
Pack up Cloud: Recursive Datacenter Resource
Management and Experimental Studies
Ye Xia† Shigang Chen† Mauricio Tsugawa‡ Jose A. B. Fortes‡

† Department of Computer and Information Science and Engineering, University of Florida

‡ Department of Electrical and Computer Engineering, University of Florida

Abstract—Today’s virtualized resource management in data-
centers is typically VM-centric, which has serious problems in
scalability. We propose a shift from the traditional flat, fine-
grained model towards a hierarchical, abstract model that facil-
itates decomposition of the complex resource allocation problem
in a divide-and-conquer approach. In particular, this paper
elaborates a pack-centric framework in datacenter resource
management, provides a case study with a recursive algorithm,
and presents detailed results from experimental studies on
VM-PM mapping through recursive resource allocation, which
demonstrates the performance and scalability of the pack-centric
framework.

I. INTRODUCTION

Today’s virtualized resource management in datacenters is

typically VM-centric. Each client specifies a desired number

of virtual machines (VMs) as well as resource requirements for

each VM [1], including CPU, memory, storage, and possibly

bandwidth, defined in deterministic terms [2]–[7] or stochastic

terms using mean and variance [8], [9]. A provider’s cloud

system has a large number of server blades mounted on racks

that are connected through layers of switches to form the

datacenter network [10]. The problem of optimal resource
management is to 1) map VMs to PMs (physical machines

or servers) such that certain cost, energy or profit objectives

are optimized, subject to server resource constraints.

We argue below that the traditional VM-PM mapping so-

lutions have serious limitation in scalability. A large cloud

system has many datacenters with numerous servers; for

instance, the number of servers in the Amazon EC2 cloud was

estimated by some to be about half a million [11]. Optimal

resource management, which is often formulated as non-

linear, mix-integer optimization problems, carries tremendous

computational complexity [12]–[14]. The resource allocation

matrix that maps VMs to servers could alone have many bil-

lions of free variables: Consider a typical resource allocation,

A =

⎡
⎣
a11 · · · a1N

· · ·
aM1 · · · aMN

⎤
⎦, where each element has the form

of aij =
(
aCPU
ij , amem

ij , ...
)
, specifying different resources

allocated to VM i from server j. In the latter case, A is called

the placement matrix. Here, M is the number of requested VM

instances and N denotes the number of servers. Consider an

example where there are 10 datacenters, each having 10,000

servers, and they together host 200,000 VMs, each requesting

five types of resources. The resource allocation matrix will

have 100 billion variables.

Some existing solutions try to alleviate the computation

burden by restricting to a narrower set of resource types and

applying aggressive heuristics, which limit their practical val-

ues. While the major providers do not disclose their resource

allocation algorithms, the performance of the simple heuristics

(e.g., first-fit, round-robin, etc.) that we see in open-source

middleware stacks [15]–[17] is underachieving. No prior work

provides a generic, scalable framework for comprehensive

resource management of arbitrary scale.

What are the reasons that limit the scalability and agility of

traditional approaches? We believe a key reason is their VM-

centric view, which adopts a flat, fine-grained model, where

resource management is performed directly on individual VMs

and servers. Such a fine-grained model causes the problem size

to be enormous. We propose a fundamental shift toward a hi-
erarchical, abstract model that facilitates decomposition of the

problem in a divide-and-conquer approach. More specifically,

we apply the concepts of pack and swad to provide recursively

defined multi-level abstractions of client demand and cloud

resources. A collection of resource-sharing VMs is modeled

as a pack, and multiple packs can be further abstracted into a

higher-level pack, giving rise to a hierarchical organization of

VMs and packs. Similarly, the resources in the cloud are also

organized into a multilevel hierarchical structure of servers,

swads of servers, swads of swads, and so on. Datacenter

resource management is transformed from a problem of VM-

server mapping to a problem of pack-swad mapping, with the

problem size being progressively reduced as more levels of

pack/swad abstractions are introduced.

We recently introduced the concepts of pack and swad as

a work-in-progress [18], which however lacks any recursive

pack-swad assignment algorithms or substantial experimental

support to justify their practical effectiveness. This paper

further elaborates the pack-centric framework in datacenter

resource management, provides a case study for the framework

with a recursive algorithm, and most importantly presents

detailed results from experimental studies on VM-PM map-

ping through recursive resource allocation, using a software

prototype. The results show that the proposed pack-swad

assignment algorithm is not only scalable (particularly when

the bottom-level assignment is performed in parallel) but also

achieves far better performance in terms of cost optimization

than heuristics, while the VM-centric optimization cannot

scale to even modest-sized problems.

