
Fast Bloom Filters and Their Generalization
Yan Qiao, Student Member, IEEE, Tao Li, and Shigang Chen, Senior Member, IEEE

Abstract—Bloom filters have been extensively applied in many network functions. Their performance is judged by three criteria: query

overhead, space requirement, and false positive ratio. Due to wide applicability, any improvement to the performance of Bloom filters

can potentially have a broad impact in many areas of networking research. In this paper, we study Bloom-1, a data structure that

performs membership check in one memory access, which compares favorably with the k memory accesses of a standard Bloom filter.

We also generalize Bloom-1 to Bloom-g and Bloom-�, allowing performance tradeoff between membership query overhead and false

positive ratio. We thoroughly examine the variants in this family of filters, and show that they can be configured to outperform the

Bloom filters with a smaller number of memory accesses, a smaller or equal number of hash bits, and a smaller or comparable false

positive ratio in practical scenarios. We also perform experiments based on a real traffic trace to support our filter design.

Index Terms—Bloom filter, memory access, false positive, hash requirement

Ç

1 INTRODUCTION

BLOOM filters are compact data structures for high-speed
online membership check against large data sets [2], [3].

They have wide applications [4] in routing-table lookup [5],
[6], [7], online traffic measurement [8], [9], peer-to-peer
systems [10], [11], cooperative caching [12], firewall design
[13], intrusion detection [14], bioinformatics [15], database
query processing [16], [17], stream computing [18], and
distributed storage systems [19]. Many network functions
require membership check. A firewall may be configured
with a large watch list of addresses that are collected by an
intrusion detection system. If the requirement is to log all
packets from those addresses, the firewall must check each
arrival packet to see if the source address is a member of the
list. Another example is routing-table lookup. The lengths of
the prefixes in a routing table range from 8 to 32. A router
can extract 25 prefixes of different lengths from the
destination address of an incoming packet, and it needs to
determine which prefixes are in the routing tables [5]. Some
traffic measurement functions require the router to collect
the flow labels [9], [20], such as source/destination address
pairs or address/port tuples that identify TCP flows. Each
flow label should be collected only once. When a new
packet arrives, the router must check whether the flow label
extracted from the packet belongs to the set that has already
been collected before. As a last example for the membership
check problem, we consider the context-based access control
(CBAC) function in Cisco routers [21]. When a router
receives a packet, it may want to first determine whether the
addresses/ports in the packet have a matching entry in the
CBAC table before performing the CBAC lookup.

In all of the previous examples, we face the same

fundamental problem: For a large data set, which may be an

address list, an address prefix table, a flow label set, a

CBAC table, or other types of data, we want to check
whether a given element belongs to this set or not. If there is
no performance requirement, this problem can be easily
solved using textbook data structures such as binary search
[22] (which stores the set in a sorted array and uses binary
search for membership check), or a traditional hash table
[23] (which uses linked lists to resolve hash collision).
However, these approaches are inadequate if there are
stringent speed and memory requirements.

Modern high-end routers and firewalls implement their
per-packet operations mostly in hardware. They are able to
forward each packet in a couple of clock cycles. To keep up
with such high throughput, many network functions that
involve per-packet processing also have to be implemented
in hardware. However, they cannot store the data structures
for membership check in DRAM because the bandwidth
and delay of DRAM access cannot match the packet
throughput at the line speed. Consequently, the recent
research trend is to implement membership check in the
high-speed on-die cache memory, which is typically SRAM.
The SRAM is, however, small and must be shared among
many online functions. This prevents us from storing a
large data set directly in the form of a sorted array or a hash
table. A Bloom filter [2] is a bit array that encodes the
membership of data elements in a set. Each member in the
set is hashed to k bits in the array at random locations, and
these bits are set to ones. To query for the membership of a
given element, we also hash it to k bits in the array and see
if these bits are all ones.

The performance of the Bloom filter and its many variants
is judged based on three criteria: The first one is the query
overhead, including the number of memory accesses and the
number of hash operations for each membership query. The
overhead limits the highest throughput that the filter can
support. Because both SRAM and the hash function circuit
may be shared among different network functions, it is
important for them to minimize their query overhead to
achieve good system performance. In the rest of the paper,
when we refer to overhead, we always mean the query
overhead. The second performance criterion is the space
requirement. Minimizing the space requirement to encode

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1, JANUARY 2014 93

. The authors are with the Department of Computer & Information Science
& Engineering, University of Florida, Gainesville, FL 32611.

