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Abstract

A major obstacle that hinders medical and social research is the lack of reliable data due to 

people’s reluctance to reveal private information to strangers. Fortunately, statistical inference 

always targets a well-defined population rather than a particular individual subject and, in many 

current applications, data can be collected using a web-based system or other mobile devices. 

These two characteristics enable us to develop a data collection method, called triple matrix-
masking (TM2), which offers strong privacy protection with an immediate matrix transformation 

so that even the researchers cannot see the data, and then further uses matrix transformations to 

guarantee that the data will still be analyzable by standard statistical methods. The entities 

involved in the proposed process are a masking service provider who receives the initially masked 

data and then applies another mask, and the data collectors who partially decrypt the now doubly 

masked data and then apply a third mask before releasing the data to the public. A critical feature 

of the method is that the keys to generate the matrices are held separately. This ensures that 

nobody sees the actual data, but because of the specially designed transformations, statistical 

inference on parameters of interest can be conducted with the same results as if the original data 

were used. Hence the TM2 method hides sensitive data with no efficiency loss for statistical 

inference of binary and normal data, which improves over Warner’s randomized response 

technique. In addition, we add several features to the proposed procedure: an error checking 

mechanism is built into the data collection process in order to make sure that the masked data used 

for analysis are an appropriate transformation of the original data; and a partial masking technique 

is introduced to grant data users access to non-sensitive personal information while sensitive 

information remains hidden.
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1 Introduction

There is opportunity and need in medical and social research today to collect more and 

better data, while at the same time there is increasing pressure to safeguard the privacy of 

study subjects whose data are collected and analyzed. This sounds much like the “growing 
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tension between confidentiality and data access” (Duncan and Pearson, 1991) in use of 

government databases. The medical community has recognized the need for systematic 

development of methods for data privacy (American Association of Medical Colleges, 

2010); however, statistical methods for data privacy have not focused on the needs of 

medical research as much as on those of social science research.

A common scenario where data confidentiality is a problem in social science research 

involves four parties: a statistical agency, data users, data providers, and intruders. The 

statistical agency plans and carries out the data collection, and once the data have been 

collected, plans the release of a possibly masked version of the data. The data users, who 

may be the same as the statistical agency, wish to do research at a population level using the 

data; such research is intended to provide benefit to society. The intruders wish to get around 

the built-in security and privacy barriers, to identify sensitive data about particular data 

providers, and to use this information in harmful ways. In this scenario, the goal of data 

masking or other methods to guarantee privacy of the data is to protect each individual data 

provider from having his data exposed to intruders, while allowing legitimate use of the data 

for beneficial research. Various statistical disclosure limitation methods have been proposed 

to achieve this goal, such as addition of noise (Kim, 1986; Kim and Winkler, 1995; Chawla 

et al., 2005), multiple imputation (Rubin, 1993), information preserving statistical 

obfuscation (Burridge, 2003), the post-randomization method (Gouweleeuw et al., 1998), 

controlled tabular adjustment (Cox et al., 2004), data shuffling (Muralidhar and Sarathy, 

2006), random projection based perturbation (Liu et al., 2006), random orthogonal matrix 

masking (Ting et al., 2008). In addition, there are many approaches that were particularly 

developed for privacy protection of contingency table data, especially for the release of high-

dimensional contingency tables. They include generalized shuttle algorithm (Dobra and 

Fienberg, 2009), synthetic data (Fienberg and Slavkovic, 2008; Winkler, 2008; Slavkovic 

and Lee, 2010), algebraic statistics (Dobra et al, 2008; Slavkovic and Fienberg, 2009), and 

differential privacy (Blum et al., 2005; Dwork, 2006; Barak et al., 2007; Fienberg et al., 

2010; Yang et al., 2012), among others.

On the other hand, in a typical clinical study (such as a multi-center medical trial), the 

privacy scenario involves the funding agency (such as the National Institutes of Health), the 

study investigators (data collectors), the study participants (data providers) and potential 

intruders. In this scenario, the data users include the study investigators, as well as external 

researchers if the investigators make the data available to them. The usual approach to 

privacy is regulated by the Health Insurance Portability and Accountability Act of 1996 and 

subsequent rulings. Among other things, the law requires all researchers in both the clinical 

and data branches to undergo regular training on ethics and methods of guaranteeing data 

privacy and safety. The methods are to restrict access to all personal identifiers (such as 

name and social security number) from research databases, and to follow standard computer 

security practices. Data masking or transformation methods have not been used much if at 

all. One negative impact of the privacy regulations is that it often takes many months to get 

approval from the Institutional Review Board (IRB) before a clinical study can start, and 

even then the use of the data is subject to stringent restrictions. General linear regression, 

contingency table analysis, and logistic regression are commonly used in a typical multi-

center medical trial. Furthermore the statistical analysis plan is often prespecified in the 
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study protocol before recruitment and data collection. Once the data are analyzed and main 

results are published by the research team, researchers on government-funded grants are 

required to release the data for academic and public use, and the only privacy protocol is that 

all personal identifiers are removed from the data.

Our overall aim in the present work is development of a system for privacy-preserving data 

collection and analysis which will be useful in both medical and social research. We propose 

a new method called triple matrix-masking (TM2) that is performed at the time of data 
collection. There are three key ideas behind the approach we take in this paper. We use 

specially designed matrix transformations that preserve data features needed for standard 

statistical analyses, an idea developed by Ting et. al. (2008) for the purpose of microdata 

release for social science research. A new twist in our approach is the application of a 

transformation at the moment the data is collected, so that not even the study investigators 

know the actual values of sensitive variables. And in addition, we have incorporated ideas 

from computer science work on data security, including a protocol for handling of keys 

which involves an additional entity in the scenario, termed a masking service provider. 
Keller-McNulty (1991) made the valid point that statisticians working on data privacy need 

to incorporate ideas that have been developed by computer scientists working on private 

sector data security.

The TM2 method works as follows. A masking service provider only receives masked data 

from data providers and then applies another mask. The data collectors who hold the key to 

the first mask partially decrypt the doubly masked data and apply a third mask before 

releasing the data to the public. The critical feature of the method is that the keys used to 

generate the masking matrices are held separately by the masking service provider and the 

data collectors. This ensures that nobody sees the actual data, but statistical inference on 

parameters of interest can be conducted with the same results as if the original data were 

used.

One motive for this work is to contribute to security of sensitive data, beyond the simple 

removal of personal identifiers from databases. In the medical area, this additional security 

may lead to a less cumbersome IRB approval process, and it may encourage more sharing of 

data when research is completed. In addition, there is a need to persuade potential study 

participants up front that any sensitive data that will be gathered will be secure from 

intruders. In studies about sensitive topics such as illegal activities, medical history and 

personal finance, research could be hindered by the potential subjects’ concern about 

privacy. People often refuse to participate in research altogether. Or, they may consent to 

participate, but then purposely provide wrong information because they do not have enough 

trust in confidentiality protection or simply are reluctant to release private information.

The method we present here is an improvement of Warner’s (1965) randomized response 
technique, which is well summarized in a monograph by Chaudhuri and Mukerjee (1988) 

and has been used in many applications (Ostapczuk et al., 2009; Quercia et al., 2011). This 

technique requests an interviewee to report whether or not his true binary answer to a 

sensitive question is the same as a randomly generated response, which only the interviewee 

sees. That is, the algorithm randomly flips an interviewee’s true binary response with 
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probability (1 − c), where c is the chance of “yes” answer from the random device. The 

investigator’s ability to guess the response may be calibrated by adjusting the distribution of 

the randomly generated response, but the investigator cannot determine absolutely the 

interviewee’s response. Therefore this technique meets the dual objectives of generating 

enough reliable data to yield fruitful inference and protecting respondents’ privacy despite 

their truthful replies. However, Warner’s randomized response technique can apply only to 

binary data and it is inefficient (see Section 4 for more details), while the TM2 method loses 

no efficiency for statistical inference of binary and normal data because sufficient statistics 

are preserved.

