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ABSTRACT

Data dissemination in wireless sensor networks is a key prob-
lem that acts as a bottleneck to its wide application in real
world. In this paper, a novel data dissemination scheme —
logarithmic spiral data dissemination (LSDD) — is proposed.
In LSDD, data advertisements are disseminated following a
parametric spiral-like path, which involves only a small frac-
tion of nodes in a dense sensor network. By exploiting the
nice feature of spiral, the scheme scales well for large sensor
networks while saving much energy in the data dissemina-
tion process. By both numerical analysis and simulations,
we show the distinct merits of LSDD as lower dissemina-
tion cost, better scalability, and better fault tolerance when
compared to flooding-based schemes.
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1. INTRODUCTION

The advances of VLSI, MEMS, and wireless technology
enable a wireless sensor network (WSN) [1], which consists
of a large number of tiny and cheap sensor nodes [2], to
be deployed in scenarios such as battle field surveillance,
forest fire monitoring, natural habitat recording, etc. How-
ever, because of the limited energy and bandwidth owned
by a sensor network, data dissemination becomes one of the
bottlenecks that keep sensor networks from wide applica-
tions in practice. The data dissemination process includes
two cases. One is that the sink nodes, which connect WSN
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with the outside network (e.g., Internet), spread its inter-
ests/queries over WSN; the other is that a sensor node re-
ports interested phenomena around it to other sensor nodes
or the sink nodes. Besides the energy and communication
concerns, the data dissemination process also faces the chal-
lenge of fault tolerance due to the failure of sensor nodes in
a volatile environment.

In the past decade, quite a few of data dissemination
schemes have been proposed, which are summarized in [3].
However, flooding-based solutions lead to low energy effi-
ciency and high channel congestion, which is not preferred
in a resource-limited sensor network. In addition, most pro-
posed schemes set up the dissemination path in a hop-by-hop
manner and only local information is exploited at each hop.
The resulting path, due to the ad-hoc nature of the sensor
network, is usually suboptimal, unstable, and the energy
consumed on path construction and maintenance is unpre-
dictable as well.

In this paper, we propose a distributed, energy efficient,
and scalable data dissemination scheme, logarithmic spiral
data dissemination (LSDD), which is based on the logarith-
mic spiral geometrics as well as the local geographic infor-
mation at each node. In LSDD, data advertisements are dis-
seminated following a spiral-like path, which involves only a
small fraction of nodes in a sensor network.

Compared with previous schemes, our solution provides a
more predictable, stable network topology, and consequently
reduces considerable traffic overhead on dissemination path
construction and query/response process. Numerical anal-
ysis shows that the complexity of LSDD is only O(y/n) for
n nodes in coverage. It also shows that LSDD has effective
control on the dissemination radius via its succinct param-
eters. Besides verifying the numerical analysis, our simula-
tions show that LSDD outperforms flooding based schemes
on both scalability and fault tolerance. The search cost of
LSDD increases linearly as the source-sink distance increases
rather than exponentially as in flooding based dissemination
schemes. When there are multiple sink nodes, the search
cost of LSDD is also linearly proportional to the number of
sink nodes and at least one order of magnitude lower than
SIDD and GBDD. On the other hand, LSDD is very robust
against unreliable sensor nodes, which may fail in operation
and change the topology of a WSN. In our simulation, even
when 10 percent of nodes fail, LSDD achieves a success rate
higher than 90 percent on average.

In this paper, we assume that all sensor nodes are uni-
formly and statically deployed on a flat plane, and all sen-
sor nodes can learn their coordinates in the initial stage of



deployment by reference nodes and location algorithms. To
focus on the data dissemination issue, we assume that all
messages have the same length, and the RF links between
sensor nodes are symmetric, that is, a node can send a mes-
sage to the node from which it can receive a message.

The rest of this paper is organized as follows. In Section
II, we briefly review the main proposed data dissemination
schemes and protocols. In Section III, we present LSDD in
details. In Section IV, We provide both numerical analysis
and simulation results. In Section V, we draw the conclu-
sions.

