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Abstract—An integral part of any social or medical research is
the availability of reliable data. For the integrity of participants’
responses, a secure environment for collecting sensitive data
is required. This paper introduces a novel privacy-preserving
data collection method: collusion resistant multi-matrix masking
(CRM3). The CRM3 method requires multiple masking service
providers (MSP), each generating its own random masking
matrices. The key step is that each participant’s data is randomly
decomposed into the sum of component vectors, and each
component vector is sent to the MSPs for masking in a different
order. The CRM3 method publicly releases two sets of masked
data: one being right multiplied by random invertible matrices
and the other being left multiplied by random orthogonal
matrices. Both MSPs and the released data may be hosted on
cloud platforms. Our data collection and release procedure is
designed so that MSPs and the data collector are not able to
derive the original participants’ data hence providing strong
privacy protection. However, statistical inference on parameters
of interest will produce exactly the same results from the masked
data as from the original data, under commonly used statistical
methods such as general linear model, contingency table analysis,
logistic regression, and Cox proportional hazard regression.

Index Terms—Privacy-preserving data collection, orthogonal
transformation, randomized response technique, item count tech-
nique, item sum technique, matrix-masking method.

I. INTRODUCTION

The proliferation of mobile computing devices and the

ubiquity of internet access have been feeding an informa-

tion explosion, leading to the big-data era. Data collection

for scientific, commercial or social research is increasingly

performed online. However, privacy concern presents a major

obstacle to data availability when people’s confidential infor-

mation is involved. This problem is particularly evident in

medical research [1]. As an example, modern technologies

provide novel information such as genetic signatures related

to potential risk of genetic related disease onset, e.g., type I

diabetes, system lupus erythematosus, etc. This information is

critical to research for studying and curing such diseases. But

leak of sensitive data, either intentional or unintentional, may

result in potential problems to people who provide the data

with good intention to facilitate medical advance. For one,

insurance companies will be interested in such data to guard

against future risks even though these people are healthy now

and the disease of concern is only a possibility in the future.

Besides the medical domain, privacy concern also arises in

social studies as well as surveys and voting. For instance,

employees may be reluctant to voice negativity on record

against their managers due to fear of reprisal if confidentiality

is not guaranteed. With such concern in mind, people may

simply choose not to provide their data or if they do, provide

wrong information, which adversely affects the availability or

quality of data.

Recognizing the importance of data confidentiality, major

efforts have been made through legislation, restrictions on

data access, and de-identification technologies, with limited

success. Again using the medical domain as an example, since

the advent of the Health Insurance Portability and Account-

ability Act of 1996 and subsequent rulings, privacy protection

has become an important legal issue. It often takes months to

get approval from Institutional Review Board (IRB) before a

medical study can be launched, and even then the use of data is

subject to stringent restrictions. Yet, the lengthy approval and

training process, coupled with de-identification and encryption

before data release, can only provide partial privacy protection
because as long as raw data is collected, patient information

leak is always a possibility due to unintentional mishandling or

intentional transfer of data by those who have gained access.

Research has strived to provide solutions that alleviate the

adverse impact of privacy concern. Most existing methods

are designed to share obfuscated data by entities who have

already collected raw data. These methods are well suited

for today’s practice that collect raw data to data management

centers and then obfuscate the data before releasing. However,

they are ineffective against the security breach of the data

management centers themselves, which face real threats from

the cyberspace, as is evident from the recent well-publicized

online stealing of credit card information from major retailers

and hacks against bank servers [2], [3]. More generally speak-

ing, once people give out their sensitive information to data

centers, they lose control of the information.

This paper complements the current practice by proposing

a new option of data collection for strong privacy protection,

ensuring that raw data stay with participants and only masked
data are collected, which can be distributed and shared freely.

Not only will de-identification be performed directly by the

devices of data providers right after data are produced, but

also the data themselves are completely masked right away,
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such that sensitive information can be transferred without

fear of identification or data leak. Such technologies hold the

promise of removing the trust obstacle, promoting objective

data collection, and helping unrestricted sharing of big data.

More specifically, we propose a new procedure called

collusion-resistent multi-matrix masking (CRM3) that is per-

formed at the time of data collection, starting from the moment

before information leaves the data providers’ devices. The data

vector at each provider is first split randomly into a number

of component vectors (whose sum equals the original vector).