The rest of the paper is organized as follows. In Section 2, we summarize the known facts 

that orthogonally record-transformed data preserve sufficient statistics for the general linear 

model and contingency table analysis; and under logistic regression the same inference 

results on parameters of interest can be obtained from certain attribute-transformed data as 

they would have obtained with the original data. In Section 3, we apply these results to 

matrix masking at the time of data collection. We show that, by distributing the keys of the 

random transformations, we can ensure that nobody sees the actual data, yet the masked data 

provides the same statistical inference results. We also add several features to the proposed 

procedure: an error checking mechanism is built into the data collection process in order to 

make sure that the masked data used for analysis are an appropriate transformation of the 

original data; and a partial masking technique is introduced to grant data users access to non-

sensitive personal information while sensitive information remains hidden. In addition, we 

illustrate the new method through a subset of 20 observations from a recently completed 

clinical trial. In Section 4, we compare the TM2 method with related work on privacy-

preserving data collection, including Warner’s randomized response technique, various 

cryptographic solutions, and anonymous communications. We summarize our contributions 

and further research in Section 4, while Appendix 1 provides a Matlab program for 

generating a random orthogonal matrix.

2 Properties of Matrix Masked Data

We use two types of matrix transformation in order to change data values yet preserve that 

information in the data which is essential for statistical analysis. In this section we 

summarize the properties of matrix masked data.

2.1 Orthogonally Record-Transformed Data Preserve Sufficient Statistics

First, we review the known fact that orthogonally record-transformed data preserve sufficient 

statistics for parameters of interest with the use of general linear model and contingency 

table analysis. Consequently, the exact same analytical results can be obtained with 

orthogonally-transformed data as with the original data. This fact has been used by Ting et 

al. (2008), who proposed a method they called random orthogonal matrix masking (ROMM) 

that preserves sufficient statistics under a linear model. In ROMM and earlier work (Duncan 

& Pearson, 1991), the data collectors have the raw data matrix, which is multiplied by an 

orthogonal masking matrix before sending the resulting matrix to data analysts or others 

who request the data. This procedure assumes that the data collectors know the raw data 

Wu et al. Page 4

J Priv Confid. Author manuscript; available in PMC 2019 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



before performing their masking operation. We propose a new method that improves privacy 

protection by preventing anyone other than data providers (participants themselves) from 

knowing the raw data; the procedure is performed distributively, allowing the data to be 

incrementally masked for each participant. Before presenting our procedure, we show that 

orthogonal transformation of data preserves sufficient statistics. For clarity, we decompose 

the data matrix Xn×(p+1) into two parts, X = [Y, Z], where Yn×1 is the vector for the outcome 

variable and Zn×p denotes the model matrix. First, consider the general linear model,

Y = Zβ + ϵ,

where βp×1 is the vector of unknown parameters, and ϵn×1 is the vector of zero-mean random 

error terms (usually assumed to be normally distributed). The usual least-squares estimate β

is the vector which minimizes the sum of squared errors Y − Zβ 2
2; it is also the maximum 

likelihood estimate when ϵ is normal. Recall that when matrix Z is of full rank, the 

minimizer of the sum of squared errors is unique and the estimate β can be expressed as 

β = Z′Z −1Z′Y, where apostrophe (′) denotes transpose.

We consider applying an orthogonal transformation to the outcome vector Yn×1, and the 

same transformation to the model matrix Z. An orthogonal transformation is a mapping from 

Rn to Rn which preserves lengths of vectors and angles between vectors. It may be 

represented by a square matrix An×n such that A′A = I, where I is the identity matrix. Now 

we fit the model based on AY and AZ rather than the original model based on Y and Z. That 

is, AY = AZβnew + Aϵ, where A is a row operator that transforms data records (each row 

represents one case). Denote the original least-squares estimate by βorig, and the new least-

squares estimate on orthogonally-transformed data by βnew. We have 

βnew = AZ ′ AZ −1 AZ ′ AY = Z′Z −1 Z′Y = βorig.

In other words, the least-squares estimates from the original and transformed data are the 

same when left-multiplying the data by an orthogonal matrix. This result can be confirmed 

by considering the usual geometric representation of the least-squares estimate. Stated in 

terms of the original estimate, the geometric interpretation is that βorig provides a linear 

combination of the column vectors in Z such that the distance between the vector Y and the 

vector of predicted values Zβ is the shortest, among all vectors in the subspace spanned by 

the column vectors of Z. Using the facts that orthogonal transformations preserve distances 

and angles between vectors, it is a short argument to show that βnew = βorig. From this 

perspective, it is also a short argument to show that the regression parameter estimates are 

identical for the two models even if only a subset of variables from Z (and the corresponding 

subset from AZ) is used.

The residual vector for the original data is defined to be e = Y − Zβ. For the new data, the 

residual vector is AY − AZβ = A Y − Zβ = Ae, which is the original residuals transformed by 

A. Since length is preserved by orthogonal transformation, the residual sum of squares will 

be the same for the two models. Furthermore, because the covariance of β depends on only 
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Z′Z = (AZ)′(AZ) and the variance of ϵ, the estimate of the covariance matrix as well as the 

usual inference procedures will be identical. However, the individual residuals will be 

transformed so that residual plots and diagnostic methods will no longer be valid.

When an intercept term is included in a regression analysis, 1n is a column of Z, where 1n 

denotes the vector of n 1’s. In this case, A1n is a column of AZ, therefore the first and 

second sample moments of Z can be derived from AZ. On the other hand, if we restrict A to 

be an orthogonal matrix that keeps 1n invariant, i.e., A1n = 1n, then the sample means and 

sample covariance matrix for X and AX are the same (see Theorem 1 of Ting et al., 2008). 

In Remark 2, we describe a simple algorithm to generate such an orthogonal matrix.

Next we consider analysis of data in 2×2 tables. The raw data are two binary (0–1) vectors, 

Z1 and Z2, containing n observations. The data are commonly summarized as counts in a 2 × 

2 table shown in Table 1, with rows labeled by the values of variable Z1 and columns labeled 

by the values of variable Z2. More specifically, the four cell values are: a is the number of 

observations that are 0’s in both vectors Z1 and Z2, b the number of observations with 0 in 

Z1 and 1 in Z2, c with 1 in Z1 and 0 in Z2, and d with 1’s in both Z1 and Z2. The contingency 

table can also be computed as follows: Z′1Z1 = c + d is the number of 1’s in vector Z1, 

Z′2Z2 = b + d is the number of 1’s in vector Z2, and Z′1Z2 = d is the number of 1’s that Z1 

and Z2 have in common. From these three values and the sample size n, we can easily 

compute a, b, c and d.

If we want to hide values of Z1 and Z2, we can transform the data by multiplying them with 

an orthogonal matrix A before release. Note that even though the transformed data take real 
values, we can obtain the same contingency table from AZ1 and AZ2 as we would have 

gotten from the original data Z1 and Z2. Specifically, because AZ1 ′ AZ1 = Z′1Z1, 

AZ2 ′ AZ2 = Z′2Z2, and AZ1 ′ AZ2 = Z′1Z2, we have the same counts for the three 

quantities considered previously. However, with the transformed data, nobody knows the 

original value in Z1 and Z2 for any of the participants. Moreover, the usual analysis, 

including the chi-squared test and estimation of relative risk and odds ratio, will yield 

identical results for the transformed data as for the original data.