2. OVERVIEW OF DATA DISSEMINATION
SCHEMESIN SENSOR NETWORK

In classical flooding schemes and its variants, flooding is
the fundamental way for multi-hop routing, and the result-
ing traffic overhead leads to fast energy consumption and
channel congestion. Some adjustment from the application
layer can be used to alleviate those negative effects. For ex-
ample, SPIN-1, SPIN-2 [4], and directed diffusion (DD) [5,6]
are all scheme for content-based data dissemination, or the
so-called data-centric routing. All of them associate the
sensed data with a tag of brief description, and sensor nodes
use such tags to establish dissemination path as well as ag-
gregate data. However, as mentioned before, flooding is the
underlying method for communications in both SPIN and
DD. Moreover, multiple versions of data are rebroadcast to
the network, which offsets the traffic reduction by data ag-
gregation. In addition, there is no effective ways to manage
the topology of the dissemination paths. As a result, those
paths may be far from optimal in global view although it
may be optimal at every hop.

As an alternative, gossiping [7] and rumor routing [8] pro-
posed similar protocols to trim the full-flooding path: only
part of neighbors of a node are selected to forward mes-
sages. Both query and data advertisements are forwarded
in such random way until they are met. Though flooding is
eliminated, the total cost to establish and maintain a dis-
semination path may still be high, due to the ad-hoc nature
of a sensor network.

In [9], three heuristic algorithms are proposed to approxi-
mate a broadcasting tree in a static sensor network by which
the broadcast energy is minimized. However, all three algo-
rithms are centralized, therefore it is not very practical and
efficient when the cost of required information exchange is
considered. Y.Yu et. al. proposed GEAR (Geographical
and Energy Aware Routing) in [10], which chooses routes
based on the local knowledge of neighbors’ energy and ge-
ographies. Traffic overhead is lowered by limiting the flood-
ing in a specific destination region, as each node is assumed
to be location-aware. However, a pre-assumption of GEAR
is that the destination must be known apriori. However, in
most applications, there is no way for sink node to know
this in advance.

The recently proposed Trajectory Based Forwarding (TBF)
[11] is closely related to our work. In [11], TBF is described
as a general framework that combines source routing and
Cartesian geographic forwarding. However, the authors did
neither develop any specific scheme based on a particular
trajectory nor adequate numerical empirical results to sup-
port the advantages of TBF. In our work, we show advan-
tages of LSDD by both numerical analysis and simulation.
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3. LOGARITHMIC SPIRAL DATA DISSEM -
INATION SCHEME

In a two-dimension plane under polar coordinates, a log-
arithmic spiral [12,13] is defined as a curve such that:

b(6—0
r = ae” 0),

(1)
where the radius r is the distance from origin to the point
with angle 6, a and b are arbitrary positive constants, and 6o
is the initial spiral angle. Under the Cartesian coordinates,
(1) converts to:

The expression of a reversed logarithmic spiral is identical
with (1) except that a minus is put before b

x = acos(bf)eb? %)
y = asin(bg)eb®—b)

(2)

—b(6—00) (3)
In LSDD, both query messages from a sink node and data
advertisement messages from sensor nodes are forwarded
along paths approximating a logarithmic spiral curve, but in
opposite directions, respectively. The parameters of the spi-
ral can be broadcast or preprogrammed to all sensor nodes
in advance. When a sensor node detects something inter-
esting that needs to be disseminated, it initiates a spiral
dissemination. It first runs the spiral path search algorithm
(SPSA) to choose the next-hop neighbor node that fits the
intended spiral path best, then sends an advertisement mes-
sage to the chosen sensor node. An advertisement message
includes the signature of the interested phenomenon, the lo-
cation of the source node, the id of the previous hop node,
the spiral angle of the previous hop node, and other param-
eters like TTL (Time-To-Live) of the advertisement and the
maximum hop number of the dissemination path, etc.
When a sensor node receives an advertisement packet, it
first makes a local copy of this advertisement, then uses the
same SPSA to choose one neighbor as the next hop, and
forwards the advertisement message. In this way, the ad-
vertisement is forwarded hop by hop in the sensor network
following a spiral-like track. Considering the sink nodes are
located near the boundary in most cases, the SPSA has im-
plemented an option to circle the boundary of a WSN. If
the boundary circling option is off, then the SPSA will stop
when it reaches the boundary or the limit on hop number.
The query procedure is similar to the dissemination pro-
cedure but in a reverse direction. A sink node initiates a
query, and the query follows the reverse spiral path until
it meets the dissemination spiral, or the termination condi-
tion is satisfied, for example, the maximum hop number is
reached, boundary is reached or there is no node to choose.
Before forwarding the query to the next-hop, the sensor node
will also broadcast a message to its neighborhood to see if
it meets the dissemination path of the desired knowledge.
The source node may periodically update the information
along the spiral path, or work in a spontaneous mode that
launch the spiral dissemination whenever the interested phe-
nomenon is detected. To avoid redundant traffic, all sensor
nodes will drop an advertisement or query packet unless it
is newer than their local copy.
We developed SPSA to address the problem how every
sensor node in the dissemination path selects the next hop
so that the whole path approaches a spiral curve, assuming

