y. Frankel, “Threshold cryptosystems,” Proc. of
CRYPTO’89, pp. 307–315, 1989.

[20] E. Friedman and P. Resnick, “The social cost of cheap pseudonyms,”
Journal of Economics and Management Strategy, 2001.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1099

