
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Adaptive Joint Estimation Protocol for Arbitrary
Pair of Tag Sets in a Distributed RFID System

Qingjun Xiao, Member, IEEE, ACM, Shigang Chen, Fellow, IEEE, Min Chen, Yian Zhou,
Zhiping Cai, Member, IEEE, ACM, and Junzhou Luo, Member, IEEE, ACM

Abstract— Radio frequency identification (RFID) technology
has been widely used in Applications, such as inventory control,
object tracking, and supply chain management. In this domain,
an important research problem is called RFID cardinality estima-
tion, which focuses on estimating the number of tags in a certain
area covered by one or multiple readers. This paper extends
the research in both temporal and spatial dimensions to provide
much richer information about the dynamics of distributed RFID
systems. Specifically, we focus on estimating the cardinalities of
the intersection/differences/union of two arbitrary tag sets (called
joint properties for short) that exist in different spatial or temporal
domains. With many practical applications, there is, however,
little prior work on this problem. We will propose a joint RFID
estimation protocol that supports adaptive snapshot construction.
Given the snapshots of any two tag sets, although their lengths
may be very different depending on the sizes of tag sets they
encode, we design a way to combine their information and more
importantly, derive closed-form formulas to use the combined
information and estimate the joint properties of the two tag sets,
with an accuracy that can be arbitrarily set. By formal analysis,
we also determine the optimal system parameters that minimize
the execution time of taking snapshots, under the constraints
of a given accuracy requirement. We have performed extensive
simulations, and the results show that our protocol can reduce
the execution time by multiple folds, as compared with the best
alternative approach in literature.
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I. INTRODUCTION

RFID (radio-frequency identification) technology has been
widely used in various commercial applications, includ-

ing inventory control, object tracking, supply chain manage-
ment and auto-payment, etc [1], [2]. RFID tags (each carrying
a unique identifier) are attached to merchandise at retail stores,
equipments at hospitals, or goods at warehouses, allowing an
RFID reader to quickly identify products, access properties of
each individual item, or collect statistical information about a
group of items.

An important system function is called the RFID cardinality
estimation [3]–[13], which is to estimate the number of tags
in a particular region covered by one or multiple readers.
This basic function can be used to monitor the inventory
level in a warehouse, the sales in a retail store, and the
popularity of attractions in tourism [11]. It can also serve as
a pre-processing step to make other functions (such as tag
identification [14]–[16]) more efficient. RFID estimation takes
much less time to perform than a full system scan that collects
all tag IDs. This makes it valuable since RFID systems operate
at low wireless rates and the execution time has been the key
performance metric in system design. Moreover, it does not
identify any tags, which avoids the privacy issue, particularly
in scenarios where the party performing the operation (such as
warehouse or port authority) does not own the tagged items.

Motivation: This paper extends RFID estimation in both
temporal and spatial dimensions to provide much richer infor-
mation about the dynamics of a distributed RFID system.
We use two applications to explain the problems of temporally
dispersed RFID estimation and spatially dispersed estimation,
respectively. In the first application, we consider to monitor the
dynamics of the inventory in a warehouse over time. We are
interested in the amount of goods moving in (i.e., the number
of new tags) and the amount moving out (i.e., the number of
departure tags) between any two reference time points, without
identifying the tag IDs, where the reference time points may
be evenly spaced by time intervals of a certain length. The
problem cannot be easily solved simply by estimating the
number of tags in the warehouse after each time interval by
traditional approaches [3]–[11]. For instance, if the number
of tags at time 1 is estimated to be 1000 and so does the
number at time 2, we will not be able to know whether
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no new tag has moved in or 1000 new tags have moved in
while all old tags have moved out. To handle this problem,
we need to take snapshots with more detailed information
about existing tags, such that from any two snapshots taken
at different time points, we will be able to estimate the joint
properties of the corresponding two tag sets, such as their
union, intersection and difference, which provide information
for stocking dynamics about product inflow and outflow.

In the second application, we may consider the supply
chain management in a large logistics network with mul-
tiple locations. As tagged products are shipped from loca-
tion (component factory, assembly line, warehouse, port, or
other storage/retail facility) to location, if each location takes
periodic snapshots of its tag set and keeps a series of such
snapshots over time, we will be able to make queries for joint
estimation between any two snapshots, which may be taken
from different locations or from the same location at different
times. For instance, by jointly analyzing two snapshots at
different locations, we can know the volume of a product
delivery flow from a source warehouse to another destination
warehouse in a supply chain network, which constitute the
so-called traffic matrix. In the domain of traffic measurement
for IP backbone networks, traffic matrix (i.e., the volume of
traffic that flows between all possible pairs of source and
destination routers) has been pervasively used, as it is very
valuable to a wide variety of traffic engineering tasks including
load balancing, billing, anomaly detection, and routing proto-
cols configuration [17], [18]. Similarly, we envision that the
automatic measurement of traffic matrix will in future become
crucial for the efficient operation of a RFID-enabled supply
chain network. Such joint estimation between each pair of
locations, when performed over time across the network, gives
a network-wide view about how goods flow within a logistics
network. For one application, this information can help diag-
nose erratic shipments by identifying unexpected volumes that
move over supply chains with significant deviation from a pre-
established business plan — it has been reported that, due to
such logistic errors, more than 65% of the inventory records
did not match the physical inventory. Without any automatic
tools, we will have to resort to manual inventory check to
discover the errors, which is laborious, expensive and slow,
especially when such inventory task needs to be performed at
daily basis.

Moreover, comparing with traditional RFID
estimation [3]–[11] (which were designed to operate at
a single time and a single place), the ability to jointly
consider any two temporally or spatially dispersed snapshots
will enable us to expand the applications mentioned earlier,
for example, by providing more detailed information about
changes in inventory and sales, by monitoring the flows of
tourists moving from place to place in a theme park, or by
serving as a pre-processing step to make some sophisticated
functions such as continuous tag monitoring [19] more
efficient.

Problem, Challenge and Prior Art: We abstract the
problem of joint RFID estimation from the above applications,
which is to estimate the joint properties of two arbitrary sets
of tags at different times or different locations in a large

distributed RFID system. The joint properties include the
cardinalities of the union, intersection and difference of the
two sets.

The key challenge is that when a snapshot is taken for
one tag set, we do not know which other set (at different
time/location) the joint estimation will be made with. In fact,
the snapshot can be paired with any other snapshot taken in
the past or future in the system.

There is little prior work on this practically interesting
problem. Directly related is the differential estimation method
(DiffEstm) [20], which focuses on the difference between two
sets and adopts a different problem model. It uniformly sets
the sizes of all snapshots based on the worst-case situation so
that any two can be paired. This is very inefficient because the
tag sets in a system can have very diverse sizes. For example,
in the previous logistics network application, a warehouse may
sometimes be almost empty, while carrying tens of thousands
of items at other times. Suppose the largest set the system can
handle is 50,000. Even if a tag set at a certain time is down
to hundreds, the size of its snapshot will still have to be set
according to 50,000 in [20].

Our Contributions: First, we propose a new solution for
the generalized joint RFID estimation problem based on a sim-
ple yet versatile snapshot construction. It adopts a two-phase
protocol that needs only two passes of communication between
a reader and tags to construct the snapshot of a given tag set.
The size of the snapshot is roughly proportional to the size of
the tag set, instead of being fixed to a large worst-case value.
Given the snapshots of any two tag sets, although their sizes
may be very different, we propose a way to combine their
information and more importantly derive formulas to extract
the joint properties of the two sets from the combined infor-
mation.

Second, we analyze the means and variances of the esti-
mated properties computed from the formulas. We show that
the formulas produce asymptotically unbiased results, and esti-
mate the joint properties with an absolute (probabilistic) error
bound that can be set arbitrarily. We also derive the formulas
for determining the optimal system parameters that minimize
the execution time of taking snapshots, under the constraints
of a given accuracy requirement for joint estimation.

Third, we perform extensive simulations to complement
the theoretical analysis. The results show that by allowing
the snapshots to have variable sizes, our solution signifi-
cantly outperforms the existing method. For example, under
the same accuracy requirement, our solution achieves about
240% improvement in execution time as compared with
DiffEstm [20].

The remainder of this paper is organized as follows.
Section II defines the problem of joint property estimation
for any pair of tag sets. Section III discusses the related
work. Section IV proposes our JREP protocol for encoding
each tag set into a data structure called a snapshot and then
recovering the joint property information from any pair of such
snapshots. Section V analyzes this estimation protocol’s mean
and variance. Section VI optimizes the parameters of JREP
protocol for minimizing its estimation variance. Section VII
explains how to apply our protocol to the multi-reader and
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multi-antenna environments. Section VIII evaluates the per-
formance of our protocol by simulations. Section IX draws
the conclusion.

II. PROBLEM DEFINITION

Consider a large distributed RFID system such as a supply-
chain network, consisting of multiple locations, where tagged
objects are shipped from location to location. At any time and
any location, there is a set of tags. Consider two arbitrary sets
of tags, N and N ′, at different locations or at the same location
but different times. We study the joint properties of the two
sets, including their intersection, union and difference.