T = ae



each nodes know the parameters of the spiral and the co-
ordinates of the original node and all its one-hop neighbor
nodes. An illustration of this problem is shown in Figure 1.

r;: radius of the ith node
0: spiral angle increment
d;: distance between the hop node
and the ideal spiral

h;: hop from the ith node to
the (¢ + 1)th node

S: spiral path

O

Figure 1: Spiral Dissemination Path Estimation

Let P; denote the sensor node for the ith hop in a spiral
dissemination path, O denote the original node which ini-
tiates the spiral, and Pi(j) denote the jth one-hop neighbor
node, j=1,2...,N.

Let D(P;), A(P;), and R(P;) denote the actual radius, the
spiral angle of P;, and the supposed spiral radius of P;. Let
L(P;) denote the distance from P; to its next hop on a ideal
spiral, respectively. Note that the R(P;) can be derived by
(1) given A(F;), and

L(P;) = [R(P;) = D(B)

Let K, denote the weight on the spiral angle and Kgy4
denote the weight on the distance, where both K, and Ky
are constants.

This path search problem can be formulated to an linear
programming (LP1) as follows:

N
ka
Max ;xl(kaA(Pz)Jr £(P1-))
subject to
Zz]'vzl r; =1 (a)
1 if P; is chosen . _
Jci:{o else 1=1,2,...,N. (b)

z; < I(A(P) > A(P)), ()

where I(+) is the indicator function

Instead of using the weighted sum of the interval spiral angle

and the distance to the ideal spiral as the cost function,

another linear programming (LP2) can be formulated by

changing the cost function to the ratio of the above two
terms. That is, LP2 can be written as

N AP

Max ;xl(ﬂ(ﬂ)

)
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subject to

S i =1

T = 1
710

zi < I(A(P) > A(R)),

where I(+) is the indicator function

(a)

if P; is chosen

olse 1=1,2,...

N, (b)

(©)

In both LP1 and LP2, constraint (c) filters out all the neigh-
bor nodes with spiral angle less than the current node, while
constraint (a) and (b) limit that only one node can be cho-
sen. In the cost function, we make a trade-off between the
path advance and the spiral approximation. This trade-off
is adjustable in LP1 by changing the values of K, and K.
Simulation shows that both LP1 and LP2 work very well.
Thus, when evaluating other performances by simulation, we
choose LP1 for SPSA and fix the weight values as K, = 1
and K4 = 2. Figure 2 shows an sample path with boundary
found by SPSA in a limited area. Note that when the path
reaches itself in the boundary case, the forwarding action
will stop, and a closed circle will be formed.

Logarithmic Spiral Dissemination with Boundary: a=0.2 b=0.2, node density=5, rthreshold=1
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Figure 2: Spiral Dissemination Path with bound-
aries

As mentioned before, query messages are forwarded in
the reversed spiral path, which employs the same SPSA al-
gorithm except that the sign of b changes. Such setting
guarantees that the intersection of the query path and the
dissemination path. After receiving a query message, a sen-
sor node will check the query with its local cache and its
one-hop neighbors. If there is no match by timeout, the
sensor node makes a local copy of the query and forwards
the query to the next hop. Otherwise, the data and the lo-
cation of the answering node are forwarded back to the sink
node by greedy geographical forwarding.

The spiral dissemination achieves high energy efficiency
and low traffic overhead at the price of relatively long delay
and blind area inside the spiral path. Therefore, LSDD is
not suitable for time-urgent applications. However, LSDD
is versatile in that: 1)by adjusting b, the percentage of blind
area is under control. Two extreme cases are a straight line
(b — 00) and full blooding (b — 0); 2)by incrementing 6o in



successive disseminations, a spiral path can sweep the whole
coverage over a controllable period and leave no blind area.