Each component vector is masked at the provider’s device and

then goes through a set of independent masking servers, which

may be hosted in cloud. Different component vectors will go

through the servers in different orders. The masked component

vectors will be combined at a data collection center, which

may also be hosted in cloud. After being masked again by

the collection center, the combined vector will go through the

masking servers to be partially de-masked. This process, which

is completely transparent to the data providers once the data

leaves their devices, achieves two important properties: (1) The

final masked data can be freely shared without leaking any

original data of the providers as long as the data collection

center and all masking servers do not collude altogether, and

(2) even though the masked data do not give out individual

information, they can be made in such a way that statistical

inference on parameters of interest can be conducted with

the exactly same results on masked data as on the original

data, under general linear model, chi-squared test, logistic

regression, and other statistical methods. The second property

distinguishes our work from Warner’s randomized response
technique [4], [5], which only gives approximate statistical

results for binary input from data providers.

The rest of the paper is organized as follows. In Section

2, we summarize the related existing methods for privacy

protection, including Warner’s randomized response technique

[4], the item count technique [6], the item sum technique [7]

and the triple matrix-masking (TM2) method introduced by

Wu et al. [8]. In Section 3, we propose a collusion resistant

data collection method, which overcomes the limitations of the

existing methods and provides a more secure and trustworthy

data collection environment. In Section 4, we extend the

proposed method to handle missing data. Section 5 draws the

conclusion.

II. RELATED WORK

In most practice, the data collector use some methods to

mask the sensitive raw data before sharing. The list of com-

monly used methods include addition of noise [9], [10], [11],

multiple imputation [12], information preserving statistical

obfuscation [13], post-randomization method [14], controlled

tabular adjustment [15], [16], [17], data shuffling [18], random

projection based perturbation [19], and random orthogonal

matrix masking [20], [21], [22]. In each of these practiced

method, the participants may be reluctant to reveal sensitive

information to the data collectors or may question the security

of the raw data before it is obscured. The main purpose of this

research is to mask the sensitive participants data before it

leaves the participants’ data collection devices or reaches the

data collector. Distributed data masking at patients presents

new technical challenges that require novel solutions beyond

the existing methods. A good example is secure multi-party

computation (SMC) [23], [24], [25], which allows multiple

data centers to jointly perform statistical investigations without

revealing their data to each other. For example, three hospitals

collect private data from their patients respectively and then

perform joint data mining without exchanging their raw data.

In this example, each hospital still holds its patients’ private

data, which is against our goal of strong privacy protection.

One may argue that SMC can be directly performed amongst

patent devices. But that will place significant computation

overhead on patient devices. More importantly, all patients

have to stand by ready for any statistical analysis that may

happen years into the future; if patients ever leave a study,

they will take their data away if we require that private data

can never leave patient devices. This makes the SMC approach

practically infeasible for medical studies that collect patient

data over a long time.

There are several other methods to collect data anonymously

without revealing the providers’ identity, including various

cryptographic solutions [26], [27], [28] and anonymous com-

munications [29], [30], [31]. These methods achieve unlinka-
bility, that is, they prevent data collector and data users from

learning which input came from which provider. But they

do not hide the data inputs. Our research also differs from

traditional approaches of removing data provider identity. We

observe that even after standard patient identifiers are removed,

it is still sometimes possible to deduce the patient identities

from the remaining medical data due to small count. In other

words, as long as the raw sensitive data are collected and

some people have access to them, leak of private information

is always a possibility due to unintentional mishandling or

intentional transfer of data by those who have gained access,

even after current standard of de-identification and encryption

before data release. And oftentimes patients are not willing

to participate in research if their sensitive information may be

exposed, even to the investigators. In contrast, our approach

requires not only the removal of identifiers, but also the mask-

ing of all other data fields, making original data completely

hidden.

In addition, with growing demand of cyber physical sys-

tems and social computing, a variety of approaches have

been proposed in privacy protection. For example, “security-

aware efficient data transmission” was designed for cloud-

based Intelligent Transportation Systems with secure real-time

multimedia data sharing and transferring [32]; “intercrossed

access controls” was proposed to secure accesses between

various media through the multiple cloud platforms [33]; and

“spoofing-jamming attack strategy” was designed to maximize

the adversarial effects using an optimal power distribution

[34].