Let n = |N |, n′ = |N ′|, u = |N ∪ N ′|, m = |N ∩ N ′|,
d = |N \ N ′|, and d′ = |N ′ \ N |. Without loss of generality,
we assume N is a larger set than N ′, and hence n ≥ n′.
The joint RFID estimation problem is to provide estimations
û, m̂, d̂, and d̂′ for u, m, d and d′ respectively, such that the
following pre-defined accuracy requirements are met:

Prob{û − θ ≤ u ≤ û + θ} ≥ 1 − δ (1)

Prob{d̂ − θ ≤ d ≤ d̂ + θ} ≥ 1 − δ (2)

Prob{m̂− θ ≤ m ≤ m̂ + θ} ≥ 1 − δ (3)

Prob{d̂′ − θ ≤ d′ ≤ d̂′ + θ} ≥ 1 − δ, (4)

where δ is a probability value, and θ is a probabilistic error
bound. For example, when δ = 5% and θ = 100, it requires
that the absolute error of each estimation should be within the
range of ±θ at a probability of at least 95%.

An alternative way of specifying the estimation accuracy is
based on a relative error ε ∈ (0, 1).

Prob{û (1 − ε) ≤ u ≤ û (1 − ε)} ≥ 1 − δ (5)

Prob{d̂ (1 − ε) ≤ d ≤ d̂ (1 − ε)} ≥ 1 − δ (6)

Prob{m̂ (1 − ε) ≤ m ≤ m̂ (1 − ε)} ≥ 1 − δ (7)

Prob{d̂′ (1 − ε) ≤ d′ ≤ d̂′ (1 − ε)} ≥ 1 − δ (8)

where the probabilities for the relative estimation errors û−u
û ,

d̂−d
d̂

, m̂−m
m̂ and d̂′−d′

d̂′ to fall in the range of ±ε are least 1−δ.
We do not adopt this model because it is very expensive

or even impossible to achieve as the values of m, d and d′

can be very small (down to zero). Consider m = 0. In this
case, we will have to make sure that m̂ = m = 0 in order
for (7) to be met, which means precise measurement of the
empty intersection, i.e., V ar(m̂) = 0. Because m̂ is indirectly
derived from the two snapshots, these snapshots cannot carry
any positive variance in their information based on which m̂
is computed; note that the snapshots are independent due to
N ∩ N ′ = ∅ when m = 0. Recording precise information
(such as IDs of all tags) is very expensive; all existing RFID
estimation methods collect imprecise information from tags
with non-zero variance to save time for information collection.

A critical problem is that at the time when the snapshot is
taken for any tag set, we do not know which other snapshot it
will be paired with for joint estimation. Because it is possible
to pair with another snapshot with no common tag, we will
have to make the snapshot precise (thus expensive) due to the
requirement (7).

Fig. 1. DiffEstm estimates the difference and intersection between two tag
sets by combining their bitmap snapshots, which must have the same length
and the same sampling probability.

Finally, it arguably makes more sense to specify absolute
error bound in some practical scenarios. Consider the logistics
network application. Suppose we want to monitor the volume
of products flowing from a number of factories to a number of
assembly plants. Further suppose the volume from a particular
factory to a particular plant may range from zero to ten of
thousands in each pair of snapshots. To get a rough idea about
the volume, we may specify the accuracy requirement as an
absolute error bound of ±50 items with 95% confidence. If the
actual volume is 10, even though the relative error will be
large, it does not change the fact that the estimated volume
remains very small, giving correct assessment. On the contrary,
if we specify a relative error of 1% and the actual volume is
10, it will require the estimation to have an absolute error
of ±0.1 item, which is not only expensive to achieve but
also unnecessary. Note that in this example we estimate small
intersection from snapshots of two large sets, not estimating
the cardinality of one tag set from its snapshot (e.g., bitmap)
as the traditional RFID estimation does.

III. PRIOR WORK

A. Differential Estimation

DiffEstm [20] gives a relative error model similar
to (6)-(8) but does not prove that its estimation results meet
those requirements. In fact, DiffEstm cannot always meet the
relative error bound because it has positive variance in its
snapshots, whereas the relative error model requires snapshots
to carry precise information as we have argued previously.

We give a simplified description of DiffEstm’s snapshot
construction: A reader makes a request (f, p, . . .) to tags in its
coverage zone. After a tag receives the request, it will respond
with a probability p, in a time slot randomly selected from an
Aloha frame of size f . The reader will turn the time frame into
a bitmap snapshot of length f , with each busy slot being 1 and
each idle slot being 0. In fact, in the original paper, the request
carries a frame size F and a parameter f . Each tag transmits
in a randomly chosen slot, and the reader only listens to the
first f slots. This approach is equivalent to a frame size of f
with a sampling probability p = f

F .
Figure 1 illustrates how DiffEstm works. After two bitmap

snapshots (on the top of the figure) are taken for two tag sets,
they are bitwise-ORed to produce a combined bitmap (at the
bottom). The difference and intersection of the two sets will
then be derived from the information in the three bitmaps,
which must all contain a sufficient number of zeros to ensure
estimation accuracy [20].
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Fig. 2. Large snapshots for small tag sets.

Fig. 3. Snapshots of variable sizes.

To support bitwise-OR, DiffEstm requires that all snapshots
must have the same length and the same sampling probability.
For any small tag set, if the common sampling probability is
very small, too few or even no tag will be sampled for snapshot
construction. Hence, the sampling probability will have to be
reasonably large, as illustrated by the top bitmap in Figure 2,
where 10 tags are recorded with 50% sampling probability.
However, for a large set, a significant sampling probability
will cause all bits to be set as ones (the second bitmap in the
figure), unless the length of the bitmap is sufficiently large
(the third bitmap in the figure). Now because the same large
length has to be applied to all snapshots, it becomes a great
waste for small tag sets (the fourth bitmap). Since each bit
takes one time slot to get, a large bitmap length means a long
time for taking a snapshot, even for a very small tag set.

Naturally, it is desirable to let each snapshot have a different
size, depending on the size of the tag set it records, as shown
in Fig. 3. This will require us to develop new methods of
combining two snapshots (or two bitmaps) with variable sizes.
The real difficulty is not at how to combine two bitmaps per
se; there are simple ways to combine them. The real difficulty
comes after the combination — how to perform analysis on
the information combined from non-uniform snapshots, how to
use that information for joint estimation, and most importantly
how to ensure the accuracy requirements in (1)-(4). These are
the tasks that have not been investigated in the literature.

B. RFID Estimation and Union Estimation

There is a rich set of literature that estimate the cardinality
n of a single tag set [3]–[11], typically giving an estimate n̂
with a relative error model of

Prob{n̂(1 − ε) ≤ n ≤ n̂(1 + ε)} ≥ 1 − δ, (9)

which is different from the model of joint estimation where
the intersection/difference between two sets are estimated. The
execution time is a function of the relative error bound ε
and the probability δ. For example, the time cost of LOF
is O( 1

ε2 log nmax) · log(1
δ ) [5], the time overhead of PET is

O( 1
ε2 log log nmax) · log(1

δ ) [7], and the time cost of ZOE is

O( 1
ε2 + log log nmax) · log(1

δ ) [10], where nmax is the upper
bound of the cardinalities of all tag sets. The recent work
named simple two-phase RFID counting (SRC) [11] has the
best performance to date.

When the tag set cannot be covered by a single reader,
deployment of multiple readers is needed, each covering a
subset. Many of the RFID estimation solutions can be easily
extended for estimating the size of the union of the subsets.
Among them, SRCM [11] performs the best, achieving a
reduction in execution time by up to 300%, when compar-
ing with others. SRCM also uses bitmaps. For each subset,
it creates multiple bitmaps, each under a different sampling
probability such as 1, 1/2, 1/4, 1/8, · · · . It then identifies the
best sampling probability and combines the bitmaps of that
probability from different subsets using bitwise OR. The
combined bitmap records all tags in the union and can thus be
used to estimate the union cardinality with the method in [3].

What makes SRCM efficient is that as it scans one subset
after another, it leverages the information learned from the
previous subsets to reduce the number of bitmaps (different
sampling probabilities) it needs for each subsequent sub-
set. However, this method cannot be extrapolated to tem-
porally/spatial dispersed joint estimation where we do not
know which tag sets will be jointly estimated beforehand and
thus cannot leverage one set’s information to help reduce the
overhead for the other.

If we nevertheless want to apply SRCM to joint estimation,
we may use a common sampling probability that is optimized
for the worst-case scenario such that an error bound for the
union estimation will always be met. In this case, SRCM

will become DiffEstm except that the former considers only
union while the latter also addresses difference and intersection
(which are more difficult to estimate and analyze).

IV. JOINT RFID ESTIMATION PROTOCOL

This section presents our joint RFID estimation proto-
col (JREP). Our protocol consists of two components: an
online encoding component for measuring the information of
each tag set and storing it in a bitmap called snapshot, and an
offline data analysis component for estimating the joint proper-
ties of two arbitrary sets such as intersection/union/difference
cardinalities, using their snapshots. We use an asymmetric
design to push most complexity to the offline component,
while keeping the online component as efficient as possible.