Manuscript received 23 June 2012; revised 29 Nov. 2012; accepted 4 Jan.
2013; published online 15 Feb. 2013.
Recommended for acceptance by M. Guo.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2012-06-0591.
Digital Object Identifier no. 10.1109/TPDS.2013.46.

1045-9219/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

each member allows a network function to fit a large set in
the limited SRAM space for membership check. The third
criterion is the false positive ratio. A Bloom filter may
mistakenly claim a nonmember to be a member due to its
lossy encoding method. There is a tradeoff between the
space requirement and the false positive ratio. We can
reduce the latter by allocating more memory.

Given the fact that Bloom filters have been applied so
extensively in the network research, any improvement to
their performance can potentially have a broad impact. In this
paper, we study a data structure, called Bloom-1, which makes
just one memory access to perform membership check,
comparing with kð> 1Þ memory accesses of the standard
Bloom filter. We point out that, due to its high overhead, the
traditional Bloom filter is not practical when the optimal
value of k is used to achieve a low false positive ratio. We
generalize Bloom-1 to Bloom-g, which allows g memory
accesses. We show that they can achieve the low false positive
ratio of the Bloom filter with optimal k, without incurring the
same kind of high overhead. We further generalize Bloom-1
to Bloom-�, which achieves better false positive ratio with
small increase in overhead. We perform a thorough analysis
to reveal the properties of this family of filters. We discuss
how they can be applied for static or dynamic data sets. We
also conduct experiments based on a real traffic trace to study
the performance of the new filters.

The rest of the paper is organized as follows: Section 2
presents the Bloom-1 filter that makes one memory access per
membership query. Section 3 generalizes Bloom-1 to Bloom-
g, which allows more than one memory access. Section 4
presents another generalization of Bloom-1, reducing false
positive ratio considerably with a slight increase in memory
access overhead. Section 5 draws the conclusion. The related
work [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36],
[37], [38], [39], [40], [41], [42], [43], [44] and the experimental
results can be found in the supplemental file, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2013.46.

2 BLOOM-1: ONE MEMORY ACCESS BLOOM

FILTER

2.1 Bloom Filter

A Bloom filter is a space-efficient data structure for
membership check. It includes an array B of m bits, which
are initialized to zeros. The array stores the membership
information of a set as follows: Each member e of the set is
mapped to k bits that are randomly selected from B through
k different hash functions, HiðeÞ, 1 � i � k, whose range is
½0;m� 1Þ. Some lightweight hash functions used in Bloom
filters can be found in [24], [25]. To encode the membership
information of e, the bits, B½H1ðeÞ�; . . . , B½HkðeÞ�, are set to
ones. These are called the membership bits in B for the
element e. Some frequently used notations in this paper can
be found in Table 1.

To check the membership of an arbitrary element e0, if
the k bits, B½Hiðe0Þ�, 1 � i � k, are all ones, e0 is considered
to be a member of the set. Otherwise, it is not a member.

We can treat the k hash functions logically as a single
one that produces k log2 m hash bits. For example, suppose

m is 220, k ¼ 3, and a hash routine outputs 64 bits. We can
extract three 20-bit segments from the first 60 bits of a single
hash output and use them to locate three bits in B. Hence,
from now on, instead of specifying the number of hash
functions required by a filter, we will state the number of hash
bits that are needed, which is denoted as h.

A Bloom filter does not have false negatives, meaning that
if it answers that an element is not in the set, it is truly not in
the set. The filter, however, has false positives, meaning that
if it answers that an element is in the set, it may not be really
in the set. According to [2], [3], the false positive ratio fB,
which is the probability of mistakenly treating a nonmem-
ber as a member, is

fB ¼ 1� 1� 1

m

� �nk !k

�
�

1� e�nkm
�k
; ð1Þ

where n is the number of members in the set. Obviously, the
false positive ratio decreases as m increases, and increases
as n increases. The optimal value of k (denoted as k�) that
minimizes the false positive ratio can be derived by taking
the first-order derivative on (1) with respect to k, then
letting the right side be zero, and solving the equation. The
result is

k� ¼ ln 2�m=n � 0:7m=n: ð2Þ

The optimal k sometimes can be very large. To avoid too
many memory accesses, we may also set k as a small
constant in practice.