2015 IEEE International Conference on Smart City/SocialCom/SustainCom together with DataCom 2015 and SC2 2015

978-1-5090-1893-2/15 $31.00 © 2015 IEEE

DOI 10.1109/SmartCity.2015.185

902

Corporation

Shanghai pack
Headquarters pack

London pack

Servers
Engineering
 Pack

Management
 Pack

Finance
 Pack

VM ... VM VM ... VMVM ... VM

Fig. 1. Pack-based requirements

II. PACK-CENTRIC DATACENTER RESOURCE

MANAGEMENT

A. Overall Framework

We define a pack as a set of VMs or other packs that

should be placed as a group in a datacenter for the purpose of

resource sharing or performance enhancement. This recursive

definition allows a client to organize its resource demand

in a hierarchical structure, as illustrated by the example in

Fig. 1, where a multinational corporation outsources its IT

infrastructure to the cloud. The corporation has a branch in

London, a branch in Shanghai, and its headquarter in San

Jose, corresponding to three packs, where the headquarter

pack further consists of corporate server VMs and three

lower-level packs, describing the resource requirements by

the management department, the finance department, and the

engineering department, respectively. While each client of a

cloud service provider may specify its resource requirement in

packs and VMs, the provider will integrate such requirements

from all its clients into a single pack hierarchy, which will be

discussed shortly.

We define a swad as a set of servers or lower-level swads in

a cloud system. The resource capacity of a swad is equal to the

sum of the capacities of its components, possibly excluding a

certain percentage of resources that may be set aside to support

elasticity (which allows a VM or pack dynamically scale up

its resources in real time). For example, we may use a swad

to represent the servers of each rack in a datacenter. We then

recursively group a certain number N of lower-level swads

into higher-level swads, giving rise to a hierarchical structure

(tree), with an arbitrary number of levels and with the root

representing all resources owned by a cloud service provider.

Packs and swads will manifest their real value when they are

used together to transform the problem of VM-server mapping

into a series of much smaller problems of pack-swad mapping.

Suppose a cloud service provider receives a large set of client

requests in the form of packs or VMs. It will recursively group

them into artificial higher-level packs to form a pack hierarchy.

We give a simple algorithm that constructs a pack hierarchy

with the same number of levels as the swad hierarchy. It first

places the individual packs and VMs from the clients at the

appropriate levels where each of them can be satisfied by

a single swad at the same level. It then recursively groups

the VMs and packs level by level from bottom up to create

artificial packs. The resource requirement of an artificial pack

is the combined requirement of its children; the grouping can

be arbitrarily made as long as each artificial pack can be

satisfied by one swad at its level. Note that there can be a lot

more packs than swads at each level, with each pack readily

fit in any swad. This paper focuses on experimental studies to

justify the usefulness of the pack-centric resource management

framework. We defer a detailed study on other algorithms for

constructing the pack hierarchy and the swad hierarchy to a

separate future work.

Starting from the top of the swad hierarchy, the pack-to-

swad assignment algorithm is performed recursively. First, we

map the top-level packs to the top-level swads, such that each

swad has sufficient capacity to support the packs mapped to

it. Then, for each swad and the packs it supports, we further

map the child packs to the child swads. This process repeats

recursively until the VMs are mapped to the servers. It breaks

a large problem of enormous complexity into small problems

that are far more manageable and can be solved in parallel. The

above procedure transforms the complex problem of global

resource management into a hierarchically structured one,

where the resource requirements and performance constraints

can be enforced iteratively from higher-level swads/packs to

lower-level swads/packs with a decentralized implementation

in the datacenters.