A. Online Encoding

Consider a snapshot taken at an arbitrary location and an
arbitrary time in a large RFID system of multiple locations.
Let N be the set of tags existing at the location and the time
when the snapshot is taken, and n be the number of tags in
N . The reader that performs the snapshot will first get a rough
estimation for the value of n by using an existing cardinality
estimation protocol [5]–[7]. It determines a frame size f for
the snapshot as follows:

f = min
p∈(0,1]

{2�log2( np
ω )�}, (10)
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where p is a sampling probability, and ω is the frame’s load
factor (i.e., number of responding tags divided by frame size):

ω = −3
4

+
√

3
4

√
4p

( θ2

nmaxZδ
2 + 2

)
− 5. (11)

We use Zδ to denote the 1 − δ
2 percentile for standard

Gaussian distribution N (0, 1), whose expected value is zero
and whose variance is one. For example, when δ = 5%,
we have Zδ = 1.96, because the probability for a random
variable (following standard normal distribution) to carry a
value smaller than 1.96 is about 1 − δ

2 = 97.5%. Later we
will formally derive the above formulas that minimize the time
overhead of online encoding and the storage overhead of the
snapshot in the worst case, under the constraints of (1)-(4).
Let p∗ be the sampling probability that minimizes (10). The
value of p∗ only depends on nmax, θ, and δ. Hence, it is pre-
determined for a system once these parameters are set.

For the ease of understanding, we further explain the above
parameter configuration process. Firstly, we could use the prior
knowledge of nmax, θ and δ to determine the optimal sampling
probability p∗, which is able to minimize the frame length f
in (10) or equivalently maximize the load factor ω/p in (11).
Secondly, we apply the sampling probability p∗ into (11) to
obtain the target load factor ω, which can satisfy the (θ, δ)
accuracy constraint even for the largest tag set nmax. Thirdly,
with the known p∗ and ω, we further use (10) to determine
the length of ALOHA frame f that scans a particular tag set
N . Note that (10) needs coarse knowledge of the tag set size
n, which can be obtained by scanning the tag set N with a
low-cost protocol, e.g., GMLE [6], LoF [5], or PET [7].

The process of encoding the tag set N into a bitmap
is described as follows: The reader broadcasts an encoding
request to start an ALOHA frame with parameters f and p∗.
Upon receipt of the request, each tag decides with probabil-
ity p∗ whether it will participate in the encoding, which is
called tag sampling. If a tag decides to participate, it will select
a slot uniformly at random and transmit a pulse during that slot
to the reader; if it chooses not to participate, it will keep silent
throughout the frame transmission. The reader monitors the
status of each slot — with the detection of a pulse, it records
the slot as a bit ‘1’; otherwise, it records a bit ‘0’. In the case
that multiple tags choose to respond in a common time slot, the
reader will detect the overlapped waveform of multiple pulses,
and it will record the slot as a bit ‘1’. After transmitting the
entire frame, the reader has a bitmap B consisting of zeros and
ones, which will be stored and used later for joint estimation.
We call this bitmap B as a snapshot of the tag set N .

We acknowledge that the above tag set encoding proto-
col is only partially compliant with the EPCglobal C1G2
standard [21] used by commercial devices. The standardized
protocol, which is similar to our protocol and also based on
slotted ALOHA, only supports the parameter f in the frame
header. It does not support tag sampling with probability p.
We will explain our implementation of tag sampling in the
next paragraph. Moreover, as specified by EPC C1G2 [21],
each tag sends a 16-bit random number in its chosen time
slot as its response to reader, in order for the reader to detect

TABLE I

NOTATIONS USED

tag collisions in time slots. By contrast, we don’t need the
information of tag collision, and we want to save protocol
time cost by shortening the length of each tag’s response to
only 1 bit or just a pulse (for example, by shortening the RN16
response of tags to just one bit in EPC C1G2 [21]). This will
need the modification of communication protocol stack both
on the reader side [22] and on the tag side [23].

We present an implementation of tag sampling which does
not need the tags equipped with simple circuits to manipulate
float numbers. Other implementations of sampling won’t affect
the correction of our conclusion. Let M be a large integer.
The reader broadcasts an integer 	p∗M
 instead of a floating
number p∗. A tag computes a pseudo-random value H(id),
where id is the tag’s identifier and H is a pseudo-random hash
function. The tag is sampled if H(id) mod M < 	p∗M
.

If a tag is sampled for response, it will choose one time
slot in the ALOHA frame to send a pulse to reader. The
slot selection could also leverage the random function H :
The tag computes a hash value H(id | r) mod f , where r
is a randomly-chosen constant pre-configured with all tags,
to make the values of H(id | r) and H(id) independent of
each other. With the implementations of tag sampling and slot
selection, we have the following property established.

Property 1 (Pseudorandom Sampling and Time Slot Selec-
tion): Consider an arbitrary common tag in the two sets N and
N ′, whose frame sizes are f and f ′ respectively, with f ≥ f ′.
A tag is either sampled for encoding in both frames or neither.
If the tag is sampled and does not select the (j mod f ′)th slot
in the frame of f ′, then nor will it select the jth slot in the
frame of f for ∀j ∈ [0, f).

Proof: The tag will either be sampled for both frames or
be sampled for neither, since the same pseudo-random value
H(id) is used for sampling in both frames. Suppose the tag
does not select the (j mod f ′)th slot in the frame of f ′, i.e.,
H(id | r) �= j mod f ′. Because both f and f ′ are the powers
of two as in (10) and we assume f ≥ f ′, the length of shorter
frame f ′ must be able to divide the length of longer frame f ,
or say, frame size f a multiple result of frame size f . Hence,
we have H(id | r) �= j mod f , which means the jth slot in
the longer frame of length f is not selected.

We summarize the notations used in Table I.
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Fig. 4. Expanded OR of two bitmaps B and B′.

B. Offline Joint RFID Estimation

Given two arbitrary snapshots, B and B′, which may
be taken at different locations or at the same location but
different time points, we give the formulas for estimating their
difference, intersection and union.

1) Expanded OR: Let f and f ′ be the lengths of B and B′,
respectively. Without losing generality, we assume the length
of the first bitmap is no smaller than the length of the second:
f ≥ f ′. If it is not the case, we can simply swap the two
bitmaps and relabel them as B and B′ which can satisfy
f ≥ f ′. According to (10), we know that both f and f ′ are the
powers of two, i.e., the numbers of the form 2k where k is an
integer. The reason for them to be powers of two is to support
the following operation that combines the information from
the snapshots of two arbitrary tag sets for joint estimation.

We introduce an auxiliary bitmap, which is called the
expanded OR between B and B′, and is denoted as B∗. The
expanded OR, which has been illustrated in Fig. 4, is defined
as follows: We know that f is a multiple result of f ′, because
both f and f ′ are the powers of two as in (10) and we have
assumed f ≥ f ′. For example, in Fig. 4, we have illustrated a
bitmap B with f = 8 bits and another shorter bitmap B′ with
f ′ = 4 bits. So the size of the former doubles the size of the
latter. We will replicate the shorter bitmap B′ for f

f ′ times,
such that it is expanded to the same length with the longer
bitmap B. We then perform bitwise OR to combine them, and
the resulting bitmap B∗ is of f bits long.

The operation of expanded OR may appear to be trivial, but
the implication of replicating the information of one bitmap
when combining with another bitmap is not obvious at all.
It requires rigorous analysis for its impact on estimation
accuracy as the technique was never used in RFID estimation
before.

Although the expanded OR operation in Fig. 4 is designed
for jointly analyzing two tag sets, it can be easily extended
towards multiple tag sets. However, there is a serious drawback
when implementing joint property analysis for multiple tag
sets. It is clear that, when jointly analyzing multiple tag
sets, we need to apply the similar expanded OR operation
to multiple bitmaps and combine them together. Then, the
problem is that, as more bitmaps are involved, the resultant
OR bitmap will contain a larger ratio of one bits, which
may result in bad estimation accuracy. In order for the OR
bitmap not to become overly crowded with too many ones,
the load factor of each bitmap (i.e., number of tags divided by
bitmap length) needs to be smaller, which will cause higher
communication cost. By contrast, if we insist that only two
tag sets can be involved in the joint property analysis, then the
upper bound on each bitmap’s load factor could be much larger

and more acceptable in practice. In a word, the joint analysis
of two tag sets is the most economic form of joint property
analysis. Another benefit of the joint analysis of two tag sets
is quite useful in practice. With this tool in hand, we can know
the volume of product transportation flows between each pair
of warehouses, which constitute the so-called traffic matrix
and can give us a global view about a logistic supply chain
network.

Let N be the original tag set that is encoded by bitmap B.
The size of N is denoted as n. Let Xj , 0 ≤ j < f , be the
event that the jth bit in B remains zero after the n tags are
randomly sampled and encoded into this bitmap.

Prob{Xj} = (1 − p

f
)n (12)

Let V be a random variable for the fraction of bits in B that are
zeros (We can also measure an instance value of V from the
snapshot B. This instance value will be used in the estimator
derived later). We have

V =
1
f

∑f−1

i=0
1Xj ,

where 1Xj be the indicator variable of Xj , whose value
is 1 when the event Xj occurs and 0 otherwise. Clearly,
E(1Xj ) = Prob{Xj}. Hence,

E(V ) =
1
f

f−1∑
i=0

E(1Xj )

=
1
f

f−1∑
i=0

Prob{Xj} = (1 − p

f
)n. (13)

Let N ′ be the tag set encoded by B′, n′ be the set size,
and Yj , 0 ≤ j < f ′, be the event that the jth bit in B′ is zero.