Remark 1 (Categorical variables with multiple levels and high-dimensional 
contingency tables)—Contingency tables, whose cells contain frequency counts from 

cross-classifying a sample or a population according to a collection of categorical variables 

(attributes), are among the most prevalent forms of statistical data. It is easy to check that, 

for variables with multiple levels and for high-dimensional contingency tables, the cell 

counts remain invariant if we include multiple dummy binary indicator variables. For an 

extensive literature on the contingency table analysis such as logit and log-linear models, see 

Bishop et al. (1975), Fienberg (1980) and Agresti (1990).

In certain applications, it is not enough to hide the values of the variables. For example, a 

particular contingency table cell may be too sensitive to be released if the number of 

respondents is smaller than a threshold. In such a case, we should protect privacy by 

combined use of the TM2 method and other disclosure limitation techniques, including cell 
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suppression, rounding, sampling, data swapping, and other sampling and simulation 

techniques (for more details see Duncan et al., 2001; Oganian and Domingo-Ferrer, 2003; 

Domingo-Ferrer and Saygin, 2008; Fienberg and Slavkovic, 2008; and Slavkovic, 2010). 

The TM2 method makes sure that the data collectors do not see the raw patient data (Z1 and 

Z2) but they can still derive the correct contingency table (a, b, c and d). If the data collectors 

find that some cells in the contingency table are sensitive according to a threshold rule, they 

can use the disclosure limitation techniques to protect these cells from being disclosed to 

others.

2.2 Attribute-Transformed Data Enable Logistic Regression

In many applications, we study the association between a binary outcome and a continuous 

variable, or it is necessary to adjust for some covariates in the investigation of relationship 

between a binary outcome and a categorical variable. In such cases, we employ a logistic 

regression model, in which logit[π(Z)]=Zβ, where π(Z)=Pr(Y=1|Z) for binary response Y. 

One usually estimates the parameter β by the method of maximum likelihood and estimates 

the covariance matrix by Cov(β) = Z′DZ −1, where D is a diagonal matrix with πi 1 − πi  on 

the main diagonal and πi is the maximum likelihood estimate of the response probability for 

the ith subject (Agresti, 1990; p. 114).

We consider a data transformation XB where B is a (p + 1) × (p + 1) matrix constructed so 

that some of the analyses for logistic regression can be carried out on the transformed data 

with the same results as for the original data. Specifically, we choose the column operator B 
to be a block diagonal invertible matrix that keeps the response variable invariant, i.e., B = 

diag(I1, C). Now we fit the logistic regression model based on W = ZC rather than the 

original model based on Z for the same response, i.e., logit π W = Wβnew = ZCβnew. It is 

easy to see that: (i) the maximum likelihood estimates satisfy βnew = C−1β; (ii) D is the 

same under two models; and (iii) 

Cov βnew = W′DW −1 = C−1 Z′DZ −1C′−1 = C−1Cov β C′−1. Therefore, the maximum 

likelihood estimate of the treatment effects and their estimated standard errors are the same 

for the original data and the matrix-masked data if we choose C from block diagonal 

matrices with an identity matrix on the top left corresponding to variables of treatment 

effects. That is, the column operator B keeps the response and treatment group variables 

invariant and applies the column transformation only to other covariates. However, it should 

be acknowledged that the results may be different for other estimators of variance in the 

logistic regression and the effects of other covariates cannot be estimated based on the above 

masking procedure.

Because the binary response and treatment group variables are kept invariant, we can 

calculate the exact residuals and log likelihood for the fitted and null models. Consequently, 

we can perform most goodness of fit assessments, including the Pearson or likelihood-ratio 

chi-squared statistics (Agresti, 1990; p. 107 – 112). For example, for the fitted model the 

maximized log likelihood is ∑i = 1
n Y ilog πi + 1 − Y i log 1 − πi ; and for the null model it is 

n Y log Y + 1 − Y log 1 − Y , where Y = ∑Y i/n. In addition, we can evaluate the association 
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between the observed binary responses {Yi} and their fitted values πi , as well as the 

proportional reduction in error obtained by using πi instead of Y as a predictor of Yi. 

However, much work remains to be done in this area, including diagnostic analysis on the 

relationship between the response and the covariate variables and the appropriate choice of 

link function.

3 TM2 Hides Original Data from Everyone

As Duncan & Pearson (1991) and Du et al. (2004) pointed out, matrix masks are powerful 

and they encompass many commonly proposed disclosure-limitation methods. In this 

section, we propose two implementations of the TM2 method, which perform data masking 

at the time of data collection so that the original data are hidden from everyone, while 

statistical analysis can still be performed with the same results from the masked data as if 

they were from the original data. These new methods will be attractive to both investigators 

and participants in studies that involve sensitive personal information.

3.1 The First TM2 Method

Consider stroke rehabilitation research as an application example. Dobkin & Dorsch (2011) 

describe technology for continuously monitoring patient mobility and community activity, 

which are essential to optimization of therapies and development of new treatments for 

patients with neurological problems. These data can be used to construct an accurate 

measure of daily living, an objective version of the usual “Activities of Daily Living” 

variable, described in Duncan et al. (1999) and elsewhere. One such system consists of an 

ankle accelerometer and smartphone, with the smartphone programmed to continuously 

compute and transmit positions and activity variables to a clinic, using a geographical 

positioning system (GPS). The collected data give detailed information about time and type 

of places the patient visits (e.g., shopping, active recreation such as sports and travel, 

spiritual or religious activities, and hospital visit), total distance and geographic area 

traveled, movement patterns, etc. Such information can be sensitive to some patients. In 

order to include privacy-sensitive patients, it is worthwhile to develop a smartphone program 

that directly converts GPS coordinates to activity variables and then masks the resulting 

mobility and activity data before sending them out.

We propose a triple matrix-masking method to address the above requirement. In addition to 

data providers, data collectors and data users, the method requires a masking service 

provider (see Figure 1). In the previous example, data providers are patient participants, and 

data users are study investigators as well as other researchers who can access the 

information. Typically, the data managers and statistical analysts in the study investigative 

team are in charge of data collection. Also, they release transformed data to the data users 

once the data have been collected. The masking service provider may be a private business 

or a government entity established to promote data sharing. It is the first entity that receives 

the data in a masked form; and it applies another mask before sending the doubly masked 

data to the data collectors. Because the data collectors hold the key to the first mask, they 

can partially decrypt the doubly masked data and apply a third mask before releasing them 

to the public.
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Specifically, let x be a 1 × (p + 1) vector containing a single participant’s sensitive 

information and X be an n × (p + 1) data matrix from a cohort of participants. The TM2 

method consists of the following steps:

Step 1. The data collectors plan the data collection, create the database structure, 

program the data collection system. They choose a key to generate a (p + 1) × (p + 1) 

random invertible matrix*B1, which is distributed to the participants’ data collection 

devices.

Step 2. At the time of data collection, a participant’s data x are immediately 

transformed by B1 before leaving the participant’s device; only masked data xB1 are 

sent to the masking service provider.

Step 3. The masking service provider chooses a different key to generate an n × n 
random orthogonal matrix A2, using the algorithm given in Appendix 1. After 

receiving data from all participants, it aggregates the individual data into XB1, applies 

record transformation and sends the doubly masked data A2XB1 to the data 

collectors.

Step 4. The data collectors multiply A2XB1 by B1
−1 to get back A2X, choose another 

key to produce an n × n random orthogonal matrix A1 and publish A1A2X, which is 

accessible by data users.