B. An Concrete Application of the Framework

We apply the above framework on a concrete problem with

disk exclusivity constraints. It will be used in the experimental

studies in the next section. Consider an arbitrary step in the

recursive pack-to-swad assignment algorithm, with N packs

to be assigned to M swads, where the packs will be actually

VMs and the swads be PMs if the assignment is at the bottom

level of the pack/swad hierarchies. Each pack has the following

resource requirements: memory (GB), vCPU, number of local

disk volumes (virtual ones) and their sizes. Similarly, each

swad has a certain amount of resources in terms of memory,

vCPUs, and disks. If the assignment is at the bottom level from

VMs to PMs, when a VM i requests multiple local disks, there

is an exclusivity requirement: no physical disk of the PM (to

which VM i is assigned) can contain more than one of VM i’s
requested virtual disks, for higher total disk throughput and/or

better fault tolerance.

Let the sets of packs and swads be denoted by V and P ,

respectively. Without loss of generality, let V = {1, 2, . . . , N}
and P = {1, 2, . . . ,M}. For each pack i, let αi be the number

of vCPUs required and let βi be the memory requirement (in

GiB of 230 bytes). Suppose for each pack i, a set of virtual

disks is requested and the set is denoted by Ri. For each of

the requested virtual disks k ∈ Ri, let νik be the requested

disk volume size (in GB).

For each swad j, let Cj be the number of available vCPUs,

Mj be the amount of memory (in GiB), and Dj be the set of

available physical disks. The sizes of the physical disks are

denoted by Sjl (GB) for l ∈ Dj .

For each i ∈ V and each j ∈ P , let xij be the binary

assignment variable from pack i to swad j, which takes the

value 1 if i is assigned to j and 0 otherwise. The following

903

are the constraints posed by the swads’ capacities.
∑
i∈V

αixij ≤ βcCj , j ∈ P (1)

∑
i∈V

βixij ≤ βmMj , j ∈ P, (2)

∑
i∈V

xij(
∑
k∈Ri

νik) ≤
∑
l∈Dj

Sjl, j ∈ P, (3)

∑
i∈V

|Ri|xij ≤ βd|Dj |, j ∈ P, (4)

where βc, βm, βd ∈ (0, 1) are introduced to leave some slack

in the swad capacity for dynamic scaling or other reasons.

If V is a set of VMs and P is a set of PMs, we need to

enforce the disk exclusive constraints with binary variables

yikjl, which is set to 1 if VM i is assigned to PM j and the

requested virtual disk k, where k ∈ Ri, for VM i is assigned

to the physical disk l of PM j, where l ∈ Dj ; it is set to 0
otherwise. The following constraints are required:

yikjl ≤ xij , i ∈ V, j ∈ P, k ∈ Ri, l ∈ Dj (5)∑
j∈P

∑
l∈Dj

yikjl = 1, i ∈ V, k ∈ Ri (6)

∑
j∈P

xij = 1, i ∈ V (7)

∑
k∈Ri

yikjl ≤ 1, i ∈ V, j ∈ P, l ∈ Dj (8)

∑
i∈V

∑
k∈Ri

νikyikjl ≤ Sjl, j ∈ P, l ∈ Dj . (9)

The condition (5) ensures that the requested virtual disks for

VM i may be assigned to the physical disks of PM j only if

VM i is assigned to PM j. The condition (6) ensures that every

requested virtual disk must be assigned to exactly one physical

disk. The condition (7) ensures that every VM is assigned to

exactly one PM. The condition (8) ensures that VM i cannot

have more than one virtual disks assigned to the same physical

disk. The condition (9) is the disk capacity constraint.

The costs and performance objective will ultimately be

decided by the cloud provider. For concreteness, we assume

that a certain operational cost ĉj is incurred for a swad j if

some pack(s) is assigned to it; otherwise, there is zero cost

involved. Let zj be a 0-1 variable indicating whether swad j
is used by some packs. To ensure that zj = 1 if and only if

xi,j = 1 for some i ∈ V , we add the following two constraints,

where B is a large enough constant (it is enough to take

B = N).

zj ≤
∑
i∈V

xi,j , j ∈ P (10)

Bzj ≥
∑
i∈V

xi,j , j ∈ P. (11)

The optimization objective is to minimize the total operation

cost, which leads to profit maximization,

min
x,y,z

∑
j∈P

ĉjzj . (12)