Prob{Yj} = (1 − p

f ′ )
n′

(14)

The above equation is also true for any bit in the expanded B′

(for producing B∗). Let V ′ be the proportion of zero bits in B′,
which satisfies V ′ = 1

f ′
∑f ′−1

i=0 1Yj . Similar to (13),

E(V ′) = (1 − p

f ′ )
n′

(15)

Let Zj , 0 ≤ j < f , be the event that the jth bit in B∗ is zero.
Since this bit is OR of the jth bit in B and the (j mod f ′)th
bit in B′, the event Zj happens when both events Xj and
Yj mod f ′ happens. Hence, we have

Prob{Zj} = Prob{Xj ∧ Yj mod f ′}
= Prob{Xj |Yj mod f ′} · Prob{Yj mod f ′}
= (1 − p

f
)d (1 − p

f ′ )
n′

, (16)

where Prob{Yj mod f ′} = (1− p
f ′ )n′

is from Eq. (14), and we
have Prob{Xj |Yj mod f ′} = (1− p

f )d, because the condition
Yj mod f ′ , according to Property 1, suggests that all common
tags of N and N ′ won’t select the jth slot in the frame of f ,
and consequently only the d tags in N\N ′ may select this slot.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIAO et al.: ADAPTIVE JOINT ESTIMATION PROTOCOL FOR ARBITRARY PAIR OF TAG SETS IN A DISTRIBUTED RFID SYSTEM 7

Let V ∗ be the proportion of zero bits in B∗, which satisfies
V ∗ = 1

f

∑f−1
i=0 1Zj . By a similar process of deriving (13),

E(V ∗) = (1 − p

f
)d(1 − p

f ′ )
n′

. (17)

In the following, we give the estimators for the joint
properties of N and N ′, including d, d′, m, and u.

2) Estimator of Set Difference d = |N \N ′|: Replacing the
second term (1 − p

f ′ )n′
in (17) by E(V ′), we have

E(V ∗) = E(V ′)(1 − p

f
)d,

d =
ln E(V ∗) − ln E(V ′)

ln(1 − p
f )

. (18)

When the numbers of bits in B∗ and B′ are large enough,
we can approximate E(V ∗) and E(V ′) by their instance
values V ∗ and V ′ measured from B∗ and B′. Then, replacing
E(V ∗) and E(V ′) with V ∗ and V ′ in (18), we have the
estimator d̂.

d̂ =
ln V ∗ − ln V ′

ln(1 − p
f )

(19)

Such replacement of expected values with instance values
will produce asymptotically unbiased estimator of d, because
both V ∗ and V ′ are the average values of a large number
of independent observations (e.g., at least 32 time slots).
We briefly explain this point as follows, based on central limit
theorem and multivariate delta-method [24]. Since V ′ (or V ∗)
is the arithmetic mean of a large number of independent
random variables V ′ = 1

f ′
∑

1Yj (or V ∗ = 1
f

∑
1Zj ), by the

central limit theorem, it approximates a Gaussian distribution,
and its variance is inversely proportional to the number of
random variables f ′ (or f ). Further consider that d̂ in (19) is a
function of V ′ and V ∗ with continuous first partial derivatives.
We can apply the delta-method, and conclude that the estima-
tion d̂ approximates a Gaussian distribution, whose expected
value is E(d̂) ≈ lnE(V ∗)−lnE(V ′)

ln(1− p
f ) . Therefore, by combining it

with (18), we have the asymptotic approximation E(d̂) ≈ d,
when f and f ′ are large enough. Later, we will derive an
approximated formula of E(d̂) with better accuracy.

Below we use a similar approach to derive the estimators
of d′, m and u.

3) Estimator of Set Difference d′ = |N ′ \ N |: By the
definitions of d and d′, we know that d = n + d′ − n′, where
n + d′ is the number of tags in |N ∪N ′|. Applying it to (17),

E(V ∗) = (1 − p

f
)n+d′−n′

(1 − p

f ′ )
n′

= E(V )(1 − p

f
)d′

E(V ′) / (1 − p

f
)n′

= E(V )(1 − p

f
)d′

E(V ′) / E(V ′)ln(1− p
f )/ln(1− p

f′ ).

Solving the above equation for d′, we have

d′ =
ln E(V ∗) − ln E(V ) − ln E(V ′)

ln(1 − p
f )

+
ln E(V ′)
ln(1 − p

f ′ )
.

Similar to the previous estimator, we can substitute the
expected values E(V ), E(V ′) and E(V ∗) by their instance

values V , V ′ and V ∗ measured from B, B′ and B∗, and
have an asymptotically unbiased estimator d̂′ of approximately
Gaussian distribution for the intersection cardinality d′.

d̂′ =
ln V ∗ − ln V − ln V ′

ln(1 − p
f )

+
ln V ′

ln(1 − p
f ′ )

(20)

4) Estimator of Set Intersection m = |N ∩N ′|: We rewrite
the expected value of V ∗ in (17) as

E(V ∗) = (1 − p

f ′ )
n′

(1 − p

f
)n−m = E(V ′)E(V )(1 − p

f
)−m

m =
ln E(V ) + lnE(V ′) − ln E(V ∗)

ln(1 − p
f )

.

By substituting the expected values E(V ), E(V ′) and E(V ∗)
with their instance values V , V ′ and V ∗, we have an asymp-
totically unbiased estimator m̂ of approximately Gaussian
distribution for the intersection cardinality m.

m̂ =
ln V + lnV ′ − ln V ∗

ln(1 − p
f )

(21)

5) Estimator of Set Union u = |N ∪N ′|: Multiplying both
sides of Eq. (17) with (1 − p

f )n′
, we have

E(V ∗)(1 − p

f
)n′

= (1 − p

f
)d+n′

E(V ′)

E(V ∗)E(V ′)ln(1− p
f )/ln(1− p

f′ )

= (1 − p

f
)uE(V ′)

u =
ln E(V ∗) − ln E(V ′)

ln(1 − p
f )

+
ln E(V ′)
ln(1 − p

f ′ )
.

By substituting the expected values E(V ′) and E(V ∗) with
their instance values V ′ and V ∗, we have an estimator û of
approximately Gaussian distribution for the union cardinality.

û =
ln V ∗ − ln V ′

ln(1 − p
f )

+
ln V ′

ln(1 − p
f ′ )

(22)

6) Traditional Estimator of n = |N | and n′ = |N ′|: We
estimate n and n′ based on the classical work in [25]:

n̂ =
ln V

ln(1 − p
f )

n̂′ =
ln V ′

ln(1 − p
f ′ )

, (23)

where n̂ and n̂′ denote the estimated values.
7) Reduction to DiffEstm [20] and PZE [3]: It is

interesting to see that when we set f = f ′, the
estimators (19), (20) and (21) are reduced to the estimators of
DiffEstm. If we further set the sets identical, i.e., N = N ′,
the union estimator (22) becomes the PZE estimator in [3],
similar to those in (23) for a single set. Hence, DiffEstm and
PZE are special cases of our estimators. Note that PZE repeats
a small frame with a small sampling probability many times
to reduce estimation variance. Here we use a larger bitmap
(with a larger sampling probability) to reduce variance. The
two approaches are equivalent [11].

The most fundamental difference in (19), (20), (21) and (22)
from the prior art is the generalized semantics of V ∗, which is
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the fraction of bits that are zeros in the bitmap B∗ combined
from two bitmaps of variable sizes, f and f ′, where each bit
in the smaller bitmap has to be used multiple times in order
to enable bitwise OR. However, it is not intuitive why this
multiple use of the same bits will work in estimation until we
formally analyze the estimation accuracy under such a maneu-
ver of combining information from non-uniform bitmaps.

V. THEORETICAL ANALYSIS

In this section, we theoretically analyze the accuracy of the
joint property estimations d̂, d̂′, m̂ and û.

A. Preliminaries

In order to derive the variances of joint properties, we need
the mean and variance of n̂ (or n̂′), which can be found in [25]:

E(n̂) ≈ n +
1
2p

(eω − ωp − 1) (24)

V ar(n̂) ≈ f

p2
(eω − ωp − 1), (25)

where ω = pn
f is called the load factor of bitmap B;

E(n̂′) ≈ n′ +
1
2p

(eω′ − ω′p − 1) (26)

V ar(n̂′) ≈ f ′

p2
(eω′ − ω′p − 1), (27)

where ω′ = pn′
f ′ is the load factor of bitmap B′. Note that

the two terms 1
2p (eω − ωp − 1) and 1

2p (eω′ − ω′p − 1)
in (24) and (26) are negligibly small, making n̂ and n̂′
roughly unbiased.

The analysis in the paper afterwards utilizes the following
three approximations.

Lemma 1: If p, n, f and f ′ are constants, for large f
and f ′, (

1 − p

f

)n ≈ e−
pn
f

(
1− 2p

f

)n − (
1− p

f

)2n ≈ −p2n

f2
e−

2pn
f

(
1− p

f
− p

f ′
)n − (

1− p

f

)n(
1− p

f ′
)n ≈ −p2n

ff ′ e
−n( p

f + p

f′ ).

Proof: The first approximation is well-known and
its poof is omitted. We prove the second approximation:(
1− 2p

f

)n − (
1− p

f

)2n =
(
1− 2p

f

)n − (
1− 2p

f + p2

f2

)n
.

Using the Taylor series (x + ε)n ≈ xn + nxn−1ε, it is
roughly −n

(
1− 2p

f

)n−1 p2

f2 . Because n is large, it fur-

ther approximates −n
(
1− 2p

f

)n p2

f2 ≈ − p2n
f2 e−

2np
f . We can

prove the third approximation similarly using Taylor series:(
1− p

f − p
f ′

)n − (
1− p

f

)n(
1− p

f ′
)n

=
(
1− p

f − p
f ′

)n −(
1− p

f − p
f ′ + p2

ff ′
)n ≈ − p2n

ff ′ e
−n( p

f + p

f′ ).
Directly from Lemma 1, we can derive two approximations.