2.2 Bloom-1 Filter

To check the membership of an element, a Bloom filter
requires k memory accesses. We introduce the Bloom-1 filter,
which requires one memory access for membership check.
The basic idea is that instead of mapping an element to k bits
randomly selected from the entire bit array, we map it to

94 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1, JANUARY 2014

TABLE 1
Notations

k bits in a word that is randomly selected from the bit array.
A word is defined as a continuous block of bits that can be
fetched from the memory to the processor in one memory
access. In today’s computer architectures, most general-
purpose processors fetch words of 32 or 64 bits. Specifically,
designed hardware may access words of 72 bits or longer.

A Bloom-1 filter is an array B1 of l words, each of which
is w bits long. The total number m of bits is l� w. To encode
a member e during the filter setup, we first obtain a number
of hash bits from e, and use log2 l hash bits to map e to a
word in B1. It is called the membership word of e in the
Bloom-1 filter. We then use k log2 w hash bits to further map
e to k membership bits in the word and set them to ones.
The total number of hash bits that are needed is
log2 lþ k log2 w. Suppose m ¼ 220, k ¼ 3, w ¼ 26, and
l ¼ 214. Only 32 hash bits are needed, smaller than the
60 hash bits required in the previous Bloom filter example
under similar parameters.

To check if an element e0 is a member in the set that is
encoded in a Bloom-1 filter, we first perform hash
operations on e0 to obtain log2 lþ k log2 w hash bits. We
use log2 l bits to locate its membership word in B1, and then
use k log2 w bits to identify the membership bits in the word.
If all membership bits are ones, it is considered to be a
member. Otherwise, it is not.

The change from using k random bits in the array to using
k random bits in a word may appear simple, but it is also
fundamental. An important question is how it will affect
the false positive ratio and the query overhead. A more
interesting question is how it will open up new design space
to configure various new filters with different performance
properties. This is what we will investigate in depth.

The false negative ratio of a Bloom-1 filter is also zero.
The false positive ratio fB1 of Bloom-1, which is the
probability of mistakenly treating a nonmember as a
member, is derived as follows: Let F be the false positive
event that a nonmember e0 is mistaken for a member.
The element e0 is hashed to a membership word. Let X be
the random variable for the number of members that are
mapped to the same membership word. Let x be a constant
in the range of ½0; n�, where n is the number of members in
the set. Assume we use fully random hash functions. When
X ¼ x, the conditional probability for F to occur is

ProbfF j X ¼ xg ¼ 1� 1� 1

w

� �xk !k

: ð3Þ

Obviously, X follows the binomial distribution,
Binoðn; 1

lÞ, because each of the n elements may be mapped
to any of the l words with equal probabilities. Hence,

ProbfX ¼ xg ¼ n

x

� � 1

l

� �x
1� 1

l

� �n�x
; 8 0 � x � n: ð4Þ

Therefore, the false positive ratio can be written as

fB1 ¼ ProbfFg ¼
Xn
x¼0

ðProbfX ¼ xg � ProbfF j X ¼ xgÞ

¼
Xn
x¼0

n

x

� � 1

l

� �x
1� 1

l

� �n�x
1� 1� 1

w

� �xk !k
0
@

1
A:
ð5Þ

2.3 Impact of Word Size

We first investigate the impact of word size w on the false
positive ratio of a Bloom-1 filter. If n, l, and k are known, we
can obtain the optimal word size that minimizes (5).
However, in reality, we can only decide the amount
of memory (i.e., m) to be used for a filter, but cannot
choose the word size once the hardware is installed. In the
upper plot of Fig. 1, we compute the false positive ratios of
Bloom-1 under four word sizes: 32, 64, 72, and 256 bits,
when the total amount of memory is fixed at m ¼ 220 and k

is set to 3. Note that the number of words, l ¼ m
w , is inversely

proportional to the word size.
The horizontal axis in the figure is the load factor, n

m ,
which is the number of members stored by the filter divided
by the number of bits in the filter. Since most applications
require relatively small false positive ratios, we zoom in at
the load-factor range of [0, 0.2] for a detailed look in the
lower plot of Fig. 1. The computation results based on (5)
show that a larger word size helps to reduce the false
positive ratio. In that case, we should simply set w ¼ m for
the lowest false positive ratio. However, in practice, w is
given by the hardware, not a configurable parameter.
Without losing generality, we choose w ¼ 64 in our
computations and simulations for the rest of the paper.