TABLE I
VM TYPES

VM Type vCPU Memory (GiB) Storage (all SSD; GB)
m3.medium 1 3.75 1 × 4

m3.large 2 7.5 1 × 32
m3.xlarge 4 15 2 × 40

m3.2xlarge 8 30 2 × 80
c3.large 2 3.75 2 × 16
c3.xlarge 4 7.5 2 × 40

c3.2xlarge 8 15 2 × 80
c3.4xlarge 16 30 2 × 160
c3.8xlarge 32 60 2 × 320

r3.large 2 15.25 1 × 32
r3.xlarge 4 30.5 1 × 80
r3.2xlarge 8 61 1 × 160
r3.4xlarge 16 122 1 × 320
r3.8xlarge 32 244 2 × 320
i2.xlarge 4 30.5 1 × 800
i2.2xlarge 8 61 2 × 800
i2.4xlarge 16 122 4 × 800
i2.8xlarge 32 244 8 × 800

TABLE II
PM TYPES

PM Type vCPU Memory Storage Operation Costs
(GiB) (all SSD; GB) (normalized)

s1 8 16 1 × 256 100
s2 8 32 1 × 512 120
s3 8 64 2 × 512 200
s4 8 64 4 × 512 300
m1 16 32 2 × 512 600
m2 16 64 4 × 512 700
m3 16 128 4 × 1000 900
m4 16 256 8 × 1000 1500
m5 16 256 16 × 512 1800
l1 32 256 4 × 1000 2500
l2 48 512 8 × 1000 3500
l3 64 1024 4 × 1000 5000
l4 80 2048 16 × 1600 7000
l5 120 4096 4 × 1000 9000
l6 120 4096 24 × 1600 12000

III. EXPERIMENTAL STUDIES

To demonstrate the effectiveness of the pack-based frame-

work in scalability and performance improvement, we present

the results from experimental studies on VM-PM mapping

based on the application of the framework in Section II-B.

A. Experimental Setup

• VM Types: We take a subset of the allowed VM types

(classes) of Amazon’s EC2 [19]. Their resource requirements

are shown in Table I.

• PM Types: Cloud providers generally don’t disclose the

capabilities of all their PMs. For our experiments, we use the

PM types of Amazon EC2 in Table II, whose details are largely

our guess (based on the information revealed on Amazon’s

web site).

• Greedy randomized heuristic algorithm for comparison:
Since we are not aware of prior studies on exactly our problem

instance, as a target for performance comparison, we had to

develop our own heuristic algorithm. The heuristic algorithm

is motivated by the general ideas of online randomized algo-

rithms [20]–[22] but should achieve much lower costs than the

904

TABLE III
FLAT OPTIMIZATION COMPUTATION TIME

Num. of VMs Num. of PMs Average Run Time (seconds)
20 20 7.8
40 40 75
70 50 106
77 70 3756
90 75 4885

latter due to two exhaustive search steps. In our experiments,

all the VMs to be placed are given together in a batch. Our

greedy randomized algorithm first randomly permutes the list

of all the requested VMs. For each VM in the permuted list,

an attempt is made to assign the VM to a PM. The greedy

aspect is that, for assignment, the list of used PMs, which are

those already with some assigned VMs, is checked first; if the

VM cannot be assigned to any PM in the used list, then the

list of unused PMs is checked. The greediness tends to lead to

more VM consolidation. In scanning either PM list, the order

of scanning is uniformly random. For each scanned PM, our

heuristic algorithm checks whether it is possible to assign the

currently considered VM to that PM. For disk assignment, the

algorithm exhaustively enumerates different disk assignment

possibilities and uses the first one that is feasible.

• VM-PM Mapping: The experiments are to assign 1000
VMs to 1000 PMs of different types. This problem size is

way too big for a flat VM-centric optimization solution that

directly maps VMs to PMs without pack and swad hierarchies.

The experimental results of applying the optimization of

Section II-B on VMs and PMs directly are shown in Table III.

• Setting for Pack-Swad Assignment Algorithm: We use the

recursive algorithm in Section II-B with two-level hierarchies.

Packs and Swards are constructed as follows. We split the VMs

randomly into 25 packs, each containing different types pro-

portional to their respective total numbers, and split the PMs

randomly into 25, each containing different types proportional

to their respective total numbers. In this case, the pack and

swad hierarchies each have two levels. In the pack hierarchy,

the root pack has 25 child packs, each of which has 40 VMs

as children. Similarly, in the swad hierarchy, the root swad has

25 child swads, each of which has 40 PMs as children. We

set the default values of βc, βm, and βd to zeros, but for the

first-level pack-swad assignment, we let 0 < βd ≤ 1 — we

stipulate that the total number of disks requested by all the

packs assigned to a swad is no more than βd times the total

number of disks provided by the swad. The reason for doing so

is that disk exclusivity is often a difficult constraint to satisfy

in the second-level optimization problems. By reducing βd

in the first-level optimization, we can spread out packs more

across the swads to gain more room for maneuver.