Remark 2 (Choice of Orthogonal Operator)—Both orthogonal operators A1 and A2 

can be obtained by the Gram-Schmidt orthonormalization of a random normal matrix, which 

is controlled by some random number generator seed (i.e., key). The resulting matrix is a 

draw from the uniform distribution on orthogonal matrices under the Haar measure (see 

Eaton, 1983; p. 234). Let Z1 and Z2 be two n × (n - 1) random normal matrices, and M1 and 

M2 be Gram-Schmidt orthonormalization of [1n, Z1] and [1n, Z2], which have the first 

column vector parallel to 1n. Note that orthogonal matrix A = M1M′2 transforms column 

vectors in M2 to those in M1, hence A keeps 1n invariant. Appendix 1 presents a Matlab 

program for generating such an orthogonal operator. More information about random 

orthogonal matrices can be found in Steward (1980), Anderson et al. (1987), and Diaconis 

(2005).

Remark 3 (Improvement of Initial Masking at Step 2)—When the data matrix X has 

few columns, the masking service provider (or any data intruder who has access to XB1) 

may be able to recover B1 and hence the full data if he or she knows a sufficient number of 

original records. To improve the level of privacy protection offered by the column operator 

B1, a participant’s data x can be augmented with extra columns of random noise. These 

additional columns will not affect the statistical analysis of A1A2X.

The above method protects the privacy of individual participants because nobody other than 

data providers knows the original data X. As illustrated in Figure 1, the masking service 

provider only knows XB1 and A1A2X, but has no access to B1 and A1; the data collectors 

only know A2X and A1A2X, but have no access to A2; while the public knows A1A2X but 

does not know A1 and A2. The privacy protection depends on the distribution of keys: the 
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data collectors have keys to generate matrices A1 and B1, while the masking service provider 

holds the key to generate matrix A2.

The security of the TM2 method is briefly given as follows. Let S be the set consisting of all 

data matrices that are orthogonal transformations of X, which are equivalent to orthogonal 

transformations of A1A2X. Because any member in S may result in the masked data 

(namely, A1A2X), for data users who have access to A1A2X and only know that A1 and A2 

are random orthogonal matrices, they only know that X belongs to the set S. That is, for any 

W = ΓX from S where Γ is an orthogonal matrix, there exist two orthogonal matrices Ã1 and 

Ã2 (for example, Ã1 = A1 andÃ2 = A2Γ′) such that data users receive Ã1Ã2W = A1A2X. 

Similarly, the data collectors who have access to A2X and A1A2X only know that the 

original data matrix is an element in S. Lastly, the masking service provider has access to 

XB1 in addition to A1A2X, thus it knows that each column vector of X belongs to the 

subspace spanned by the column vectors of XB1 and that X is an element in S. Therefore it 

does not have enough information to disclose values of data in X because B1 is a general 

invertible matrix.

On the other hand, because row operators A1 and A2 are orthogonal matrices, A1A2X 
preserves sufficient statistics for the general linear model and for contingency table analysis. 

In other words, A1A2X can be analyzed to obtain the same results as if X was used under 

either the general linear model or contingency table analysis. The main reason for right-

multiplying the column operator B1 in the first step is that this operation can be done one 

row of X at a time. That is, the masking operation can be done independently at each 

participant’s device, allowing the collection of masked data one record at a time.

Furthermore, the TM2 method can be designed to enable partial masking, allowing data 

users to access part of the data (such as treatment group), while keeping other sensitive 

information hidden. Specifically, let X1 be an n × p1 matrix for insensitive data, and X2 be 

an n × p2 matrix for sensitive information. The data collectors are required to choose B1 

from the set of block diagonal matrices with a p1 × p1 identity matrix at the top left corner 

and a p2 × p2 invertible matrix B1* at the bottom right corner, i.e., B1 = diag I p1
, B1* . Hence 

the masking service provider will receive XB1 = X1, X2B1* , where the sensitive information 

is masked through attribute-transformation with B1*. In addition, the masking service 

provider and the data collectors are required to generate orthogonal matrices A1 and A2 that 

keep X1 invariant, which guarantees that data users have access to X1 because A1A2X = [X1, 
A1A2X2]. Here, it is important to choose A1 and A2 that keep X1 invariant, which 

guarantees that statistical associations between variables in X1 and X2 are the same as those 

between X1 and A1A2X2. Also, in this case, the data users gain more information than X′X 
because of their access to X1.

In addition, a quality assurance technique can be easily implemented in the proposed 

privacy-preserving data collection method to aid the data collectors in checking whether 

appropriate transformations were applied to the original data X in Steps 2 and 3. To do so, 

we require the matrix X to add a column of 1s (i.e., 1n) as the first column, as well as a 

column of constants (say, c) as the last column. Then after the data collectors reverse the B1 
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transformation to get A2X, the last column of A2X should be c times the first column of 

A2X. Also, in the case that A2 is an orthogonal matrix that keeps 1n invariant, the last 

column of A2X should equal to c 1n.

3.2 An Illustrative Example of the 1st TM2 Method

In a medical or social study, individuals are often unwilling to share sensitive information 

such as illegal activities, medical conditions or personal finance. If the investigators can 

convince the individuals that their data will be used only in an aggregate study and cannot be 

linked back to them, it could increase their willingness to participate. In this subsection, we 

demonstrate the first TM2 method using a random subset of 20 observations from the 

LEAPS study described in Duncan et. al (2011). Table 2 presents the original data of eight 

variables as explained below.
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Variable Description

Response Improved functional level of walking 1 year after the stroke (Yes=l/No=0)

Δ Change in walking speed from 2-month to 12-month post-stroke (m/s)

Group Treatment group, 1 = Locomotor Training Program; 0 = Home Exercise Program

Age Age at stroke onset (years)

BBS Berg Balance Scale in sitting, standing, reaching, shifting weight, and turning

IH Inpatient Hospitalization post randomization (Yes=l/No=0)

MIF Multiple or Injurious Falls post randomization (Yes=l/No=0)

ADL/iADL Activities of daily living (ADL’s) and instrumental activities of daily life (iADL’s)

The data include two sensitive medical conditions: inpatient hospitalization (IH) and 

multiple or injurious falls (MIF). Recall that our goal is to enable the secure release of data 

to anyone (see Figure 1), so that not only the data collectors but also other researchers can 

use the data. However, some patients may not want information of their hospitalization or 

injuries to be made public, which could adversely affect their opportunities of employment 

or insurance policies. The proposed TM2 methods address this problem by collecting and 

publishing only the masked data through the following four steps:

Step 1. The data collectors plan the data collection and create a database consisting of 

the eight variables listed above and a variable for quality assurance. Also, a web-

based data entry system is developed for each participant to enter the data. In 

addition, the data collectors choose a key of 535 as the random seed to generate a 9 × 
9 random invertible matrix

B1 =

0.3622
0.7470
0.1635
0.6691
0.6674
0.4392
0.3429
0.4811
0.8146

0.5330
0.5532
0.1752
0.1261
0.4346
0.4399
0.4247
0.6877
0.9458

0.5465
0.1052
0.9745
0.6600
0.7629
0.6468
0.6468
0.6486
0.9722

0.6382
0.5047
0.7202
0.5385
0.4894
0.2552
0.2512
0.1597
0.4226

0.5198
0.7759
0.6283
0.1014
0.1891
0.3250
0.0221
0.6365
0.9869

0.1257
0.6993
0.8917
0.6139
0.0904
0.1620
0.1629
0.3162
0.6940

0.9477
0.4742
0.3486
0.8303
0.0578
0.6275
0.8318
0.8877
0.8043

0.9711
0.8163
0.8989
0.6335
0.8735
0.3957
0.0557
0.3551
0.5670

0.0889
0.3183
0.8635
0.9892
0.6303
0.3903
0.1729
0.0631
0.8160

, (1)

which is incorporated to the data entry system.