(1 − 2p

f
)d ≈ (1 − p

f
)2d− p2d

f2
e−

2pd
f ≈ (1 − p2d

f2
)e−

2pd
f

(1 − p

f
− p

f ′ )
m ≈ (1 − p

f ′ )
m(1 − p

f
)m − p2m

ff ′ e
−pm( 1

f + 1
f′ )

≈ (1 − p2m

ff ′ )e−pm( 1
f + 1

f′ ) (28)

B. Probabilistic Distribution of n̂∗

By observing the equations (19), (20), (21) and (22) for
estimators d̂, d̂′, m̂ and û, respectively, we find that they have
a term in common, which is denoted by n̂∗ as follows.

n̂∗ =
ln V ∗

ln(1 − p
f )

(29)

The physical meaning of n̂∗ is the estimation of the number
of (either true or replicated) tags in the expanded OR bitmap
B∗. As a special case, when f = f ′, the OR bitmap B∗ is
equivalent to an encoding of the union of the two tag sets, and
we can see that (29) and (22) are equivalent, showing n̂∗ = û.
For n̂∗ in (29), we give out its mean value and variance.

Theorem 1 (Probabilistic Distribution of n̂∗): The
cardinality estimation n̂∗ defined in (29) approximates
a Gaussian distribution, whose expected value and variance
are

E(n̂∗) ≈ n∗ +
1
2p

(eω∗ − ω∗p − 1) (30)

V ar(n̂∗) ≈ f

p2
(eω∗ − ω∗p − 1), (31)

where ω∗ can be regarded as the load factor of B∗:

n∗ = d + n′ f

f ′ , ω∗ =
pd

f
+

pn′

f ′ . (32)

Proof: Recall that Zi, 0 ≤ i < f , is the event that the ith
bit in bitmap B∗ is zero, and 1Zi is its corresponding indicator
variable. Because V ∗ is the fraction of zero bits in B∗, the
number of zero bits in B∗ is fV ∗, with fV ∗ =

∑f−1
i=0 1Zi .

For reducing the complexity of analyzing V ar(fV̂ ∗) later, we
approximate the bits in B∗ as independent, which is true espe-
cially when the times of self-replication of B′ for generating
B∗ (see Fig. 4) is a small value as compared with the length
f ′ of B′. Due to fV ∗ =

∑f−1
i=0 1Zi , using the central limit

theorem, V ∗ approximates a Gaussian distribution. Because n̂∗
in (29) is a differentiable function of V ∗, n̂∗ also approximates
a Gaussian distribution according to the delta-method [24].

Since n̂∗ is a function of V ∗, we firstly investigate the mean
value and the variance of fV ∗. Using Prob{Zi} in (16),

E(fV ∗) = E(
f−1∑
i=0

1Zi) =
f−1∑
i=0

E(1Zi) =
f−1∑
i=0

Pr{Zi}

= f(1 − p

f
)d(1− p

f ′ )
n′ ≈fe−

pd
f e

−pn′
f′ =fe−ω∗

.

(33)

The variance of fV ∗ is as follows.

V ar(fV ∗)

= E
(
(
f−1∑
i=0

1Zi)
2
) − [

E(fV ∗)
]2

=
( ∑

i�=j

E(1Zi1Zj ) +
∑
i=j

E(1Zi1Zj )
) − [

E(fV ∗)
]2

=
( ∑

i�=j

Prob{Zi ∧ Zj} +
∑
i=j

Prob{Zi ∧ Zj}
)

− [
E(fV ∗)

]2
(34)
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When i = j, the probability Prob{Zi ∧ Zj} is

Prob{Zi ∧ Zj} = Prob{Zi} = (1 − p

f
)d(1 − p

f ′ )
n′

otherwise, it is approximately

Prob{Zi∧Zj}
≈ (1−2p

f
)d

( 1
f ′ (1−

p

f ′ )
n′

+
f ′−1
f ′ (1−2p

f ′ )
n′)

, (35)

where (1 − 2p
f )d is the probability that neither the ith slot

nor the jth slot in B∗ contain any of the tags in N \ N ′,
whose total number is d, and 1

f ′ (1− p
f ′ )n′

+ f ′−1
f ′ (1− 2p

f ′ )n′
is

the probability that neither slots contain any of the tags in N ′,
whose number is n′. The latter is further explained as follows.
When i = j mod f ′, the conditional probability of containing
no tags from N ′ is (1 − p

f ′ )n′
; otherwise, it approximates

(1 − 2p
f ′ )n′

. Since f ′ � 1, (35) can be simplified as

Prob{Zi ∧ Zj}
≈ (1− 2p

f
)d

( 1
f ′ (1−

p

f ′ )
n′

+ (1− 2p

f ′ )
n′)

≈ (1− 2p

f
)d(1− 2p

f ′ )
n′ ≈ (1− 2p

f
)d(1− 2p

f
)

f

f′ n′
.

Applying the two cases of Prob{Zi ∧ Zj} to (34), we have

V ar(fV ∗)

≈ f(f − 1)(1− 2p

f
)d(1− 2p

f
)

f

f′ n′

+ f(1 − p

f
)d(1− p

f
)

f

f′ n′ − f2(1− p

f
)2d(1− p

f
)2

f

f′ n′

Because n∗ = d + f
f ′ n

′, and ω∗ = pn∗

f ,

V ar(fV ∗)

≈ f2
(
(1− 2p

f
)n∗−(1− p

f
)2n∗)−f(1− 2p

f
)n∗

+f(1− p

f
)n∗

≈ −p2n∗e−2pn∗
f − fe−2pn∗

f + fe−
pn∗

f

= fe−ω∗
(1 − (1 + ω∗p)e−ω∗

). (36)

By a similar process, we can derive that

V ar(fV ) ≈ fe−ω(1 − (1 + ωp)e−ω) (37)

V ar(f ′V ′) ≈ f ′e−ω′
(1 − (1 + ω′p)e−ω′

), (38)

which can also be found in literature [25].
Next, with E(V ∗) and V ar(V ∗), we derive the mean and

variance of n̂∗ ≈ − f
p ln V ∗. We expand ln V ∗ by its Taylor

series about q∗, which denotes E(V ∗) ≈ e−ω∗
in (17).

n̂∗ =
f

p

( − ln q∗ − V ∗ − q∗

q∗
+

(V ∗ − q∗)2

2 q∗2 + . . .
)

By truncating the Taylor series after the third term,

E(n̂∗) ≈ f

p

(
ω∗ − E(V ∗)−q∗

q∗
+

V ar(V ∗)
2 q∗2

)
= n∗ +

f

p

1
2 q∗2

· q∗

f

(
1 − (1 + ω∗p)q∗

)
= n∗+

1
2p

(
eω∗ − ω∗p − 1

)
.

Similarly, by truncating the Taylor series after the second term,

V ar(n̂∗) = (
f

p
)2V ar

( − ln q∗ − V ∗−q∗

q∗
)

= (
f

p
)2V ar(

V ∗

q∗
)

=
f

p2q∗
(
1 − (1 + ω∗p)q∗

)
=

f

p2
(eω∗ − ω∗p − 1).

Therefore, the equations (30) and (31) have been proved.

C. Covariances Among n̂∗, n̂ and n̂′

The estimators equations for d̂, d̂′, m̂ and û in (19), (20),
(21) and (22) can all be rewritten as the linear combinations of
n̂∗, n̂ and n̂′. For example, d̂ in (19) can be approximated as
n̂∗− f ′

f n̂′ (to explain in (42) later). Until now, we have derived

the probabilistic distributions of of n̂∗, n̂ and n̂′. We however
are still not ready to begin the analysis of the variance of the
joint property estimators, since n̂∗, n̂ and n̂′ are not mutually
independent, and we need to analyze their covariances.

We firstly analyze the covariance of n̂∗ and n̂′ in Theorem 2,
and then analyze the covariance of n̂∗ and n̂ in Theorem 3.

Theorem 2 (Covariance of n̂∗ and n̂′): For the cardinality
estimations n̂∗ in (29) and n̂′ in (23), their covariance is

Cov(n̂∗, n̂′) ≈ f

f ′V ar(n′). (39)

Proof: Due to the page limit, we have to omit the detailed
proof, which could be similar to the proof of Theorem 1.

Theorem 3 (Covariance of n̂∗ and n̂): For the cardinality
estimations n̂∗ in (29) and n̂ in (23), their covariance is

Cov(n̂∗, n̂) ≈ V ar(n̂) + (
f

f ′ − 1)
f

p2
(e

mp
f − m

f
p2 − 1).

(40)

Proof: Due to the page limit, we have to omit the detailed
proof, which could be similar to the proof of Theorem 1.

Using a similar procedure of analyzing Cov(n̂∗, n̂′) and
Cov(n̂∗, n̂), we can derive Cov(n̂, n̂′). To save space, we
present the analysis result directly and omit the detailed proof.

Cov(n̂, n̂′) =
f

p2
(e

mp
f − m

f
p2 − 1) (41)

Therefore, we have fully understood the mean values and
variances of n̂∗, n̂ and n̂′, and also their mutual covariances.