4. NUMERICAL ANALYSIS

Let [ denote the arc length of a spiral path defined by 1.
To simplify the expression, we set 6y = 0 in the rest of this
section. Thus
ae®® /1 + b2
— 3

Its coverage area S can be derived as

0 2
S = / /rdrd@ = a—e%e(l — ey,
002 4b

_J aifa<g
(“@m‘{a—mHaZﬁ
Suppose that the node density is K nodes per unit area.
Let N. denote the number of sensor nodes in an area covered
by a spiral path, and N, can be estimated based on (5) as

Ka? 6)

N.=KS=—
¢ 4b

Let N, denote the number of sensor nodes used to con-
struct a spiral, and N, can be estimated based on (4) as

bo / p)
Ns:l\/f?:M. (7)

Suppose that n nodes are covered by a spiral path. Let
N, = n, and substitute (6) into (7), we have

%
1402
e
NG (8)

When b is fixed, ¢ becomes a constant, thus Ny ~ O(y/n).
Therefore, the number of sensor nodes involved by LSDD is
only as O(y/n on average, while full flooding involves every
node.

Let Sy denote the coverage area of full flooding under a
dense and uniform node distribution. Sy can be estimated
as

l= (4)

()

where

€2b0(1 _ 74b7r)‘

N;

Sg=Nc/K (9)

The maximum radius of the flooding can be approximated
by

Sy _

s

N

Kn’
Let ~y denote the ratio of the flooding dissemination radius

to the spiral dissemination radius, and -« can be estimated

Ry =

(10)

as
R [ Ne
f K
= = . 11
V=R, T e (11)
Substituting (6) into (11),
1 — e—4nb
T drb (12)

For the convenience of readers, variables used in section
IIT and IV are summarized in table 1.
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Figure 3: Ratio of the estimated dissemination ra-
dius between spiral and flooding

Table 1: Variables used in Section IIT and IV

o~

the ith hop in a spiral dissemination path

actual radius of P;

spiral angle of P;

supposed spiral radius of P;

b B
EEEE

ideal distance from P; to its next hop

weight on angle

e

weight on distance

denote the arc length of a spiral path

x| ~| X &

node density

N, number of sensor nodes covered by a spiral path
N number of sensor nodes in a spiral

Sy coverage area of full flooding

Ry The maximum radius of the flooding

vy ratio of Ry to spiral dissemination radius

5. PERFORMANCE EVALUATION

All simulation tests are developed and carried out in MAT-
LAB. In our simulation, the working field is a rectangular
area divided into L x L unit square cells. The side length
of each cell is d, which is normalized to 1 m in our simu-
lation. Sensor nodes are uniformly distributed in each cell.
Following the previous denotation, the node density is K
nodes per unit cell. The spiral parameters are empirically
set as a = 0.1, b = 0.2, and 6y = 0. The effective radio
range, Ry, is set equal to d. A Berkeley mote [14] is used
as the prototype for the physical layer modeling of a sensor
node. Therefore, the energy consumption in our simulation
is measured as the current drawn from the battery. The
current values in our results are converted to the fraction of
the capacity of a battery, which is assumed 3000 mA. For
the conversion between the current drawn rate and power,
please reference to [15]. We assume that CSMA/CA is the
MAC layer protocol and UDP is the transport layer proto-
col. Besides LSDD, two other data dissemination schemes
are implemented as the control samples: sink initiated data
dissemination (SIDD) and gossiping based data dissemina-
tion (GBDD). In SIDD, the sink node flood query messages
and sensor nodes wait for query passively; sensor nodes for-
ward the data back by greedy geographic forwarding if there
is a matched query. In GBDD, both sink node and sensor
node use gossiping routing to forward the query and sensed
data.

The above settings make it convenient to scale our simu-
lation to practical scenarios by choosing appropriate L, d, K



and R;. For example, when L = 20, R, =d =100 m, k = 5,
our simulation is equivalent to a sensor network 2000 sen-
sor nodes uniformly deployed within a 4 km? square area.
We only count the energy consumption and traffic overhead
for data dissemination and query, and omit those for other
purposes like neighborhood detection or sensed data trans-
mission. All simulation results are averaged over 10 runs on
different network topologies.

First, we compare the energy consumption of three schemes
under the dissemination radius constraints. The simulation
settings are L =W =10, K =5, d = R; = 1. As shown in
Figure 4(a), all three schemes consume more energy given
longer radius. However, when the radius is larger than 1,
SIDD consumes more than LSDD and GBDD, the differ-
ence increases fast at energy increases, and LSDD consume
less energy than GBDD almost all the time. Also, Figure
4(b) shows that the LSDD expands much faster than both
SIDD and GBDD such that it always covers the largest area
for any given radius.