Step 2. At the time of data collection, the first participant enters its data which are 

shown in the first row of Table2. The record is immediately transformed by B1 and 

only masked data, which are shown in the first row of Table 3, are sent to the masking 

service provider. This is repeated for all 20 subjects.

Step 3. The masking service provider chooses a different key 536, and uses the 

Matlab program described in the Appendix 1 to generate a 20 × 20 random 

orthogonal matrix A2 = GenerateROM(536, 20). Due to space limit, we omit the A2 

matrix here but readers can easily get the matrix by ranning the Matlab program. 

After receiving attribute-transformed data from all participants (XB1 shown in Table 
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3), the masking service provider applies record transformation and sends the doubly 

masked data (A2XB1 shown in Table 4) to the data collectors.

Step 4. The data collectors choose another key 537 to produce a 20 × 20 random 

orthogonal matrix A1= GenerateROM(537, 20), which is once again omitted. They 

multiply A2 XB by B1
−1 to get back A2X, left-multiply A2X by A1, and then publish 

masked data A1A2X (see Table 5) so that data users have access to orthogonally-

transformed data.

Figure 2 shows that regression lines is exactly the same for the actual data X and masked 

data A1A2X. Also, the residuals from both regressions would have the same distribution if 

they are normally distributed.

Table 5 shows that the transformed data for the binary variables (Response, Group, IH and 

MIF) take real values. From these masked data, users can only guess each participant’s 

sensitive medical conditions - whether she or he had IH and MIF post randomization. 

However, for statistical inference, users have access to the exact counts for contingency 

tables. For example, the frequency counts can be obtained from masked data of Group (V1) 

and MIF (V2) as shown in Table 6.

3.3 The 2nd TM2 Method

In many applications, we would like to conduct logistic regression. As stated in Section 2, it 

is sufficient to have access to data XB, where B is a block diagonal invertible matrix that 

keeps the response and treatment variables invariant. The first TM2 procedure can be 

modified so that the data users know XB but nobody except for participants knows the 

original data X. In this case, we reverse the usage of the two random matrices, i.e., the data 

collectors generate the row operator A0 and the masking service provider applies the column 

operator B1. Both operators are invertible matrices, but not required to be orthogonal. The 

new procedure is as follows:

Step 1. The data collectors plan the data collection, create the database structure, 

program the data collection system. They choose a key to generate an r × r random 

invertible matrix A0, which is distributed to the participants’ data collection devices.

Step 2. At the time of data collection, a participant’s data x are independently 

augmented to x* with (r - 1) extra rows of random noise (which the data collectors do 

not know), and only the transformed data A0x* is sent by the participant to the 

masking service provider. The extra rows are necessary so that the left-multiplication 

of A0 can be performed.

Step 3. The masking service provider chooses a different key to generate a (p + 1) × 
(p + 1) random invertible matrix*B1 that is block diagonal and keeps invariant the 

variables representing the response and treatment groups, applies attribute-

transformation and sends the doubly masked data A0x*B1 to the data collectors.

Step 4. The data collectors left-multiply A0x*B1 by A0
−1 to get back x*B1, extract the 

first row of x*B1 to get xB1, and aggregate data xB1 from all participants to get XB1. 

Then, they choose another key to produce a (p + 1) × (p + 1) block diagonal random 
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invertible matrix B2 that has the same invariant property as B1, right-multiply XB1 by 

B2, and publish XB1B2, which is made publicly accessible to data users.

Remark 4 (Quality Assurance of the 2nd TM2 method)—Similar to the first TM2 

method, we can add a device for the data collectors to check whether appropriate 

transformations were applied to the augmented data x*. The trick is to add a row of 

constants (say, c) as the last row among the extra rows of noise appended to the original data 

x and use column operator B1 that satisfies 1′nB1 = 1′n. After the data collectors remove the 

A0 transformation to obtain x*B1, the last row of x*B1 should equal to c1′n.

Because logistic regression is a widely used method in biomedical and social research, many 

people have investigated approaches to conduct privacy preserved logistic regression with 

multiple data sources. For example, Fienberg et al. (2006) described “secure” logistic 

regression when all variables are categorical. And Fienberg et al. (2009) proposed an 

approach to carry out “valid” logistic regression with quantitative covariates using secure 

multi-party computation (SMC). Their approach proceeds in two steps: 1) An initial estimate 

of regression coefficients is chosen; 2) for every iteration of the Newton-Raphson algorithm, 

a new estimate of regression coefficients is found using the following secure summation 

process: the first party shares its intermediate statistics with the addition of a random matrix; 

each remaining parties add its intermediate statistics to the updated sum; and at the last step 

the first party removes random noise and shares the global sum as well as the updated 

estimate.

TM2 and SMC are designed for different purposes. The former ensures that certain statistical 

investigations can be carried out without requiring data providers to reveal their private data 

to data collectors. The latter ensures that multiple data collectors can perform joint statistical 

investigations without revealing their data to each other. For example, three hospitals collect 

private data from their patients respectively and then perform joint data mining without 

exchanging their raw data. In this example, each hospital still holds its patients’ private data, 

which is against the design goal of TM2.

If we perform SMC directly among the patients’ devices, the two methods would remain 

different. The TM2 method is distributive in data collection but centralized in data storage 

and data analysis. By contrast, the SMC approach requires distributed storage of data as well 

as distributed computation, which is practically infeasible when data storage and 

computation are performed directly by patient devices. Specifically, if we require that the 

private data of patients never leave their devices, the SMC method will place significant 

computation overhead on patient devices, particularly when a study involves thousands or 

more patients. More importantly, all patients have to stand by ready for any statistical 

analysis that may happen years into the future, which makes the SMC approach not feasible 

for medical studies that collect patient data over a long time - when patients leave a study 

they take their data away if we require that private data can never leave patient devices. 

There is no such issue with the TM2 method since it keeps the patients’ data in a masked 

form, and the data is available for analysis at any time into the future after the patients have 

left the study.
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TM2 and SMC methods may appear to be complementary to each other. With multiple data 

collectors, TM2 can be used to collect data from patients in a masked form to their 

respective data collectors, which may then use SMC to perform joint mining. However, we 

point out that since the masked data collected by TM2 can be made publicly available, it 

becomes unnecessary to use SMC for joint mining over already masked data.

Finally, we can modify the second TM2 method to allow data users to perform different 

types of statistical analysis. Suppose the masking service provider chooses an n × n random 

orthogonal matrix A1 in addition to the block diagonal random invertible matrix*B1, while 

the data collectors hold keys to generate an n × n random orthogonal matrix A2 in addition 

to the random invertible matrix A0 and the block diagonal random invertible matrix B2. 

Once the data collectors recover XB1, they left-multiply A2 and send A2XB1 back to the 

masking service provider, who removes B1 and returns A1A2X. Then, the data collectors 

release A1A2X and XB1B2 to data users, who can conduct general linear regression, 

contingency table analysis or logistic regression. The first TM2 method can be modified 

similarly to let the data users access both attribute-transformed data and orthogonally record-

transformed data. Specifically, the masking service provider generates a block diagonal 

random invertible matrix B2 in addition to the n×n random orthogonal matrix A2 and sends 

A2XB1 and XB1B2 to the data collectors, who then publish A1A2X and XB1B2. It should be 

pointed out that, while release of two data products enables different types of statistical 

analysis, it could increase the disclosure risk since the data intruders may combine the 

different products to disclose confidential information. Further research is needed to assess 

disclosure risk in such scenarios.