D. Mean and Variance of d̂

In the subsequent subsections, we will analyze the prob-
abilistic properties of joint property estimations d̂, d̂′, m̂
and û. We begin from d̂. Using the definitions of n̂∗ in (29)
and n̂′ in (23), we can rewrite the formula of d̂ in (19) as
d̂ = n̂∗ − n̂′ · ln(1 − p

f ′ )/ln(1 − p
f ). Using the approximation

that ln(1 − x) ≈ −x if x is sufficiently small,

d̂ ≈ n̂∗ − f

f ′ n̂
′. (42)

Since d̂ is a linear combination of n̂∗ and n̂′, both of
which follow Gaussian distributions, d̂ also approximates a
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Gaussian distribution. Based on E(n∗) in (30) and E(n′)
in (26), we obtain the expected value of d̂ as follows.

E(d̂) = d +
1
2p

(eω∗ − ω∗p − 1) − f

f ′
1
2p

(eω′ − ω′p − 1)

The variance of d̂ is derived as follows.

V ar(d̂) ≈ V ar(n̂∗ − f

f ′ n̂
′)

= V ar(n̂∗) +
f2

f ′2 V ar(n̂′) − 2
f

f ′Cov(n̂∗, n̂′)

The covariance Cov(n̂∗, n̂′) is approximated by (39). Then,

V ar(d̂) ≈ V ar(n̂∗) − f2

f ′2 V ar(n̂′). (43)

E. Mean and Variance of û

Using n̂′ in (23) and n̂∗ in (29), by the fact that
ln(1−x) ≈ −x when x is sufficiently small, we can rewrite û

in (22) as û ≈ n̂∗ − f−f ′

f ′ n̂′. Hence,

E(û) ≈ E(n̂∗) − f − f ′

f ′ E(n̂′)

= u+
1
2p

(eω∗ −ω∗p− 1)− f − f ′

f ′
1
2p

(eω′ −ω′p− 1)

V ar(û)≈V ar(n̂∗)+
(f−f ′)2

f ′2 V ar(n̂′)−2
f−f ′

f ′ Cov(n̂∗, n̂′).

Since Cov(n̂∗, n̂′) ≈ f
f ′ V ar(n′) as in (39), we have

V ar(û) ≈ V ar(n̂∗) − f2 − f ′2

f ′2 V ar(n̂′). (44)

F. Mean and Variance of m̂

From (21), (23), (29), we have m̂ ≈ n̂ + f
f ′ n̂′ − n̂∗. Hence,

E(m̂)

≈ E(n̂) +
f

f ′E(n̂′) − E(n̂∗) ≈ m +
1
2p

(eω −ωp− 1)

+
f

f ′
1
2p

(eω′ −ω′p− 1) − 1
2p

(eω∗ −ω∗p− 1)

V ar(m̂)

≈ V ar(n̂) +
f2

f ′2 V ar(n̂′) + V ar(n̂∗)

+ 2
f

f ′Cov(n̂, n̂′)−2Cov(n̂∗, n̂)−2
f

f ′Cov(n̂∗, n̂′). (45)

We have derived that Cov(n̂∗, n̂′) in (39), Cov(n̂∗, n̂)
in (40), and Cov(n̂, n̂′) in (41), equation (45) becomes

V ar(m̂)

≈ V ar(n̂) +
f2

f ′2 V ar(n̂′) + V ar(n̂∗)

+ 2
f

p2
(e

mp
f − m

f
p2 − 1) − 2V ar(n̂) − 2

f2

f ′2 V ar(n̂′)

= V ar(n̂∗) − V ar(n̂) − f2

f ′2 V ar(n̂′)

+ 2
f

p2
(e

mp
f − m

f
p2 − 1). (46)

G. Mean and Variance of d̂′

From (21), (23), (29), we have d̂′ ≈ n̂∗−n̂− f−f ′

f ′ n̂′. Hence,

E(d̂′) ≈ E(n̂∗) − E(n̂) − f − f ′

f ′ E(n̂′)

≈ d′ +
1
2p

(eω∗ −ω∗p− 1) − 1
2p

(eω −ωp− 1)

− f − f ′

f ′
1
2p

(eω′ −ω′p− 1)

V ar(d̂′) ≈ V ar(n̂∗) + V ar(n̂) + (
f − f ′

f ′ )2 V ar(n̂′)

+ 2
f − f ′

f ′ Cov(n̂, n̂′) − 2Cov(n̂∗, n̂)

− 2
f − f ′

f ′ Cov(n̂∗, n̂′).

The three covariances are known. Therefore,

V ar(d̂′) = V ar(n̂∗) + V ar(n̂) + (
f − f ′

f ′ )2 V ar(n̂′)

−2V ar(n̂) − 2
f − f ′

f ′
f

f ′V ar(n̂′)

= V ar(n̂∗) − V ar(n̂) − f2 − f ′2

f ′2 V ar(n̂′). (47)

H. Tight Upper Bound of Variances of d̂, d̂′, m̂ and û

Because the estimators approximate Gaussian distributions,
the accuracy requirements of (1)–(4) can be turned into a set
of constraints on bounded V ar(d̂), V ar(d̂′), V ar(m̂), and
V ar(û). The following property shows that these constraints
can be turned into a single one on V ar(n̂∗).

Property 2 (Variance Tight Upper Bound): V ar(n̂∗) is
approximately a tight upper bound of the variance of joint
property estimations V ar(d̂), V ar(d̂′), V ar(m̂), and V ar(û).

Proof: From (43), we know that V ar(d̂) ≤ V ar(n̂∗), and
the two sides are equal when n′ = 0, which makes V ar(n̂′)
zero as shown by (27). It can be seen from (44) that V ar(û) ≤
V ar(n̂∗), and the two sides are equal when f = f ′. From (47),
we know that V ar(d̂′) ≤ V ar(n̂∗), and the two sides are
equal when n = 0 and f = f ′. Since (43), (44) and (47) are
approximations, we only state in Property 2 that V ar(n̂∗) is an
approximate tight upper bound of V ar(d̂), V ar(û), V ar(d̂′).

To further prove V ar(m̂) ≤ V ar(n̂∗), we rewrite (46) as

V ar(n̂∗) − V ar(m̂) .

≈ V ar(n̂) +
f2

f ′2 V ar(n̂′) − 2
f

p2
(e

mp
f − m

f
p2 − 1)

≈ f

p2
[(eω −ωp− 1)+

f

f ′ (e
ω′ −ω′p−1)−2(e

mp
f −m

f
p2−1)]

≈ f

p2
[(1− p)(ω +

f

f ′ω
′ − 2

mp

f
)+

1
2
(ω2 +

f

f ′ω
′2−2(

mp

f
)2)]

≈ f

p2

[
(1 − p)

(
(ω − mp

f
) + (

f

f ′ω
′ − mp

f
)
)

+
1
2
(
(ω2 − (

mp

f
)2) + (

f

f ′ ω
′2 − (

mp

f
)2)

)]
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The third step uses the Taylor expansion of eω about ω = 0.
We want to show that it is greater than or equal to zero. It is
a decreasing function of m. Hence, we consider the case of
m = n′ ≤ n when its value becomes the smallest. Hence,

V ar(n̂∗)−V ar(m̂)

≥ f

p2
[(1 − p)(

f

f ′ω
′−ω′) +

1
2
(
f

f ′ω
′2−ω′2)]

Recall that f ≥ f ′, and thus the above expression is non-
negative. Therefore, we have V ar(n̂∗) ≥ V ar(m̂), and they
are equal if f = f ′ and m = n′ = n (or the tag sets N and
N ′ are identical), which can be verified by checking (46).

VI. SYSTEM PARAMETERS

We have already known that the probabilistic distributions
of joint estimations d̂, d̂′, m̂ and û approximate Gaussian
distributions. Our requirement is to bound the estimation error
of each joint property by the range of ±θ with high probability,
as stated in (1)-(4). In this section, we try to set the optimal
system parameters f and p to minimize the protocol execution
time, subject to the accuracy requirement.

A. Load Factor

Consider the requirement (1) on the union cardinality esti-
mation û, which specifies a confidence interval of width 2θ at
a confidence level of 1 − δ. For a Gaussian distribution with
E(û) ≈ u, the requirement on û is translated to:

Zδ

√
V ar(û) ≤ θ V ar(û) ≤ θ2

Zδ
2 , (48)

where Zδ is the 1− δ
2 percentile of standard Gaussian distrib-

ution. Similarly, the requirements (2)-(4) can be translated to

V ar(m̂) ≤ θ2

Zδ
2 , V ar(d̂) ≤ θ2

Zδ
2 , V ar(d̂′) ≤ θ2

Zδ
2 .

In order to cover all possible cases, due to Property 2, all these
constraints (1)-(4) can be replaced by V ar(n̂∗) ≤ θ2/Zδ

2.

f

p2

(
eω∗ − ω∗p − 1

) ≤ θ2

Zδ
2

n

pω

(
(1 − p)ω∗ +

1
2
ω∗2 +

1
6
ω∗3

)
≤ θ2

Zδ
2

Taylor
Expansion (49)

From (32), we have ω∗ = pd
f + pn′

f ′ = pn
f − pm

f + pn′

f ′ =
ω − pm

f + ω′. If m = 0, then ω∗ = ω + ω′, which maximizes
the left side of (49). We consider this worst-case constraint in
terms of m. Hence,

n

pω

(
(1 − p)(ω+ω′)+

1
2
(ω + ω′)2+

1
6
(ω + ω′)3

)
≤ θ2

Zδ
2

1
ω

(
(1 − p)(ω + ω′) +

1
2
(ω+ω′)2+

1
6
(ω+ω′)3

)
≤ θ2p

Zδ
2n

.