[

—A-Lsbb
-5 sIbD
-©- GBDD

10

- LsbD
-8~ sIbb
-6~ GBDD

Dissemination cost (u J)
o
&

10 12

2 4 6 8 4 6 8
Dissemination Radius (hop) Dissemination Radius (m)

(a) Transmitted Messages v.s. (b) Coverage v.s. Dissemina-
Dissemination Radius tion Radius

Figure 4: Energy efficiency tests

Next, we compare the search costs between LSDD, SIDD,
and GBDD. Here the search refers to as the energy con-
sumed in path setup for either dissemination or query. After
a path is constructed, the traffic incurred by data transmis-
sion will not be counted. The simulation settings for these
tests are the same as previous. Figure 5 shows the rela-
tionship between average search costs and the source-sink
distance for all three schemes. SIDD and GBDD exhibit
similar performance, and GBDD costs a little less at large
distances. When the distance is smaller than 4, both the
SIDD and GBDD cost less than LSDD. When the distance
is larger than 4, the search costs of both grow much faster
than that of LSDD, which suggests that LSDD fits better
in large-scale WSNs. For example, the search costs of SIDD
and GBDD are both about six times higher than that of
LSDD when the distance is larger than 15.

We evaluate the scalability of LSDD, SIDD, and GBDD
by applying them to WSNs with different sizes and node
densities. As summarized in the legend of Figure 6, there
are 3 settings for each scheme. Several interesting facts are
illustrated in this figure: 1)the search cost of LSDD is one or
two order of magnitude lower than that of SIDD or GBDD
in all settings; 2)SIDD and GBDD work out the similar re-
sults; 3)the effects of network size and node density on LSDD
are much less than those on SIDD or GBDD—all curves of
LSDD are very close while there are huge differences between
the curves of SIDD(or GBDD) for different settings. All the
above indicates the advantage of LSDD over the other two
schemes on scalability. Figure 7 compares the total search
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nodes



costs of LSDD, SIDD, and GBDD with multiple sink nodes,
which can be regarded as an extended test for the scalability
of LSDD. The simulation settings are the same as the single
case but with more than one sink nodes placed in the work-
ing field. It is clear that again LSDD is the most efficient
among all three alternatives, which further confirms that
LSDD is more suitable for large-scale WSNs or WSNs with
high node density. To examine the performance of LSDD
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[} —— Area: 10x10, K=5
Bo09 —— Area: 10x10, K=10
o —=— Area: 20x20, K=5
—— Area: 20x20, K=10
0.85 H i i i i
0 0.02 0.04 0.06 0.08 0.1

Node Failure Rate

Figure 8: Fault tolerance test

in a faulty WSN, the node failure rate is added as a new
parameter. First, a data dissemination is performed when
all nodes are turned on. The last hop along the dissemi-
nation path (usually on the boundary) is regarded as the
target node. Then some nodes are drawn uniformly as fail-
ure nodes and are turned off. Another data dissemination is
performed to see if the target node can be reached. For each
node failure rate, the success percentage is calculated over
100 tests. As shown in Figure 8, this test is performed under
4 different network settings. As expected, the success per-
centage is negatively proportional to the node failure rate,
and positively proportional to the node density. When the
node failure rate is lower than 0.1, the success percentage
is higher than 85 percents in all settings. It indicates that
LSDD is very robust to the node failures, and the negative
effect of failure nodes on LSDD decreases as a WSN becomes
larger and/or denser.

6. CONCLUSION

In this paper, we proposed a novel data dissemination
scheme logarithmic spiral data dissemination (LSDD). By
imitating a natural evolution of the spiral to facilitate the
data dissemination and data query in WSNs, LSDD im-
proves the performance-resource ratio in stable structure
and achieves high energy efficiency, low traffic overhead, and
flexible scalability. As shown in our simulation, LSDD per-
forms much better than flooding-based schemes with regard
to energy efficiency, scalability, workload capacity, and fault
tolerance. Our current work shows that LSDD, even though
still in a developing stage, stands for a promising way of
data dissemination as a geographic-based routing protocol
enhanced by spiral trajectory as global knowledge,
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