3.4 An Illustrative Example of the 2nd TM2 Method

Next, we illustrate the second TM2 Method using the 1st and 11th observations of the 

LEAPS data. The procedure consists of the following four steps:

Step 1. The data collectors plan data collection similar to the first step of the first 

TM2 Method, except that there is no variable for quality assurance. The data 

collectors choose key 535 as a random seed to generate an 8 × 8 random invertible 

matrix

A0 =

0.3622 0.8146 0.6877 0.5300 0.6252 0.1891 0.6139 0.3486
0.7470 0.5330 0.9458 0.6486 0.2512 0.3250 0.0904 0.8303
0.1635 0.5532 0.5465 0.9722 0.1597 0.0221 0.1620 0.0578
0.6691 0.1752 0.1052 0.6382 0.4226 0.6365 0.1629 0.6275
0.6674 0.1261 0.9745 0.5047 0.5198 0.9869 0.3162 0.8318
0.4392 0.1946 0.6600 0.7202 0.7759 0.1257 0.6940 0.8877
0.3429 0.4399 0.7629 0.5385 0.6283 0.6993 0.9477 0.8043
0.4811 0.4247 0.6468 0.4894 0.1014 0.8917 0.4742 0.9711

. (2)

Step 2. At the time of data collection, the first participant’s data are independently 

augmented to x with six extra rows of normal random noise and a row of quality 

assurance data (see Table 7). The record is immediately masked and only the record-

transformed data (A0x* shown in Table 8) are sent to the masking service provider. 

This is repeated for subject 11.
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Step 3. The masking service provider chooses the column operator B1, which is 

constructed to be block diagonal so that it keeps the first two columns invariant with 

the lower 6 × 6 block being transpose of the matrix generated by GenerateROM(536, 

6):

B1 =

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 −0.6297 0.1342 0.3644 0.5292 0.3058 0.3160
0 0 0 0.2396 0.0874 0.7071 −0.5469 0.2091 0.3038
0 0 0 0.5462 −0.5825 0.1089 0.4796 0.3246 0.1233
0 0 0 0.1989 0.4472 −0.5018 −0.0815 0.6460 0.2912
0 0 0 0.3124 0.5508 0.3219 0.3360 0.0907 −0.6118
0 0 0 0.3326 0.3629 −0.0006 0.3036 −0.5761 0.5775

. (3)

It applies attribute-transformation B1, and sends the doubly masked data A0x*B1 (see 

Table 9) to the data collectors.

Step 4. The data collectors left-multiply A0x*B1 by A0
−1 to get back x*B1, extract the 

first row of x*B1 to get xB1, aggregate data xB1 from both participants to get XB1. 

Then, the data collectors choose another key 537 to produce B2, which has the same 

diagonal structure as B1 but the lower 6 × 6 block is the transpose of the matrix 

generated by GenerateROM2(537, 6):

B2 =

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0.0986 0.4196 −0.0204 0.6730 −0.5015 0.3307
0 0 0 −0.1314 0.6584 0.5712 0.0176 0.2706 −0.3865
0 0 0 −0.3756 −0.2481 0.1295 0.5055 0.6290 0.3598
0 0 0 0.1437 0.4009 −0.0136 −0.4787 0.2090 0.7387
0 0 0 0.7082 0.1505 −0.3814 0.2465 0.4783 −0.2021
0 0 0 0.5566 −0.3913 0.7147 0.0361 −0.0854 0.1594

. (4)

Finally, the data collectors right-multiply XB1 by B2, and publish the selected rows of 

XB1B2 that correspond to the transformed data but not transformed noise (see Table 10) so 

that data users have access to the transformed data.

4 Differences between TM2 Method and Related Work

The TM2 method is different from the standard frameworks in the literature on statistical 

confidentiality. Most disclosure limitation methods in previous research assume trustworthy 

data collectors who have full access to original data, and the goal of data masking is to 

prevent data users from obtaining confidential information. In this trusted model, data 

providers are willing to provide their sensitive information to data collectors. In our case, we 

assume an untrusted model treating everyone (including the data collectors) as potential 

intruders, and data providers are reluctant to share their sensitive information unless their 

answers will be used only in aggregate and cannot be linked back to them. The system is 

designed so that nobody other than data providers knows the original data.
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Our method is an improvement of Warner’s randomized response technique, which requests 

an interviewee to report whether or not his true binary answer to a sensitive question is the 

same as a randomly generated response that only the interviewee sees. Let π be the true 

proportion of interest (probability of “yes” answer to the sensitive question if truthfully 

disclosed) and c is the chance of “yes” answer from the random device. Then the probability 

of getting a “yes” response is λ = πc + (1 – π) (1 − c). With n randomized responses, an 

unbiased estimator of λ is the sample proportion λ , and hence the unbiased estimator of π is 

π = c − 1 / 2c − 1 + λ /(2c − 1), with a variance {π (1 – π) + 1/[16(c – 0.5)2 – 1/4]}/n. The 

data collectors may guess but cannot determine absolutely the interviewee’s response.

Both Warner’s technique and our TM2 method meet the dual objectives of generating 

enough reliable data to yield fruitful inference and protecting respondents’ privacy despite 

their truthful replies. However, Warner’s randomized response technique is inefficient if 

there are ways to obtain truthful answers from all interviewees. Note that, when π = 0.5 and 

c = 0.75, the variance of π based on a randomized response survey is 1/n, which is 4 times of 

the variance from a direct response survey, provided that all interviewees told the truth. The 

TM2 method provides nearly the same privacy protection for interviewees as the Warner’s 

technique, but it loses no efficiency for statistical inference of binary and normal data 

because sufficient statistics are preserved.

There are several other methods that are designed with the intention to collect data 

anonymously without revealing the providers’ identities, including various cryptographic 

solutions (Yang et al., 2005; Gehrke, 2006; Fung et al., 2010) and anonymous 

communications (Chaum, 1981; Jakobsson et al., 2002; Brickell and Shmatikov, 2006). 

These methods try to achieve unlinkability, that is, they try to prevent data collectors and 

data users from learning which input came from which provider. But they do not hide the 

data values – they merely make it impossible (or very difficult) to link data values to the 

providers. However, linkage attack can still occur in many situations. Dinur and Nissim 

(2003) showed that an attacker can reproduce the original database almost exactly based on 

queries answered with bounded noise. Dwork and Naor (2010) have several results stating 

that it is not possible to provide privacy and utility without making assumptions about how 

the data are generated. For example, they proved that it is not possible to publish 

anonymized data that prevents an attacker from learning information about people who are 

not even part of the data unless the anonymized data has very little utility or some 

assumptions are made about the attacker’s background knowledge. For more information, 

see Kifer and Lin (2012) and Lin and Kifer (2014), which proposed a framework for 

extracting semantic guarantees from privacy definitions (or sets of data sanitizing 

algorithms). Also, as long as the raw sensitive data are collected and some people have 

access to them, leaking of private information is always a possibility due to unintentional 

mishandling or intentional transfer of data by those who have gained access; these mishaps 

occur even when de-identification and sanitizing before data release is done according to the 

current standard.
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5 Conclusions

In this article, we propose the use of triple matrix-masking to protect participant privacy 

from the moment of data collection. The method lets the masking service provider and the 

data collectors separately hold keys for the generation of random matrices. It ensures that 

nobody other than the data providers sees the original data, but standard statistical analysis 

can still be performed with the same results from the masked data as from the original data. 

Therefore, confidentiality of the data and privacy of participants are well protected. In 

addition, an error checking mechanism is built in the data collection method to make sure 

that the data used for analysis are an appropriate transformation of the original data and a 

partial masking technique is introduced to grant data users access to non-sensitive personal 

information. The new technique holds the promise of removing the lack of trust obstacle and 

promoting privacy-preserving data collection. With the ever growing amount of data 

generated by electronic devices and the increasing demand for privacy protection, the 

method can be a great tool for survey research or clinical studies.