To satisfy the above constraint in the worst case in terms of n
(which is bounded by nmax), we have the following equation.

1
ω

(
(1− p)(ω + ω′) +

1
2
(ω + ω′)2 +

1
6
(ω + ω′)3

)

≤ θ2p

Zδ
2nmax

(50)

In our system design, we shall set both w and w′ for a system-
wide optimal load factor. With ω′ = ω, we have

1
ω

(
(1 − p)2ω +

1
2
(2ω)2 +

1
6
(2ω)3

)
≤ θ2p

Zδ
2nmax

ω ≤ −3
4

+
√

3
4

√
4p

( θ2

nmaxZδ
2 + 2

) − 5. (51)

Because w = np
f , it is inversely proportional to the frame

size f , which measures the protocol execution time when
encoding the tags in B. Hence, we should set our target load
factor as

ω = −3
4

+
√

3
4

√
4p

( θ2

nmaxZδ
2 + 2

) − 5. (52)

We justify our choice of setting ω = ω′ above. The left
side of (50) is an increasing function in both ω and ω′. If
we allow ω �= ω′ and still set their values to be as small
as possible, then one of them will be greater than the right
side of (52) and the other will be smaller. Because N and N ′

are arbitrary tag sets under consideration, it means that some
tag sets will be encoded with their load factors greater than
the right side of (52) and some others will have smaller load
factors. Let N1 and N2 be two sets with load factors greater
than (52). We should be able to perform joint estimation on any
two encoded sets without violating the accuracy requirement.
However, if we perform joint estimation on N1 and N2,
because their load factors are larger than (52), the constraint
of (50) will not hold.

B. Frame Size and Sampling Probability

From (51) and w = np
f , we have

f ≥ np
/(

−3
4

+
√

3
4

√
4p

( θ2

nmaxZδ
2 + 2

) − 5

)
. (53)

Recall that the value of f is set to be a power of two
in order to support expanded OR between the snapshots of
any two tag sets. We want to choose the optimal sampling
probability that minimizes the protocol execution time by
keeping the frame size f as small as possible. Hence, we have
the formula for the frame size as quoted by equation (10)
in Section IV-A: f = minp∈(0,1]{2�log2(

np
ω )�}, where p is a

sampling probability and the load factor ω is determined by
equation (52). It requires a prior knowledge of n — the number
of tags in current tag set N , which can be estimated by an
existing low-cost protocol such as GMLE [6], LOF [5] and
PET [7]. The optimal sampling probability p∗ that minimizes
f depends on the pre-determined parameters nmax, θ and δ.
Hence, it can be pre-computed.

VII. BITMAP ENCODING OF A LARGE TAG SET BY

MULTI-READER AND MULTI-ANTENNA SYSTEMS

In this section, we discuss how to apply our joint property
estimation protocol named JREP to a large-scale distributed
RFID system with multiple readers and multiple antennas.

When applying our protocol to practice, a technical issue
will emerge: Even though an RFID reader can be equipped
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with multiple antennas (for example, Impinj R420 reader can
have at most 32 antennas [26]), it is impossible to use just
one reader to cover a large business place, e.g., a warehouse
or a cargo port. Hence, it is common practice for industries to
deploy multiple readers in a large place. The problem is how
we can collect a bitmap snapshot of tags through multi-reader
and multi-antenna cooperation. If a bitmap snapshot of tag set
at any place is available, then plenty of useful information can
be derived using our JREP protocol to analyze these snapshots,
for example, we can know the number of tags moved from a
warehouse to a cargo port within a time interval from t1 to t2,
by jointly analyzing the snapshot of the warehouse at t1 and
the snapshot of the cargo port at t2.

For a business place, where a single reader with multiple
antennas is deployed, taking a snapshot of all tags is not
quite complicated. For most commercial reader products, the
antennas that are connected to the same reader are activated at
different time intervals in a round robin fashion, such that there
do not exist two antennas to simultaneously send packets and
interfere with each other. Hence, for each antenna, when its
time interval comes, it can broadcast commands independently.
All other antennas will keep in a silent listening state and
assist the activated antenna to take a bitmap snapshot of tags
in its interrogation zone, i.e., if any antennas (including the
activated one) senses a busy time slot, then the corresponding
bit is one. Given the multiple bitmap snapshots when different
antennas are activated, we can combine them by Bitwise OR
as illustrated in Fig. 1, to construct a snapshot of tags covered
by any antenna of the reader. Such combination of bitmaps can
work well if we configure all antennas to use the same MAC
layer parameters when they are activated (i.e., Aloha frame
length, tag sampling probability and hash function seed).

For a business place, where multiple readers with multiple
antennas are deployed, taking a snapshot of all tags is fairly
sophisticated. It may appear that, if each reader can produce
one bitmap as stated above, then all bitmaps can be easily
bitwise ORed to construct a system-wide bitmap. However,
this method holds an assumption that each reader is able to
take a bitmap snapshot of tags in its interrogation zone without
radio interference from other readers. Regretfully, there exist
two types of radio collisions in a multi-reader system [27].

Reader-Tag Collision occurs when the signal from a reader
is of sufficient strength when received at a second reader
that the signal jams the response from a tag to the second
reader. This type of interference has negative impact on our
JREP protocol, because the signal strength of interfering reader
could be multiple magnitude larger than a tag response, and
it is difficult to tell from their overlap waveform whether
the current time slot is occupied by any tags. Avoidance of
this type of interference is mainly through FDMA (frequency-
division multiple access) [27]. For example, EPC C1G2 stan-
dard recommends each reader to perform channel hopping1

every 0.4s, so that the probability becomes smaller for nearby
reader transmission to be on the same channel with the tag

1By FCC rules, in North America, EPC UHF RFID protocol can
use 902-928MHz ISM bandwidth, which is divided into fifty 500kHz
channels [26].

response [21]. Another practical FDMA method proposed by
EPC C1G2 is to constrain reader transmission to occupy only
a small portion of the center of each channel, and tag response
is situated at the channel boundary to avoid collision [21].

Reader-Reader Collision occurs when a tag is located in
the intersection part of interrogation zones of multiple readers
and two readers communicate with that tag at the same time.
This type of radio collision has negative impact on our JREP
protocol, because that tag with very simple circuit may not
correctly resolve the multiple reader commands received and
behave in undesirable ways in its time slot. To avoid this
type of collision, many reader scheduling algorithms were
proposed in literature [27]–[29]. Most of them are based
on TDMA (time-division multiple access) technique, which
schedules conflicting readers to different time intervals. Take
an early piece of work named Colorwave [28] as an example.
It considers an “interference graph” over the readers, wherein
there is an edge between two readers if they could lead to
a collision when transmitting simultaneously. It attempts to
randomly color the readers such that each pair of interfering
readers have different colors. Readers with different colors are
scheduled to different time intervals to avoid collisions.

Support Long ALOHA Frame. Besides the multiple reader
scheduling problem, there is another technical issue about how
to encode a large tag set into a long bitmap. According to EPC
C1G2 standard [21], the number of time slots in an ALOHA
frame is 2Q, as specified by a Q parameter contained in the
Query command, which is used by a reader to start a frame.
Since by the current RFID standard, Q is in the range from 0
to 15, the length of an ALOHA frame is at most 215. However,
in some situations, we may need to deal with a large tag set
with tens of thousands of tags, and thus may need a long
ALOHA frame whose size is larger than 215 = 32768.

To address this problem, we will divide a long ALOHA
frame into multiple segments with equal length. Since the
length of each segment is no more than 215, each segment
can be started by the Query command. These segments will
be transmitted one by one, which later can be concatenated to
form the whole frame. Since each tag randomly chooses one
segment for response, before each Query command that starts
a segment, we will use the Select command to tell tags whether
to participate in the segment, or not. The Select command may
filter tags based on the value of the suffix bits of tag’s EPC
code, so that all tags are uniformly distributed in the segments.

VIII. SIMULATION RESULTS

A. Simulation Setting

We evaluate the performance of the proposed JREP protocol
and compare it to DiffEstm [20] for joint estimation. For
the union estimation, we also want to compare with SRCM,
the best protocol among those that were originally designed
to estimate the cardinality of the union of multiple tag sets
covered by different RFID readers. Assuming that the optimal
sampling probability is known, SRCM becomes equivalent to
DiffEstm in union estimation. Please check the Section III-B
for further explanation.
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TABLE II

PROBABILITY FOR INTERSECTION CARDINALITY ESTIMATION (m) BY JREP (ω = 0.735) TO MEET THE BOUND θ = 500

TABLE III

PROBABILITY FOR UNION CARDINALITY ESTIMATION (u) BY JREP (ω = 0.735) TO MEET THE ERROR BOUND θ = 500

We consider two performance metrics. First, when the two
protocols are subject to the same average execution time, we
compare their probabilities of meeting a given error bound.
The probability is measured as the number of joint estimations
that meet the error bound divided by the total number of joint
estimations performed in the simulation. In favor to DiffEstm
and SRCM, we assume that they know the optimal sampling
probability that maximizes their worst-case probabilities of
meeting the error bound. The original paper [20] does not give
a formula for this optimal sampling probability. We obtain it
through exhaustive search by simulations.