2.4 Bloom with k ¼ 3k ¼ 3 versus Bloom-1

Although the optimal k always yields the best false positive
ratio of the Bloom filter, a small value of k is sometimes
preferred to bound the query overhead in terms of memory
accesses and hash operations. We compare the perfor-
mance of the Bloom-1 filter and the Bloom filter in both
scenarios. In this section, we use the Bloom filter with k ¼ 3
as the benchmark.

We compare the performance of three types of filters:
1) Bðk ¼ 3Þ, which represents a Bloom filter that uses 3 bits
to encode each member; 2) B1ðk ¼ 3Þ, which represents a
Bloom-1 filter that uses 3 bits to encode each member;

QIAO ET AL.: FAST BLOOM FILTERS AND THEIR GENERALIZATION 95

Fig. 1. Upper Plot: False positive ratios for Bloom-1 under different word
sizes. Lower Plot: Magnified false positive ratios for Bloom-1 under
different word sizes.

3) B1ðh ¼ 3 log2 mÞ, which represents a Bloom-1 filter that
uses the same number of hash bits as Bðk ¼ 3Þ does.

For B1ðh ¼ 3 log2 mÞ, we are allowed to use 3 log2 m hash
bits, which can encode up to 3 log2 m�log2 l

log2 w
membership bits in

the filter, where log2 l hash bits are used to locate the
membership word and log2 w hash bits are used to locate
each membership bit in the word. However, it is not
necessary to use more than the optimal number k of
membership bits that minimizes the false positive ratio
of the Bloom-1 filter in (5). Let k1� be the optimal value
number k. Hence, B1ðh ¼ 3 log2 mÞ actually uses k10 ¼
minfk1�; 3 log2 m�log2 l

log2 w
g membership bits to encode each

member. The number of hash bits to locate them is, therefore,
log2 lþ k10 log2 w, which may be smaller than 3 log2 m.

Table 2 presents numerical results of the number of
memory accesses and the number of hash bits needed by the
three filters for each membership query. First, we compare
Bðk ¼ 3Þ and B1ðk ¼ 3Þ. The Bloom-1 filter saves not only
memory accesses but also hash bits. When the hash routine
is implemented in hardware (such as CRC [24]), the
memory access may become the performance bottleneck,
particularly when the filter’s bit array is located off-chip. In
this case, the query throughput of B1ðk ¼ 3Þ can be up to
three times of the throughput of Bðk ¼ 3Þ.

Next, we consider B1ðh ¼ 3 log2 mÞ. Even though it still
makes one memory access to fetch a word, the processor may
check more than 3 bits in the word for a membership query. If
the operations of hashing, accessing memory, and checking
membership bits are pipelined and the memory access is the
performance bottleneck, the throughput of B1ðh ¼ 3 log2 mÞ
will also be three times of the throughput of Bðk ¼ 3Þ.

Finally, we compare the false positive ratios of the three
filters in Fig. 2. The figure shows that the false positive ratio
of B1ðk ¼ 3Þ is slightly worse than that of Bðk ¼ 3Þ. The
reason is that concentrating the membership bits in one
word reduces the randomness. B1ðh ¼ 3 log2 mÞ is better

than Bðk ¼ 3Þ when the load factor is smaller than 0.1. This
is because the Bloom-1 filter requires a fewer number of
hash bits on average to locate each membership bit than the
Bloom filter does. Therefore, when available hash bits are
the same, B1ðh ¼ 3 log2 mÞ is able to use a larger k than
Bðk ¼ 3Þ, as shown in Fig. 3.

2.5 Bloom with Optimal kk versus Bloom-1 with
Optimal kk

We can reduce the false positive ratio of a Bloom filter or a
Bloom-1 filter by choosing the optimal number of member-
ship bits. From (2), we find the optimal value k� that
minimizes the false positive ratio of a Bloom filter. From
(5), we can find the optimal value k1� that minimizes the
false positive ratio of a Bloom-1 filter. The values of k� and
k1� with respect to the load factor are shown in Fig. 4.
When the load factor is less than 0.1, k1� is significantly
smaller than k�.

We useBðoptimal kÞ to denote a Bloom filter that uses the
optimal number k� of membership bits, andB1ðoptimal kÞ to
denote a Bloom-1 filter that uses the optimal number k1� of
membership bits.

To make the comparison more concrete, we present the
numerical results of memory access overhead and hashing
overhead with respect to the load factor in Table 3. For
example, when the load factor is 0.04, the Bloom filter
requires 17 memory accesses and 340 hash bits to minimize
its false positive ratio, whereas the Bloom-1 filter requires
only one memory access and 62 hash bits. In practice, the
load factor is determined by the application requirement on
the false positive ratio. If an application requires a very
small false positive ratio, it has to choose a small load factor.