There are several relevant research questions not fully addressed in this article. First, further 

research is needed to evaluate the effectiveness of obtaining truthful answers using the new 

approach. Intuitively, people should be more willing to reveal truthful data if they know that 

nobody has access to their sensitive information. However, one drawback of the TM2 

method is that the masking service provider and the data collectors jointly can reconstruct 

exactly the individual records by sharing their keys, which is different from the randomized 

response technique of Warner (1965). Second, additional research is needed for developing 

methods to perform model-checking, missing data imputation, and data exploration under 

more complex models while maintaining limited data disclosure. We believe that the partial 

masking technique may offer help here. In many applications, it is enough for privacy 

protection to release the original main outcome while masking all other sensitive 

information. This will allow statistical analysts to access residuals of the fitted model and to 

some extent perform model diagnostics.
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Appendix 1.: A Matlab Program for Generating Random Orthogonal Matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%                  The following function generates a p by p 

orthogonal operator,              %%

%%                  which keeps the column vector of ones 

invariant, by the                 %%

%%                  Gram-Schmidt orthonormalization of a random 

normal matrix.              %%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function M = GenerateROM(SeedValue, p)

rng(SeedValue);

Z1 = [ones(p, 1) randn(p, p-1)]; M1 = GramSchmidtOrthonorm(Z1);

rng(SeedValue+2);

Z2 = [ones(p, 1) randn(p, p-1)]; M2 = GramSchmidtOrthonorm(Z2);

M = M1 * M2′;

function M = GramSchmidtOrthonorm(Z)

[p, col] = size(Z); Y = []; M = [];

for i = 1:p

  v = Z(:, i); u = v;

  for j = 1:(i-1)

  y = Y(:, j); u = u - (y′ * v) / (y′ *y) *y;

  end

  Y = [Y u]; M = [M u/sqrt(u′ *u)];

end;
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Figure 1: 
The diagram above illustrates each entity’s knowledge about the data and the masking 

matrices in the first TM2 method. The masking service provider knows XB1, the data 

collectors know A2X, and A1A2X is available to everybody including the public. Nobody 

other than data providers (participants) knows the original data X.
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Figure 2: 
Scatter plots and fitted least-squares lines for the original and matrix masked data. The left 

panel is the actual data and its model fit; the right panel is the masked data and its model fit. 

The points in the matrix masked data have been completely scrambled and bear no 

relationship with the original data points; yet the regression line is exactly the same.
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Figure 3: 
The augmented data matrix x* has extra rows of random noise appended to record x. The 

masking service provider knows A0x*, the data collectors know x*B1, and XB1B2 is 

available to everybody including the public.
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Variable Description

Response Improved functional level of walking 1 year after the stroke (Yes=l/No=0)

Δ Change in walking speed from 2-month to 12-month post-stroke (m/s)

Group Treatment group, 1 = Locomotor Training Program; 0 = Home Exercise Program

Age Age at stroke onset (years)

BBS Berg Balance Scale in sitting, standing, reaching, shifting weight, and turning

IH Inpatient Hospitalization post randomization (Yes=l/No=0)

MIF Multiple or Injurious Falls post randomization (Yes=l/No=0)

ADL/iADL Activities of daily living (ADL’s) and instrumental activities of daily life (iADL’s)
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Table 1.

Correspondence between two forms of counts in 2 × 2 table

Usual Vector

Values of Z2 Totals Values of Z2 Totals

0 1 0 1

Values of Z1 0 a b a + b — — —

1 c d c + d — Z1′ Z2 Z1′ Z2
Totals a + c b + d n — Z2′ Z2 n
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Table 2:

Random subset of 20 observations from LEAPS, X

Obs No Response Group Δ Age BBS IH MIF ADL/iADL QA

1 0 1 0.08 63 30 1 1 50 888

2 1 0 0.67 57 40 0 1 62.5 888

3 1 0 0.20 47 43 0 1 87.5 888

4 1 1 0.52 38 39 1 1 80 888

5 1 1 0.47 83 36 0 0 60 888

6 1 0 0.34 54 29 0 0 80 888

7 0 1 −0.07 50 13 0 1 47.5 888

8 1 1 0.34 68 48 0 0 72.5 888

9 1 0 0.25 57 47 0 0 72.5 ooo

10 1 0 0.48 65 39 0 1 47.5 888

11 1 1 0.15 43 9 1 0 50 888

12 1 0 0.12 81 40 0 0 67.5 888

13 0 1 −0.13 76 48 1 1 32.5 888

14 1 1 0.15 84 29 0 0 42.5 888

15 1 0 0.29 75 39 0 0 85 888

16 1 1 0.20 65 33 0 0 42.5 888

17 1 1 0.67 65 45 0 1 75 888

18 1 1 0.15 66 24 0 1 55 888

19 1 0 0.33 51 40 0 0 50 888

20 1 1 0.22 90 44 0 0 100 888
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Table 3:

Attribute-transformed data, XB1

Obs No Response Group Δ Age BBS IH MIF ADL/iADL QA

1 811.12 889.45 961.55 433.27 921.40 674.52 814.59 588.70 809.91

2 819.06 898.88 973.69 436.86 930.43 675.49 821.34 598.36 810.96

3 826.32 915.31 985.14 436.60 945.60 677.11 835.24 603.11 804.13

4 815.26 909.29 972.35 429.96 940.46 670.00 822.09 592.74 793.22

5 832.96 899.75 985.56 448.62 931.35 690.65 840.05 611.03 833.97

6 817.73 907.91 973.82 432.17 938.96 677.73 832.80 592.71 801.70

7 789.40 882.32 937.58 416.82 914.86 663.92 799.92 564.19 785.66

8 836.92 908.77 992.80 448.32 939.97 686.37 839.34 616.34 827.37

9 828.13 906.62 984.58 441.33 937.83 678.75 829.64 607.60 815.46

10 816.50 889.34 968.30 438.15 921.39 675.40 814.54 597.06 817.13

11 783.75 882.96 932.41 412.66 915.95 660.37 796.91 558.65 776.87

12 837.09 904.82 991.71 449.94 935.68 691.15 844.68 614.79 834.36

13 823.37 882.52 972.31 446.14 914.86 678.41 810.82 606.26 832.83

14 820.48 886.42 969.22 442.71 918.79 684.82 824.83 599.05 829.17

15 840.86 915.93 998.50 449.14 946.13 693.06 855.23 616.48 829.05

16 810.45 884.82 959.78 434.47 917.65 673.56 809.30 590.55 812.94

17 834.51 910.01 991.00 446.12 940.92 685.50 839.84 613.06 823.13

18 811.46 892.20 962.16 432.81 923.99 677.43 821.52 587.77 809.17

19 808.63 889.04 960.77 431.14 921.63 667.39 804.31 589.76 803.77

20 862.18 929.65 1021.98 462.51 958.87 708.10 881.74 636.44 848.24
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Table 4:

Doubly masked data transmitted to the data collectors, A2XB1

Obs No Response Group Δ Age BBS IH MIF ADL/iADL QA

1 795.60 887.49 945.96 420.82 919.73 664.97 804.02 571.99 788.72

2 840.43 919.19 1000.48 447.63 949.45 687.48 849.44 618.21 822.65

3 791.58 881.74 939.84 419.67 914.62 664.87 800.04 567.99 789.47

4 796.13 879.39 943.55 424.02 912.19 667.12 800.10 573.20 798.15

5 841.80 923.57 1001.96 447.49 953.84 686.33 849.39 619.67 818.79

6 805.99 893.06 958.68 427.91 925.37 669.24 811.34 584.31 797.94

7 824.78 904.14 979.76 439.20 935.27 680.03 830.65 602.15 814.55

8 832.45 906.93 989.09 444.66 937.86 680.75 831.87 612.44 821.24

9 817.76 901.68 972.02 434.31 932.73 676.24 825.40 594.34 806.79

10 853.09 917.85 1009.35 459.15 947.97 705.96 871.74 627.80 847.91

11 812.33 883.40 962.23 436.56 916.05 673.45 807.41 593.59 816.73

12 834.91 896.09 986.64 451.41 927.64 691.55 838.55 613.97 840.33

13 834.47 900.47 988.38 449.43 932.12 685.13 831.75 615.64 832.04

14 832.90 908.16 987.47 445.17 938.90 690.72 847.27 608.08 825.70

15 806.27 903.66 960.74 423.93 935.32 672.25 824.64 580.30 789.34

16 821.46 888.51 970.92 442.41 920.68 681.94 821.66 600.61 826.57

17 799.74 877.59 948.42 427.91 911.01 662.34 789.62 582.39 801.58

18 834.54 907.82 991.00 446.67 938.49 683.35 835.70 614.02 824.29

19 818.12 910.93 975.28 431.66 941.56 676.32 832.92 593.05 798.56

20 831.83 894.32 983.43 449.71 925.90 689.65 835.22 610.91 837.67
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Table 5:

Matrix-masked data released to data users, A1A2X

Obs No Response Group Δ Age BBS IH MIF ADL/iADL QA

1 0.82 0.75 0.09 60.91 33.20 0.42 1.06 67.76 888

2 0.31 1.43 0.07 84.76 39.35 0.72 0.60 50.69 888

3 1.34 0.27 0.29 108.09 43.04 −0.76 −0.76 81.61 888

4 0.50 0.93 0.30 68.94 17.70 0.35 1.40 28.43 888

5 0.49 1.23 0.14 80.43 49.46 0.26 0.82 89.87 888

6 0.31 0.81 0.07 47.74 23.39 0.85 0.58 50.08 888

7 0.61 −0.15 0.27 68.08 52.09 −0.06 1.09 51.89 888

8 1.36 0.39 0.72 47.80 47.55 0.54 0.57 98.78 888

9 1.49 −0.06 0.46 48.19 31.22 −0.29 0.51 90.43 888

10 0.28 −0.20 0.05 52.30 33.94 0.55 0.60 64.95 888

11 0.82 0.91 −0.24 63.64 15.00 0.35 −0.31 50.64 888

12 1.14 0.03 0.41 68.22 54.36 −0.06 0.38 45.89 888

13 1.05 0.85 0.14 60.35 42.17 0.21 0.38 53.95 888

14 1.30 0.64 0.56 65.24 31.98 0.49 0.41 70.15 888

15 0.73 0.99 0.45 58.41 36.90 −0.20 0.83 75.78 888

16 1.12 0.74 0.47 68.55 36.60 0.19 −0.32 57.37 888

17 0.94 −0.22 0.29 59.64 35.54 −0.15 0.15 76.90 888

18 0.80 0.54 0.25 54.06 35.94 0.16 0.10 59.08 888

19 0.78 1.13 0.28 61.54 34.54 0.72 0.29 46.80 888

20 0.81 0.97 0.35 51.12 21.03 −0.28 0.64 48.95 888
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Table 6.

Correspondence between two forms of counts in 2 × 2 table

Vector Usual

Multiple or Injurious Falls Multiple or Injurious Falls

Yes No Totals Yes No Totals

Group LTP V1′ V2 = 6 — V1′ V1 = 12 6 6 12

HEP — − — 3 5 8

Totals V1′ V2 = 9 — n = 20 9 11 20
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Table 7:

Two selected records of augmented data, x*

Obs No Response Group Δ Age BBS IH MIF ADL/iADL

1 0 1 0.08 63.00 30.00 1 1 50.00

1 0 1 −0.73 −0.65 −1.52 0.10 0.17 0.18

1 0 1 0.43 −0.07 −1.34 −0.97 0.18 −0.07

1 0 1 −0.65 0.42 −0.20 1.84 0.96 0.44

1 0 1 0.30 0.13 −0.41 0.52 0.33 −0.37

1 0 1 0.56 0.26 0.63 0.49 0.02 −1.15

1 0 1 −0.23 −0.59 0.94 0.11 0.33 −0.14

1 0 1 777 777 777 777 777 777

11 1 1 0.15 43.00 9.00 1 0 50.00

11 1 1 −1.25 1.23 0.67 −0.15 −0.44 −0.03

11 1 1 −1.30 0.24 −1.76 1.70 −0.96 2.31

11 1 1 −0.35 0.49 1.14 0.70 −0.01 −1.10

11 1 1 −0.60 1.11 2.32 0.59 0.48 1.49

11 1 1 0.28 0.23 −0.36 0.85 1.33 0.94

11 1 1 −0.50 −0.03 −1.16 1.55 0.79 −0.36

11 1 1 888 888 888 888 888 888
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Table 8:

Initially masked data for the two selected records, A0x*

Obs No Response Group Δ Age BBS IH MIF ADL/iADL

1 0 1 270.41 293.10 279.91 272.11 272.41 288.78

1 0 1 645.01 692.09 665.50 646.49 646.86 682.30

1 0 1 44.16 55.16 48.16 46.51 46.31 53.48

1 0 1 487.56 529.97 507.47 489.86 489.09 520.40

1 0 1 647.02 688.57 665.46 647.78 647.97 678.50

1 0 1 689.58 717.24 701.99 691.41 691.49 711.46

1 0 1 624.98 646.12 634.50 626.35 626.54 641.17

1 0 1 754.69 784.73 768.37 755.92 755.92 777.74

11 1 1 306.89 327.30 313.44 312.82 309.57 329.55

11 1 1 735.15 770.95 743.79 740.56 736.74 776.73

11 1 1 49.45 59.84 53.51 53.39 50.79 59.90

11 1 1 556.56 587.14 564.45 559.51 558.19 591.36

11 1 1 736.96 768.79 744.09 742.95 739.47 775.31

11 1 1 786.19 808.77 792.95 791.93 788.61 811.97

11 1 1 711.87 730.78 716.97 718.59 715.25 733.77

11 1 1 860.85 884.28 865.77 865.78 863.16 888.19
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Table 9:

Doubly masked data transmitted to the data collectors, A0x*B1

Obs No Response Group Δ Age BBS IH MIF ADL/iADL

1 0 1 288.11 275.39 287.27 268.67 268.94 288.35

1 0 1 680.76 652.40 680.36 640.91 641.15 682.68

1 0 1 53.22 48.41 51.88 43.43 44.10 52.75

1 0 1 520.46 493.46 519.04 484.21 485.60 521.60

1 0 1 677.97 652.20 678.31 642.95 644.13 679.74

1 0 1 711.23 694.58 710.17 687.54 688.14 711.51

1 0 1 641.39 628.63 640.77 623.31 624.19 641.37

1 0 1 777.65 758.94 777.18 752.13 753.03 778.42

11 1 1 324.91 317.21 319.91 306.17 304.30 327.07

11 1 1 763.85 751.63 759.18 732.43 725.12 771.71

11 1 1 58.84 54.29 55.69 49.01 49.59 59.47

11 1 1 580.87 569.49 578.07 554.50 547.52 586.78

11 1 1 763.21 753.57 758.02 734.97 727.93 769.87

11 1 1 805.77 797.48 800.78 785.26 782.18 808.96

11 1 1 728.86 723.37 723.50 711.21 709.51 730.78

11 1 1 879.95 873.43 876.21 859.07 854.99 884.38
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Table 10:

Matrix-masked data released to data users, XB1B2

Obs No Response Group Δ Age BBS IH MIF ADL/iADL

1 0 1 10.27 −8.93 48.05 59.68 −0.26 36.26

11 1 1 1.38 −3.58 50.38 36.93 −4.24 22.28
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