Second, given an accuracy requirement as defined
in (1)-(4), we compare the execution times of the two pro-
tocols. The execution time is measured as the number of time
slots it takes the reader to encode a tag set in a snapshot
bitmap, including the frame size f and other slots needed to
give an initial rough estimation of n (Section VI). For JREP,
we invoke GMLE [6] in the first phase to generate a raw
estimation of n with a 95% confidence interval of ±20% error.
The time cost of running GMLE in the first phase hence is
roughly 1.544 · Z0.05

2/0.22 ≈ 148 time slots [6], which is
negligibly small as compared with the cost of the second phase
that uses Aloha frame to scan a tag set with a few thousands
of tags.

The system model is a distributed RFID system of multiple
locations, where each reader periodically takes a snapshot
of its local set of tags, whose number ranges from 0 to
50000, with nmax = 50000. The average number of tags in
a set is chosen to be 10000, which reflects that the normal
business flow of tagged objects is smaller than the worst-case

number that the system is designed to handle. The size of
each tag set will be taken from a truncated normal distribution
N (10000, 20002) in the range of [0, nmax]. For the accuracy
requirement, we set θ = 500 and δ = 5% by default. We will
also perform simulation with other values of θ and δ.

B. Estimation Accuracy Under Same Execution Time

In this subsection, we compare the estimation accuracy of
JREP and DiffEstm (or SRCM) protocols when they are given
the same execution time cost. For JREP, since it uses adaptive
frame size with similar load factor to scan different tag sets,
its average time cost primarily depends on the average size
of tag sets in the system. We choose to set the load factor
of JREP to ω = 0.735, which will be explained later in
the next paragraph. Since the size of a tag set follows a
predefined normal distribution, the average execution time of
JREP is about 18405 slots in our simulation (i.e., for a large
group G of tag sets whose sizes follows normal distribution

N (10000, 20002), we have 1
|G|

∑
ni∈G 2�log2

nip∗
ω � ≈ 18405).

We will use the same number of time slots for DiffEstm.
Hence, DiffEstm uses an ALOHA frame of 18,405 time slots
to scan each tag set, no matter whether the tag set is small or
large. We show the estimation accuracy of JREP in Table II
and Table III, and show the estimation accuracy of DiffEstm
in Tables IV and V.

We set the accuracy requirement as θ = 500 and δ = 5%,
i.e., the difference between the estimated values (d̂, d̂′, û, m̂)
and the true values (d, d′, u, m) must be bounded by ±500
with 95% probability. Then, we compute the parameters of
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TABLE IV

PROBABILITY FOR INTERSECTION CARDINALITY ESTIMATION (m) BY DIFFESTM WITH FIXED FRAME LENGTH 18405 TO MEET θ = 500

TABLE V

PROBABILITY FOR INTERSECTION CARDINALITY ESTIMATION (u) BY DIFFESTM WITH FIXED FRAME LENGTH 18405 TO MEET θ = 500

JREP to meet the accuracy requirement, i.e., compute the value
of ω from (52) and then the values of f and p from (10).
However, since the value of f is rounded up to the power
of two to support the operation of expanded OR, these two
parameters are in fact set conservatively. Alternatively, we
can set their values empirically through simulations (similar
to [11]). We first compute the initial value of ω from (52) and
then perform bi-section search to reduce it as small as possible
such that the resulting values of f and p from (10) will still
satisfy the accuracy requirement. As a result, the load factor ω
of JREP protocol to meet the accuracy requirement is 0.735.

Table II shows the probability for the intersection estimation
m̂ by JREP to meet the error bound ±500. We simulate two
tag sets of sizes n and n′, with n ≥ n′. The first column
shows the range from which n is chosen uniformly at random.
For example, the first range is [0, 5000) and the last range is
[45000, 50000). Be ware that the numbers in the first column
have a unit of 1000. The first row shows the range from
which n′ is chosen. Similarly its first range is [0, 5000) and
the last range is [45000, 50000). Because we require n ≥ n′,
the combinations of n and n′ above the diagonal are invalid.
Each cell in the table shows the probability of meeting the
error bound when n and n′ are chosen from specified ranges.
For example, consider the left bottom cell inside the table,
where n is chosen from [45000, 50000) and n′ from [0, 5000).
The probability of meeting the error bound is 98%, which is
measured from 1,000 simulation runs, each with two tag sets
N and N ′ arbitrarily generated and the number m of common
tags randomly chosen from the range [0, n′].

Table III shows the probability for the union estimation û
by JREP to meet the error bound ±500. All probabilities in

both tables are greater than 95%, which confirms our analyti-
cal results that the proposed estimators satisfy the accuracy
constraints in (1) and (3). The same is true for difference
estimations d̂ and d̂′, which are not shown due to space limits.

We use the same number of slots for DiffEstm. In Tables IV,
we show the probability for the intersection estimation m̂ by
DiffEstm to meet the error bound ±500. This probability is as
low as 51%, when performing joint estimation for two tag sets
whose sizes are in the range [45000, 50000). This is because,
out of its fundamental problems in protocol design, DiffEstm
has to use a fixed frame size to scan all different tag sets.
Since DiffEstm is configured to use the same time cost as
JREP, its frame size parameter is more suitable for average-
sized tag sets and becomes insufficient as compared with the
largest tag sets. In this simulation, DiffEstm uses an ALOHA
frame of 18405 slots to encode a large tag set whose size is
between 45000 and 50000, which is surely insufficient. Thus,
the accuracy of DiffEstm is much worse in Tables IV than
what JREP can achieve at the same time cost in Tables II.
Similar phenomenon can be observed in Table V, which shows
the probability for the union estimation û by DiffEstm to meet
the error bound ±500. The probability is as low as 42%, when
both n and n′ are between 45000 and 50000.

C. Execution Time to Achieve Same Accuracy

Next, we fix the accuracy requirements with θ = 500 and
δ = 5%, and compare the execution times of JREP and
DiffEstm for taking a bitmap snapshot of a tag set. Because
DiffEstm is not designed for absolute error bound, there is
no formula to compute its frame size. With nmax = 50000,
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Fig. 5. Time comparison with θ = 500 and δ = 5%.

Fig. 6. Impact of load factor on estimation accuracy of joint properties.
(a) A large tag set and a small tag set. (b) Two large tag sets.

we use exhaustive search by simulation to find its minimum
frame size that can meet the error bound. The results are shown
in Fig. 5, where the horizontal axis is the size of a tag set,
which varies from 100 to 50000, and the vertical axis is the
number of time slots needed to take a bitmap snapshot of the
set. Due to the nature of its design, DiffEstm uses a constant
frame size of 67000 slots. The frame size of JREP is variable.
It is small when the tag set is small. For example, for a set of
5000 tags, the number of time slots needed by JREP is 8192,
only 12% of what’s needed by DiffEstm. The average time
cost of JREP is shown by the solid horizontal line. Similar
results are observed from simulations with different accuracy
requirements (whose results cannot be included due to space).

D. Impact of Protocol Parameters

In this subsection, we evaluate the impact of protocol para-
meters, including load factor ω and sampling probability p.
In Fig. 6, we plot the relation between estimation accuracy
and load factor ω (while the sampling probability p = 1), and
the accuracy is quantified by the probability of successfully
bounding absolute estimation error within the bound ±500.
The higher the probability is, the better the accuracy we
have. In Fig. 6(a), we consider the case of performing joint
estimation for a large tag set n ∈ [45000, 50000) and a small
tag set n′ ∈ [0, 5000). In Fig. 6(b), we consider the case of
jointly analyzing two large tag sets n, n′ ∈ [45000, 50000).
Both plots demonstrate two phenomenons: the estimation
accuracy of any joint property monotonically decreases as load
factor ω increases; the estimation accuracy of the union u is
the worst among all joint properties u, d, d′ and m, which
is consistent with our analysis result in Property 2. To ensure
at least 1 − δ = 95% probability of keeping u’s estimation

Fig. 7. Impact of sampling probability on estimation accuracy of joint prop-
erties. (a) A large tag set and a small tag set. (b) Two large tag sets.

error within ±500, the load factor ω needs to be smaller
than 0.735.

We further evaluate the impact of sampling probability p,
while fixing the load factor ω to 0.735. We plot the evaluation
result in Fig. 7. In plot (a), we perform joint estimation for
a large tag set and a small tag set, while in plot (b), we
jointly analyze two large tag sets. The two subfigures show
that the probability of successfully bounding estimation error
within ±500 reduces rapidly as the sampling probability p
decreases. Hence, when p is smaller than one, sampling error
has a significant impact over estimation accuracy. So in most
circumstances, we treat p = 1 to approximate the optimal
configuration of sampling probability, which is consistent with
the theoretical calculation of the optimal p∗ in equation (10).

IX. CONCLUSION

This paper studies the problem of joint cardinality esti-
mation: Given any two tag sets in a large RFID system,
estimating their union cardinality, intersection cardinality, and
difference cardinalities. We propose a solution called JREP
that adapts its snapshot based on the size of the tag set that
it records. Variable-sized snapshots are combined through an
invented operation called “expanded OR" in order to support
joint estimation. We derive a full set of estimators, analyze
their bias and variance, and provide formulas for setting the
optimal system parameters under the predefined constraints on
the union/intersection/difference estimation accuracy. We use
both theoretical analysis and simulation results to demonstrate
that the new solution is much more efficient than the prior art.
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