B. Performance Evaluation and Comparison

The results of the experiments are summarized in Table IV.

1) Mix 1: The mix of VMs and PMs is described in

Table V. At the first-level pack-swad assignment, βd = 0.7.

The pack-swad assignment algorithm achieves a total cost

82, 540. This number should be compared with the randomized

TABLE IV
SUMMARY OF RESULTS: PACK-SWAD ASSIGNMENT V.S. HEURISTICS

Experiments Two-Level Decomp. Heuristics
Mix 1 Cost 82540 150573

Run Time (s) 1281;75 per swad

Mix 2 Cost 487840 601914
Run Time (s) 3366;280.5 per swad

Mix 1; Smaller Cost 98040 150573
Pack/Swad Sizes Run Time (s) 202;7.8 per swad

TABLE V
1000 VMS AND 1000 PMS - MIX-1

VM Type No. of VMs PM Type No. of PMs
m3.medium 500 s1 150

m3.large 200 s2 150
m3.xlarge 150 s3 150
m3.2xlarge 150 s4 150

c3.large 0 m1 100
c3.xlarge 0 m2 100
c3.2xlarge 0 m3 100
c3.4xlarge 0 m4 50
c3.8xlarge 0 m5 50

r3.large 0 l1 0
r3.xlarge 0 l2 0
r3.2xlarge 0 l3 0
r3.4xlarge 0 l4 0
r3.8xlarge 0 l5 0

16 0
i2.xlarge 0

i2.2xlarge 0
i2.4xlarge 0
i2.8xlarge 0

heuristics, which has an average (over 50 runs) total cost

150, 573, a standard deviation 4951, a minimum cost 140, 060
and a maximum cost 165, 840. The pack-swad assignment al-

gorithm achieves about half the cost as that of the randomized

heuristics.

Next we discuss the algorithm running time. A total 17
swads are used after the first-level pack-to-swad assignment.

A used swad is allocated 1 or 2 packs. The computation for

the first-level assignment took very little time, on the order of

a few seconds, due to the small problem size at this level.

For the second-level VM-to-PM assignments, the total run-

ning time is 1281 seconds, which is the aggregate for 17
different computations for the 17 used swads. The average

running time is 75 seconds per swad. Note that these 17
different assignment subproblems are completely independent

and could run in parallel on different computers. There is

variability in the running times for different swads, due to

different problem sizes. The running times are shown in

Fig 2, sorted in increasing order. Overall, we see that the

optimization that assigns VMs to PMs at the bottom level of

hierarchies is where the computation complexity lies. To get

a solution within a prescribed time budget, the size of each

such optimization subproblem needs to be limited.

The heuristic algorithm took a fairly long time, hundreds of

seconds per run. It computation time scales with the product

of the total number of VMs and the total number of PMs.

We make additional comments about the experimental re-

sults. In the optimal solution for the first-level assignment,

905

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

Different Swads

Fig. 2. Sorted running times for VM-to-PM assignment for different swads;
mix-1

the utilization of various resources is generally low. This is in

part due to the chosen granularities of the packs and swads,

measured in the numbers of VMs and PMs, respectively. For

instance, while the resource utilization at a swad may be low,

bringing in another pack to the swad involves a big jump in

the total resource requirements, likely exceeding the resources

provisioned by the swad. The other part of the reason is

the inherent imbalance in the supply and demand of various

resources. In the setting of our experiments, the vCPUs tend

to be the resource bottleneck. The total number of disks also

tends to be a stringent resource when considered jointly with

the vCPUs. Recall that the disks requested by a VM can only

be assigned to the PM to which the VM itself is assigned.

Since each PM typically can accommodate a small number of

VMs due to the vCPU constraint, it follows that a PM can

accommodate a small number of disks even if the PM’s total

disk capacity is abundant.