Next, we compare the false positive ratios of Bðoptimal kÞ
and B1ðoptimal kÞ with respect to the load factor in Fig. 5.

96 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1, JANUARY 2014

TABLE 2
Query Overhead Comparison of Bloom-1 Filters and Bloom

Filter with k ¼ 3 and w ¼ 64

Note that Bðk ¼ 3Þ uses 3 log2 m hash bits and B1ðh ¼ 3 log2 mÞ may
use fewer than that number.

Fig. 2. Performance comparison in terms of false positive ratio.
Parameters: w ¼ 64 and m ¼ 220.

Fig. 3. Number of membership bits used by the filters.

Fig. 4. Optimal number of membership bits with respect to the load
factor. Parameters: m ¼ 220 and w ¼ 64.

The Bloom filter has a much lower false positive ratio than
the Bloom-1 filter. On one hand, we must recognize the fact
that, as shown in Table 3, the overhead for the Bloom filter
to achieve its low false positive ratio is simply too high to be
practical. On the other hand, it raises a challenge for us to
improve the design of the Bloom-1 filter so that it can match
the false positive ratio of the Bloom filter at much lower
overhead. In the next section, we generalize the Bloom-1
filter to allow performance-overhead tradeoff, which pro-
vides flexibility for practitioners to achieve a lower false
positive ratio at the expense of modestly higher query
overhead.

3 BLOOM-gg: A GENERALIZATION OF BLOOM-1

3.1 Bloom-gg Filter

As a generalization of Bloom-1 filter, a Bloom-g filter maps
each member e to g words instead of one, and spreads
its k membership bits evenly in the g words. More
specifically, we use g log2 l hash bits derived from e to
locate g membership words, and then use k log2 w
hash bits to locate k membership bits. The first one or
multiple words are each assigned dkge membership bits,
and the remaining words are each assigned bkgc bits, so
that the total number of membership bits is k.

To check the membership of an element e0, we have to
access g words. Hence, the query overhead includes
g memory accesses and g log2 lþ k log2 w hash bits.

The false negative ratio of a Bloom-g filter is zero and the
false positive ratio fBg of the Bloom-g filter is derived as
follows: Each member encoded in the filter randomly
selects g membership words. There are n members.
Together they select gn membership words (with replace-
ment). These words are called the encoded words. In each
encoded word, kg bits are randomly selected to be set as ones
during the filter setup. To simplify the analysis, we use k

g

instead of taking the ceiling or floor.
Now consider an arbitrary word D in the array. Let X be

the number of times this word is selected as an encoded
word during the filter setup. Assume we use fully random
hash functions. When any member randomly selects a
word to encode its membership, the word D has a
probability of 1

l to be selected. Hence, X is a random
number that follows the binomial distribution Binoðgn; 1

lÞ.
Let x be a constant in the range ½0; gn�:

ProbfX ¼ xg ¼ gn

x

� � 1

l

� �x
1� 1

l

� �gn�x
: ð6Þ

Consider an arbitrary nonmember e0. It is hashed to g

membership words. A false positive happens when its

membership bits in each of the g words are ones. Consider

an arbitrary membership word of e0. Let F be the event that

the k
g membership bits of e0 in this word are all ones.

Suppose this word is selected for x times as an encoded

word during the filter setup. We have the following

conditional probability:

ProbfF j X ¼ xg ¼ 1� 1� 1

w

� �xkg !k
g

: ð7Þ

The probability for F to happen is

ProbfFg ¼
Xgn
x¼0

ðProbfX ¼ xg � ProbfF j X ¼ xgÞ

¼
Xgn
x¼0

gn

x

� �
� 1

l

� �x
� 1� 1

l

� �gn�x
� 1� 1� 1

w

� �xkg !k
g
!
:

ð8Þ

Element e0 has g membership words. Hence, the false

positive ratio is

fBg ¼ ðProbfFgÞg

¼
"Xgn
x¼0

��
gn

x

��
1

l

�x�
1� 1

l

�gn�x�
1�

�
1� 1

w

�xkg�k
g
�#g

:

ð9Þ

When g ¼ k, exactly one bit is set in each membership

word. This special Bloom-k is identical to a Bloom filter

with k membership bits. To prove this, we first let g ¼ k,

and (9) becomes

fBk ¼
�Xkn
x¼0

�
kn

x

� �
� 1

l

� �x
� 1� 1

l

� �kn�x
� 1� 1� 1

w

� �x� ���k

¼
�Xkn
x¼0

�
kn

x

� �
� 1

l

� �x
� 1� 1

l

� �kn�x�

�
Xkn
x¼0

�
kn

x

� �
� 1

l

� �x
� 1� 1

l

� �kn�x
� 1� 1

w

� �x��k

QIAO ET AL.: FAST BLOOM FILTERS AND THEIR GENERALIZATION 97

Fig. 5. False positive ratios of the Bloom filter and the Bloom-1 filter with
optimal k. m ¼ 220 and w ¼ 64.

TABLE 3
Query Overhead Comparison of Bloom-1 Filter and Bloom Filter

with Optimal Number of Membership Bits

Parameters: m ¼ 220 and w ¼ 64.

¼
�
1�

Xkn
x¼0

�
kn

x

� �
� 1

l
� 1� 1

w

� �� �x
� 1� 1

l

� �kn�x��k

¼ 1� 1� 1

lw

� �kn !k

:

ð10Þ

As m ¼ lw, we have fBk ¼ fB. In other words, a Bloom-k
filter is identical to a Bloom filter.

3.2 Bloom with k ¼ 3k ¼ 3 versus Bloom-gg

We compare the Bloom-g filters and the Bloom filter with
k ¼ 3 in terms of their overhead and false positive ratios.
Because the overhead of Bloom-g increases with g, it is
highly desirable to use a small value for g. Hence, we focus
on Bloom-2 and Bloom-3 filters for evaluation.

We compare the following filters: 1) Bðk ¼ 3Þ, the
Bloom filter with k ¼ 3; 2) B2ðk ¼ 3Þ, the Bloom-2 filter
with k ¼ 3; 3) B2ðh ¼ 3 log2 mÞ, the Bloom-2 filter that is
allowed to use the same number of hash bits as Bðk ¼ 3Þ
does. In this section, we do not consider Bloom-3 because
it is equivalent to Bðk ¼ 3Þ, as we have discussed in
Section 3.1.

From (9), when g ¼ 2, we can find the optimal value of k,
denoted as k2�, that minimizes the false positive ratio.
Similar to the discussion for B1ðh ¼ 3 log2 mÞ in Section 2.4,
we set the number of membership bits for each element in
B2ðh ¼ 3 log2 mÞ to be k20 ¼ minfk2�; 3 log2 m�2 log2 l

log2 w
g. The

number of hash bits to locate them is, therefore,
log2 lþ k20 log2 w, which may be smaller than 3 log2 m.

Table 4 compares the query overhead of three filters.
B2ðk ¼ 3Þ incurs fewer memory accesses and fewer hash
bits than Bðk ¼ 3Þ. For B2ðh ¼ 3 log2 mÞ, its number of hash
bits is no more than that used by Bðk ¼ 3Þ, and it makes
fewer memory accesses.

Fig. 6 presents the false positive ratios of Bðk ¼ 3Þ,
B2ðk ¼ 3Þ, and B2ðh ¼ 3 log2 mÞ; Fig. 7 shows the number of

membership bits used by the filters. The figures show that
Bðk ¼ 3Þ and B2ðk ¼ 3Þ have comparable false positive
ratios in load factor range of [0.1, 1], whereas B2ðh ¼
3 log2 mÞ performs better in load factor range of [0.00005, 1].
For example, when the load factor is 0.04, the false positive
ratio of Bðk ¼ 3Þ is 1:5� 10�3 and that of B2ðk ¼ 3Þ is
1:6� 10�3, while the false positive ratio of B2ðh ¼ 3 log2 mÞ
is 3:1� 10�4, about one-fifth of the other two. Considering
that B2ðh ¼ 3 log2 mÞ uses the same number of hash bits as
Bðk ¼ 3Þ but only two memory accesses per query, it is a
very useful substitute of the Bloom filter to build fast and
accurate data structures for membership check.

3.3 Bloom with Optimal kk versus Bloom-gg with
Optimal kk

We now compare the Bloom-g filters and the Bloom filter
when they use the optimal numbers of membership bits
determined from (1) and (9), respectively. We use
Bðoptimal kÞ to denote a Bloom filter that uses the optimal
number k� of membership bits to minimize the false
positive ratio. We use Bgðoptimal kÞ to denote a Bloom-g
filter that uses the optimal number kg� of membership bits,
where g ¼ 1, 2 or 3. Fig. 8 compares their numbers of
membership bits (i.e., k�, k1�, k2�, and k3�). It shows that the
Bloom filter uses many more membership bits when the
load factor is small.