The only methods in the literature that have strong privacy

protection are the randomized response technique proposed by
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Warner [4], [5], the item count technique [6] and the item sum

technique [7], and the triple matrix-masking (TM2) method

[8], which are summarized in the next three sub-sections.

A. Randomized Response Technique (RRT)

Warner’s method requests an interviewee to report a binary

answer, truthfully or untruthfully based on a preset probability

distribution. Specifically, it requests an interviewee to report

whether or not his true binary answer to a sensitive question

is the same as a randomly generated response that only the

interviewee sees. Let π be the true proportion of interest

(probability of “yes” answer to the sensitive question if truth-

fully disclosed) and p is the chance of “yes” answer from the

random device, then the probability of getting a “yes” response

is λ = πp + (1 − π)(1 − p). With n randomized responses,

an unbiased estimator of λ is the sample proportion λ̂, hence

unbiased estimator of π is π̂ = (p−1)/(2p−1)+ λ̂/(2p−1),
with a variance {π(1− π) + 1/[16(p− 0.5)2]− 1/4}/n. The

investigator’s ability to guess the response may be calibrated

by adjusting the distribution of the randomly generated re-

sponse, but the investigator cannot determine absolutely the

interviewee’s response.

The method is well summarized in a monograph by Chaud-

huri and Mukerjee [35] and has been used in many applications

[5], [36], [37]. This technique meets the dual objectives of

generating enough reliable data to yield fruitful inference and

protecting respondents’ privacy despite their truthful replies.

However, Warner’s randomized response technique is ineffi-

cient, meaning that more samples will be needed to produce

the same estimation accuracy when comparing with the raw

data. For example, when π = 0.5 and p = 0.75, the variance

of π̂ based on a randomized response survey is 1/n, which is

4 times of the variance from a direct response survey, provided

that all interviewees told the truth. In addition, it is only

applicable to binary data.

B. Item Count Technique (ICT) and Item Sum Technique (IST)

In the item count technique [6], interviewees are asked

to provide the number of items that apply to them, without

answering the questions individually, where each question is

about the applicability of an item. Respondents are randomly

divided into two subsamples: one subsample only responds

to a short list of nonsensitive questions; the other subsample

answers a long list containing both nonsensitive questions and

a sensitive question of interest. The population rate of the

sensitive behavior can be estimated by the mean difference of

answers between the two subsamples.

Trappmann et al. [7] extended the method to the mea-

surement of quantitative sensitive variable. The item sum

technique also generates two random subsamples; and they

either answer a short list (SL) of nonsensitive questions or a

long list (LL)containing nonsensitive questions and a sensitive

question. However, IST requests interviewees to report the sum
of the answers to the questions in theirs list, instead of the

number of items that apply to them. For example, Trappmann

et al. [7] conducted an experiment in which the following

questions were used: 1) How many hours did you watch TV

last week? (LL and SL); and 2) On average, how many hours

per week do you engage in undeclared work? (LL only). Note

that the sensitive information on undeclared work remains

unknown at the individual level, but the mean difference of

answers between the two subsamples provides an unbiased

estimate of the amount of undeclared work.

The ICT and the IST have several advantages over the RRT:

i) no randomizing device is required and hence they are easier

to implement; ii) for many respondents, the techniques are a

lot easier to understand than the complex probabilistic concept

with the RRT. The later may lead a substantial proportion of

respondents to provide a self-protective answer irrespective of

the outcome of the randomizing device.

C. The TM2 Method

The TM2 method [8] is an improvement over RRT, ICT

and IST in two aspects: (i) the method is applicable to survey

of multiple sensitive questions and their relationships; and (ii)

it losses no efficiency for statistical inference of binary and

normal data because sufficient statistics are preserved.

The method relies on the well-known facts that: (i) or-

thogonally record-transformed data (AX) preserve sufficient

statistics for parameters of interest with the use of general

linear model and contingency table analysis; and (ii) Logistic

regression can be conducted on the attribute-transformed data

XB with the same results as the original data if the column

operator B, which transforms data variables in X , keeps

the response and treatment group variables invariant. More

specifically, the least-squares estimates from the original and

transformed data are the same when left-multiplying the data

by an orthogonal matrix. Also, the estimate of the covariance

matrix as well as all inference procedures will be identical.