The resource utilization is shown in Fig. 3. The four

curves correspond to four different types of resources: vCPU,

memory, the number of disks (lssd) and the total disk size.

The utilization of the ‘number of lssd’ is the highest, ranging

from 40% to close to 70%. Given that the safety margin is

set at β = 0.7, we see that the optimal solution tends to

saturate that constraint. The next highest utilization is that of

the vCPU, ranging from 25% to 50%. The total lssd size and

the memory are seriously under-utilized, at around 10% and

20%, respectively.

2) Mix 2: The mix of VMs and PMs is described in Table

VI. At the first-level pack-swad assignment, βd = 0.7.

The pack-swad assignment algorithm achieves a total cost

487, 840. Out of the 25 swads, 12 of them are used. The total

algorithm running time is 3366 seconds, or 280.5 seconds per

swad. The running time for VM-to-PM assignment (at the

bottom level) for each of the used swad is shown in Fig. 4.

We ran the randomized heuristics 50 times, which took

hours. The average cost of the heuristic algorithm is 601, 914
and the standard deviation is 5079; the minimum and the

maximum costs are 589, 900 and 613, 520, respectively. The

heuristic algorithm is about 23% more costly than the pack-

swad assignment algorithm.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

U
til

iz
at

io
n

(%
)

Different Swads

number of lssd
vCPU
memory
lssd size

Fig. 3. Resource utilization for different swads; mix-1

TABLE VI
1000 VMS AND 1000 PMS - MIX-2

VM Type No. of VMs PM Type No. of PMs
m3.medium 200 s1 100

m3.large 100 s2 100
m3.xlarge 100 s3 100
m3.2xlarge 100 s4 100

c3.large 50 m1 100
c3.xlarge 50 m2 100
c3.2xlarge 50 m3 50
c3.4xlarge 50 m4 50
c3.8xlarge 50 m5 50

r3.large 50 l1 50
r3.xlarge 50 l2 50
r3.2xlarge 50 l3 50
r3.4xlarge 50 l4 50
r3.8xlarge 50 l5 50

16 0
i2.xlarge 0

i2.2xlarge 0
i2.4xlarge 0
i2.8xlarge 0

3) Mix 1 with Smaller Pack/Swad Sizes: Here, we want

to show that decreasing the sizes of the packs and swads can

reduce the computation time drastically. The mixes of the VMs

and PMs are as described in Table V. At the first-level pack-

swad assignment, βd = 0.7. The 1000 VMs are divided into

50 packs and the 1000 PMs are divided into 50 swads. Thus,

each pack has 20 random VMs and each swad has 20 random

PMs.

The first-level optimization attempts to assign the 50 packs

to the 50 swads. The result shows that 26 swads are used. The

computation time is negligible.

Each second-level subproblem attempts to assign 20 or more

VMs (on average, 1000/26 ≈ 38) to 20 PMs. The total running

time is 202 seconds, which is the aggregate for solving 26
subproblems corresponding to the 26 used swads. The average

running time is therefore 7.8 seconds per swad. Both the total

and the per-swad running times are much smaller than the case

in Section III-B1 (1281 and 75 seconds, respectively).

The total cost achieved by pack-swad assignment is 98, 040,

still a big improvement over the randomized heuristics, which

has a cost of 150, 573.

906

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 3 4 5 6 7 8 9 10 11 12

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

Different Swads

Fig. 4. Sorted running times for VM-to-PM assignment for different swads;
mix-2

TABLE VII
CONTROLLING NUMBER OF SWADS USED BY βd

βd No. of Swads Used No. of PMs Used Total Cost
Mix 1

0.5 24 346 71720
0.6 19 336 78980
0.7 17 326 82540
0.8 12 306 95740

Mix 2
0.5 22 438 443260
0.6 13 361 474440
0.7 12 346 487840

4) Effects of the First-Level Optimization: There is a com-

plex relationship between the optimization problems at the

two levels. The resulting cost depends crucially on how the

optimization problem is formulated at the first level (for pack-

to-swad assignment). For instance, it may appear reasonable

that, in order to reduce the total operation cost, the first-

level optimization problem should aim at reducing the number

of swads used. We can control that number by varying the

parameter βd. The results after the first and second-level

optimization are shown in Table VII. As βd decreases, the

constraint about the number of disks becomes more stringent

in the first-level optimization and consequently, each swad is

assigned fewer packs on average and more swads are used.