Next, we compare the filters in terms of query overhead.
For 1 � g � 3, Bgðoptimal kÞ makes g memory accesses and
uses g log2 lþ kg� log2 w hash bits per membership query.
Numerical comparison is provided in Table 5. To achieve a
small false positive ratio, one has to keep the load factor
small, which means that Bðoptimal kÞ will have to make a
large number of memory accesses and use a large number

98 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1, JANUARY 2014

TABLE 4
Query Overhead Comparison of Bloom-2 Filter

and Bloom Filter with k ¼ 3

Fig. 6. False positive ratios of Bloom filter and Bloom-2 filter.
Parameters: m ¼ 220 and w ¼ 64.

Fig. 7. Number of membership bits used by the filters.

Fig. 8. Optimal number of membership bits with respect to the load
factor. Parameters: m ¼ 220 and w ¼ 64.

of hash bits. For example, when the load factor is 0.08, it
makes nine memory accesses with 180 hash bits per query,
whereas the Bloom-1, Bloom-2 and Bloom-3 filters make
one, two, and three memory accesses with 50, 70, and
90 hash bits, respectively. When the load factor is 0.02, it
makes 35 memory accesses with 700 hash bits, whereas the
Bloom-1, Bloom-2, and Bloom-3 filters make just one, two,
and three memory accesses with 74, 118, and 162 hash bits,
respectively.

Fig. 9 presents the false positive ratios of the Bloom and
Bloom-g filters. As we already showed in Section 2.5,
B1ðoptimal kÞ performs worse than Bðoptimal kÞ. However,
the false positive ratio of B2ðoptimal kÞ is very close to that
of Bðoptimal kÞ. Furthermore, the curve of B3ðoptimal kÞ is
almost entirely overlapped with that of Bðoptimal kÞ for the
whole load-factor range. The results indicate that with just
two memory accesses per query, B2ðoptimal kÞ works
almost as good as Bðoptimal kÞ, even though the latter
makes many more memory accesses.

3.4 Discussion

The mathematical and numerical results demonstrate that
Bloom-2 and Bloom-3 have smaller false positive ratios than
Bloom-1 at the expense of larger query overhead. Below we
give an intuitive explanation: Bloom-1 uses a single hash to
map each member to a word before encoding. It is well
known that a single hash cannot achieve an evenly
distributed load; some words will have to encode much
more members than others, and some words may be empty
as no members are mapped to them. This uneven
distribution of members to the words is the reason for
larger false positives. Bloom-2 maps each member to two
words and splits the membership bits among the words.
Bloom-3 maps each member to three words. They achieve
better load balance such that most words will each encode
about the same number of membership bits. This helps
them improve their false positive ratios.

3.5 Using Bloom-gg in a Dynamic Environment

To compute the optimal number of membership bits, we
must know the values of n, m, w, and l. The values of m, w,

and l are known once the amount of memory for the filter is
allocated. The value of n is known only when the filter is
used to encode a static set of members. In practice, however,
the filter may be used for a dynamic set of members. For
example, a router may use a Bloom filter to store a watch
list of IP addresses, which are identified by the intrusion
detection system as potential attackers. The router inspects
the arrival packets and logs those packets whose source
addresses belong to the list. If the watch list is updated once
a week or at the midnight of each day, we can consider it as
a static set of addresses during most of the time. However,
if the system is allowed to add new addresses to the list
continuously during the day, the watch list becomes a
dynamic set. In this case, we do not have a fixed optimal
value of k� for the Bloom filter. One approach is to set the
number of membership bits to a small constant, such as
three, which limits the query overhead. In addition, we
should also set the maximum load factor to bound the false
positive ratio. If the actual load factor exceeds the maximum
value, we allocate more memory and set up the filter again
in a larger bit array.

The same thing is true for the Bloom-g filter. For a
dynamic set of members, we do not have a fixed optimal
number of membership bits, and the Bloom-g filter will also
have to choose a fixed number of membership bits. The
good news for the Bloom-g filter is that its number of
membership bits is unrelated to its number of memory
accesses. The flexible design allows it to use more member-
ship bits while keeping the number of memory accesses
small or even a constant one.