In addition, we can hide values of discrete variables while

keep the contingency table counts by orthogonal transforma-

tion. Furthermore, we can obtain the exactly same maximum

likelihood estimate of the treatment effects, their estimated

standard errors, and most goodness of fit statistics in logistic

regression based on the attribute-transformed data. Please refer

to Ting et al. [22] and Wu et al. [8] for more details.

The basic idea behind the TM2 approach is that a masking

service provider only receives masked data from data providers

and then applies another mask. The data collector who holds

the key to the first mask partially decrypt the doubly masked

data and apply a third mask before releasing data to the

public. The critical feature of the method is that the keys used

to generate the masking matrices are held separately by the

masking service provider and the data collector. This ensures

that nobody sees the actual data, but statistical inference on

parameters of interest can be conducted with the same results

as if the original data were used.

The method involves four parties: data providers (partici-

pants), data collector (investigators), data users (data analysts

and public), and a masking service provider, which is a

private business or a government entity established to promote
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Masking Service Provider
XB1, A2, B2

�Step 2 Data Providers
x, B1

Data Collector
A2X,XB1B2, A1, B1

�

Step 3

�
Step 1

�
Step 4

Data Users (Public)
A1A2X,XB1B2

Fig. 1. The diagram above illustrates each entity’s knowledge about
the data and the masking matrices in the first TM2 method. The
masking service provider knows XB1, the data collector knows
A2X , and two masked matrices (A1A2X & XB1B2) are available
to everybody including the public. Nobody other than data providers
(participants) knows the original data X .

security in data sharing (resembling those who provide public-

key certificates for internet e-commerce). Specifically, let x
be a 1× p vector containing a single participant’s sensitive

information and X be an n× p data matrix from a cohort of

participants. The TM2 method consists of the following steps:

Step 1. The data collector plans the data collection,

creates the database structure, programs the data col-

lection system; and chooses a key to generate a p × p
random invertible matrix B1, which is distributed to the

participants’ data collection devices.

Step 2. At the time of data collection, a participant’s data

x are immediately transformed by B1 before leaving the

participant’s device; only masked data xB1 are sent to

the masking service provider.

Step 3. The masking service provider chooses different

keys to generate an n× n random orthogonal matrix A2

and a random invertible matrix B2. After receiving data

from all participants, it aggregates the individual data into

XB1, and sends the doubly masked data A2XB1 and

XB1B2 to the data collector after applying record and

attribute transformations.

Step 4. The data collector multiplies A2XB1 by B−1
1 to

get back A2X , chooses another key to produce an n×n
random orthogonal matrix A1 and publishes A1A2X and

XB1B2 , which are accessible by data users.

TM2 however has a serious security problem: It is subject

to simple collusion attacks. For instance, if the data collector

colludes with the masking service provider, they together have

all the keys for generating A1, A2, B1 and B2. Therefore,

they can easily recover X from the masked data. For another

example, if the masking service provider colludes with one

of the data providers (or it registers as a data provider), it

will know B1 and therefore can recover X from XB1 that it

receives from the data providers.

III. COLLUSION RESISTANT MULTI-MATRIX MASKING

In this section, we propose a new data collection procedure

with strong privacy protection. In order to address the security

problem of TM2, the new procedure applies several techni-

cal innovations, involving multi-matrix masking for collusion

resistant.

First, it is obviously insecure when the privacy of all

participants’ data depend on one secret matrix B1 shared

by all participants — defection of any participant breaks the

security of the whole system. The question is, without using

B1 to mask, how will they send their data while preserving

data privacy? Our idea is to split each participant’s data x
into a number k of randomly chosen component vectors, v1
through vk, such that x = v1 + ... + vk. Each component

vector is sent to a different masking service provider, with

the communication channel between the participant and each

masking service provider being encrypted, through the popular

TSL for example. There are k masking service providers,

each of which knows only a randomized component vector.

The whole system achieves k-privacy, meaning that the data

privacy is compromised only when all k masking service

providers collude.

Second, we want to make sure that, with multiple masking

service providers, each holding a randomized piece of data

from every participant, we are still able to integrate all such

pieces into a masked form similar to the end results in

Figure 1, AX and XB, where A (= A1A2 in the figure) is

an orthogonal matrix co-generated from keys held separately

by the data collector and all k masking service providers, and

B (= B1B2 in the figure) is an invertible matrix co-generated

from another set of keys held separately by the data collector

and the k masking service providers. With AX and XB, we

will be able to perform the general linear model, contingency

table analysis, logistic regression and Cox regression, with the

same results as if the original data were used, according to

[22], [8].