However, after the second-level optimization, the total cost in

fact decreases as βd decreases. Also, the number of PMs used

after the second-level optimization increases as βd decreases.

One explanation is that, as more swads are used, there are

more second-level optimization instances (one for each used

swad), and hence, there is more opportunity to improve the

total cost. Although more swads and more PMs are used as

βd decreases, cheaper PMs tend to be used and more expensive

PMs tend to be avoided, resulting in a lower total cost. As βd

continues to decrease, the first-level optimization problem will

eventually become infeasible.

IV. CONCLUSION

We present a pack-centric framework, combined with in-

teger programming formulations and hierarchical decompo-

sition, for datacenter resource management. We also give a

case study for the framework with a recursive pack-swad

assignment algorithm. Our extensive experimental results show

that the proposed algorithm is not only scalable (particularly

when the bottom-level assignment is performed in parallel) but

also achieves far better performance than heuristics.

REFERENCES

[1] “Amazon Elastic Compute Cloud (Amazon EC2),” http://aws.amazon.
com/ec2/.

[2] J. Xu and J. Fortes, “Multi-objective virtual machine placement in
virtualized data center environments,” Proceedings of IEEE Online
Green Communications Conference (GreenCom), 2010.

[3] VMware Inc., “VMware Capacity Planner,” http://www.vmware.com/
products/capacity-planner/.

[4] V. Inc., “VMWare vCenter CapacityIQ,” http://www.vmware.com/
products/vcenter-capacityiq/.

[5] “IBM WebSphere CloudBurst,” http://www-01.ibm.com/software/
webservers/cloudburst/.

[6] “Lanamark Suite,” http://www.lanamark.com/.
[7] “Novell PlateSpin Recon,” http://www.novell.com/products/recon/.
[8] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines

with dynamic bandwidth demand in data centers,” Proceedings of IEEE
INFOCOM, pp. 71–75, 2011.

[9] H. Jin, D. Pan, J. Xu, and N. Pissinou, “Efficient VM placement with
multiple deterministic and stochastic resources in data centers,” IEEE
Global Communications Conference (GLOBECOM), 2012.

[10] “Cisco virtualized multi-tenant data center, version 2.2 design guide,”
http://www.cisco.com/en/US/docs/solutions/Enterprise/Data Center/
DC Infra2 5/DCI SRND.pdf.

[11] H. Liu, “Amazon data center size,” March 2012, http://huanliu.
wordpress.com/2012/03/13/amazon-data-center-size/.

[12] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,” in
Proceedings of IEEE INFOCOM, 2010.

[13] J. Xu and J. Fortes, “Optimization in autonomic data center resource and
performance management,” Technical Report, Department of Electrical
and Computer Engineering, University of Florida, 2012.

[14] D. Kusic, J. Kephart, J. Hanson, N. Kandasamy, and J. Guofei, “Power
and Performance Management of Virtualized Computing Environments
via Lookahead Control,” Proc.of ICAC, 2008.

[15] “Apache CloudStack Project,” http://cloudstack.org/.
[16] “OpenStack Project,” http://www.openstack.org/.
[17] “Eucalyptus Systems,” http://www.eucalyptus.com/.
[18] Y. Xia, M. Tsugawa, J. Fortes, and S. Chen, “Hierarchical mixed integer

programming for pack-to-swad placement in datacenters (working-in-
progress),” Proceedings of 12th IEEE International Conference on
Autonomic Computing, 2015.

[19] Amazon, “Amazon EC2 Instances,” http://aws.amazon.com/ec2/
instance-types/.

[20] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A scalable appli-
cation placement controller for enterprise datacenters,” in Proceedings
of WWW, 2007.

[21] W. C. Arnold, D. J. Arroyo, W. Segmuller, M. Spreitzer, M. Steinder, and
A. N. Tantawi, “Workload orchestration and optimization for software
defined environments,” IBM Journal of Research and Development,
vol. 58, no. 2/3, March/May 2014.

[22] X. Li, Z. Qian, S. Lu, and J. Wu, “Energy efficient virtual machine
placement algorithm with balanced and improved resource utilization in
a data center,” Mathematical and Computer Modelling, vol. 58, no. 5-6,
pp. 1222–1235, 2013.

907