It is non-trivial to design a scheme for multiple service

providers to collaboratively work on random component vec-

tors from many participants and integrate their respectively

results into two masked matrices, AX and XB, without ex-

plicitly exchanging their masking matrices. This is a technical

challenge that does not exist in TM2.

The design of the new data collection system is described

as follows: each masking service provider generates an n× n
random orthogonal matrix for left multiplying masking and a

p× p random invertible matrix for right multiplying masking.

The right multiplying matrices from all service providers

are commuting in product order. Let x be a 1× p vector

containing a single participant’s sensitive information and X
be an n× p data matrix from a cohort of participants. The

new masking method, illustrated in Figure 2, consists of the

following steps:

Step 1. At the time of data collection, a participant’s data

vector x is randomly decomposed into a sum of k vectors:

x = v1+v2+ · · ·+vk. More specifically, the jth element
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of vi equals wijxj , where w = (wij , 1 ≤ i ≤ k, 1 ≤ j ≤
p) is a random weight matrix.

Step 2. The ith component of decomposed data (vi)
is first sent to ith masking service provider, who right

multiplies it by Bi. Next, the masked data is sent to

all other masking service providers for matrix masking.

Then, the data masked by all masking service providers

viB, where B = Πk
i=1Bi is the product of all right

multiplying matrices (note that order of multiplication

does not matter), is sent to data collector.

Step 3. Adding up all masked components viB, 1 ≤ i ≤
k, data collector gets xB. After receiving data from all

participants, they aggregate the individual data into XB,

which is sent back to masking service providers to remove

right multiplying masking and to add left multiplying

masking (details in the next step).

Step 4. The masked data XB is right multiplied by B−1
i

and left multiplied by Ai in sequence. The resulted data

AX = Πk
i=1AiX is sent to data collectors.

Step 5. The data collectors release AX and XB to data

users.

Data Providers
x = v1 + v2 + · · ·+ vk

�
Step 1

Masking Service Providers

B1, A1, v1, ṽ(1) B2, A2, v2, ṽ(2) · · · · · · Bk, Ak, vk, ṽ(k)

Data Collector
viB, xB,XB,AX

�
Steps 2 & 4

�

Step 3

�
Step 5

Data Users (Public)
AX,XB

Fig. 2. The diagram above illustrates each entity’s knowledge about
the data. The ith masking service provider generates a random
invertible column operator Bi and a random orthogonal row operator
Ai, knows a component of decomposed data vi and data masked
by other masking service providers ṽ(i). The data collector knows
masked data viB in addition to AX and XB, which are available
to everybody including the public. Nobody other than data providers
(participating patients) knows the original data X .

The orthogonal operators Ai, i = 1, 2, . . . , k can be obtained

by the Gram-Schmidt orthonormalization of a random normal

matrix, controlled by some random number generator seeds

(i.e., keys). The resulting matrix is a draw from the uniform

distribution on orthogonal matrices under the Haar measure

(see p. 234 in [38]). Let M1 and M2 be Gram-Schmidt

orthonormalization of [1n, Z1] and [1n, Z2], respectively. Note

that both M1 and M2 have the first column vector parallel to

1n, and A = M1M
′
2 transforms column vectors in M2 to those

in M1. Therefore A is an orthogonal matrix that keeps 1n
invariant. More information about random orthogonal matrix

can be found in [39], [40], [41].
There are two ways to obtain column operators Bi, i =

1, 2, . . . , k that are commuting in product. In the first approach,

the masking service providers share a random invertible matrix

T . And the ith masking service provider randomly generates a

coefficient vector (bi0, bi1, . . . , bis) and let Bi =
∑s

j=0 bijT
j .

In the second approach, the masking service providers share a

random orthogonal matrix U . And the ith masking service

provider randomly generates an invertible diagonal matrix

Di = diag(di1, di2, . . . , dip) and let Bi = UDiU
′.

Moreover, the method can be improved to achieve (k+1)-
privacy so that X can be recovered only when all (k + 1)
parties (the data collector and the masking service providers)

collude together. Specifically, the data collector generates an

n × n random orthogonal matrix Ak+1 for left multiplying

masking and a p× p random invertible matrix Bk+1 for right

multiplying masking. And in Step 3, Ak+1XΠk
i=1Bi is sent

back to masking service providers to remove right multiplying

masking and to add left multiplying masking; while in Step

5, masked data Πk+1
i=1AiX and XΠk+1

i=1Bi are released.

IV. MISSING DATA

We now extend the proposed multi-matrix masking method

to account for nonresponse, where one or more data values are

missing from a patient’s vector x. One solution is to impute

any missing value with the mean of that variable among other

patients, which has the benefit of not changing the sample

mean for that variable. [42] Recall that X is the matrix of

the original data from the patients (participants). Our multi-

matrix masking method will produce the masked data AX ,

while keeping the secrecy of X . In the following, we modify

the method to produce AX̃ in the presence of missing data,

where X̃ is the same as X except that the missing values are

imputed by the means of the corresponding variables.
In Step 1, the missing values in a participant’s data vector

x are imputed by a predetermined constant c (say, 99999). In

addition, the system collects an indicator vector y from each

participant about the missing values, where an element equals

1 if the corresponding value is missing from the participant

and 0 otherwise. The y vector is masked in the same way as

the x vector, and hence the data collector receives yB after

Step 3 and obtains AY after Step 4, where Y is an indicator

matrix aggregating the row vectors (y) from all participants.
We choose A to be an orthogonal matrix that keeps 1n

invariant; see the previous section on how to produce such a

matrix. We can mathematically generate AX̃ from AX and

AY , without having to know X or Y , as follows: Let m be

the row vector of sample means based on non-missing data. It

is easy to check that, because A is an orthogonal matrix that

keeps 1n invariant, we have

m = 1′n(AX − cAY )./(n− 1′nAY ),
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where “./” is element-wise division. Next, we multiply each

column of AY by the corresponding mean from vector m,

with the resulting matrix denoted as V . In other words,

V = kron(m, 1n). ∗AY,
where kron is the Kronecker tensor product and “.*” is

element-wise multiplication. Finally, we are able to obtain the

imputed (masked) matrix,

AX̃ = AX − cAY + V.

V. PRACTICAL DISCUSSIONS

Trappmann et al. [7] has shown that privacy-preserving

data collection does improve participants’ willingness to reveal

sensitive information. It may be important to be able to

convince the patients about a method’s effectiveness. This is an

educational issue, not a technical one, thus beyond the scope of

this paper. We believe that it is not a fundamental problem in

practice as long as the research community verifies a method

and experts or authorities accept it; as an example, billions

of people place their trust on experts and authorities when

they participate in online commerce without knowing how the

public key infrastructure works.

Another issue is the cost associated with multiple mask-

ing service providers. When multiple hospitals/institutes/PIs

collaboratively collect data together, it will be convenient for

each one of them sets up a server that acts as a masking

service provider. To guard against their collusion, it will

be necessary for an external trusted third party to act as

an additional masking service provider. When a single PI

collects data, the above setup still works, with the PI setting

up a server for masking and a trusted third party acting as

another masking provider. It will certainly strengthen security

when more trusted third parties are used. But minimally each

hospital/institute/PI only needs to set up one server, and a

trusted third party is needed just as what the e-commence on

the Internet needs for its security. A second approach to reduce

cost is that many research projects jointly develop and share

the privacy-preserving data collection system.

VI. CONCLUSIONS

A collusion resistant and privacy-preserving data collection

method is proposed in this paper. Through the decomposition

of participants’ data into multiple components and masking

them with multiple random matrices, the sensitive data are

protected from the moment of data collection. Different mask-

ing service providers and the data collector separately hold

keys for the generation of random matrices, hence ensuring

collusion resistant privacy protection. It is imperative to note

that only the data providers knows the original data, but

standard statistical analysis can still be performed with the

same results from the masked data as from the original data.

In other words, the matrix-masking methods improve over

RRT, ICT and IST in preserving statistical information on

multiple sensitive questions as well as their relationships,

while strongly protect privacy. With the ever growing amount

of data generated by electronic devices and the increasing

demand for privacy protection, the method can be a great tool

for survey research or clinical studies.

Also, additional research is needed for developing methods

to perform model-checking, and data exploration under more

complex models while maintaining limited data disclosure. We

believe the partial masking technique may offer help here.

In many applications, it is enough for privacy protection to

release the original main outcome while masking all other

sensitive information. This will allow statistical analysts to

access residuals of fitted model and to some extent perform

model diagnostics.
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