Comparing with the Bloom filter, we may configure a
Bloom-g filter with more membership bits for a smaller
false positive ratio, while in the mean time keeping both
the number of memory accesses and the number of hash
bits smaller. Imagine a filter of 220 bits is used for a
dynamic set of members. Suppose the maximum load
factor is set to be 0.2 to ensure a small false positive ratio.
Fig. 10 compares the Bloom filter with k ¼ 3, the Bloom-1
filter with k ¼ 6, and the Bloom-2 filter with k ¼ 5. As new
members are added over time, the load factor increases
from zero to 0.2. Before the load factor reaches 0.17, the
Bloom-2 filter has significantly smaller false positive ratios
than the Bloom filter. When the load factor is 0.04, the
false positive ratio of Bloom-2 is just one-fourth of the
false positive ratio of Bloom. Moreover, it makes fewer
memory accesses per membership query. The Bloom-2
filter uses 58 hash bits per query, and the Bloom filter uses

QIAO ET AL.: FAST BLOOM FILTERS AND THEIR GENERALIZATION 99

Fig. 9. False positive ratios of Bloom and Bloom-g with optimal k.
Parameters: m ¼ 220 and w ¼ 64.

TABLE 5
Query Overhead Comparison of Bloom Filter

and Bloom-g Filter with Optimal k

Parameters: m ¼ 220 and w ¼ 64.

60 bits. The false positive ratios of the Bloom-1 filter are
close to or slightly better than those of the Bloom filter in
load factor range of [0, 0.1]. It achieves such performance
by making just one memory access per query and uses 50
hash bits.

4 BLOOM-��: ANOTHER GENERALIZATION

OF BLOOM-1

4.1 Motivation

From Fig. 6, we see that Bloom-2 is comparable to the Bloom
filter in terms of false positive ratio when k ¼ 3. However, it
performs much better if it uses the same number of hash bits
as Bloom does. From Fig. 9, when the optimal number of
membership bits is used, Bloom-2 is almost as good
as Bloom and better than Bloom-1. The downside is that
Bloom-2 needs two memory accesses per query, whereas
Bloom-1 needs just one. Our goal is to design a Bloom filter
variant that makes a tradeoff between Bloom-1 and Bloom-2
such that false positive ratio is close to what Bloom-2 has,
whereas overhead is close to what Bloom-1 has.

We have briefly touched upon the reason why Bloom-2
outperforms Bloom-1 in terms of false positive ratio
(Section 3.4). Now, we give a closer look. Recall that a
Bloom-1 filter uses an array of words. Let us define the load
of a word to be the number of members that are encoded in
the word. False positive ratios incurred in different words
may vary. Naturally, the false positive ratio of a heavily
loaded word will be higher than that of a lightly loaded
word. This is confirmed by our simulation that keeps track
of which word each false positive occurs in. We classify the
words into groups based on their load values, and find the
average false positive ratio for each group by simulation.
The results are shown in Fig. 11. For words whose loads
are 6 or smaller, false positive ratios are very small.
However, false positive ratio grows superlinearly. When
the loads are 10 or greater, false positive ratios are very
high. Clearly, reducing the number of heavily loaded
words helps reduce the overall false positive ratios. The
approach adopted by Bloom-2 maps each member to two
membership words. Each word only carries half of the
membership bits. In other words, each word only encodes
half of the member. Consider a heavily loaded word
that serves as the membership word for 14 members. In
Bloom-2, since the word encodes half of each member, its
load is reduced from 14 to 7. Fig. 12 shows the frequency

distribution of words with respect to load values. Fewer
words have heavy loads of 10 or higher in Bloom-2 than
Bloom-1. That is why Bloom-2 performs better.

However, two membership words require two memory
accesses for each query. What about only some members
have two membership words while others have one? In
this case, some queries need two memory accesses, but
others need just one. The average number of memory access
per query will be between 1 and 2. Intuitively, for a lightly
loaded word, we want its encoded members to have just
one membership word. However, for a heavily loaded
word, we want all or some of its encoded members to have
additional membership words so that some of their
membership bits will be moved elsewhere.

4.2 Bloom-�� Filter

A Bloom-� filter (denoted as B�) is also an array of
l words, each of which is w bits long. The first w� 1 bits in
each word are used to encode members of a set, and the
last bit is a flag to indicate whether members mapped to
this word have second membership words. Initially, all bits
(including flag bits) are zeros. The setup procedure of a
Bloom-� filter consists of two phases. In the first phase, we
map elements in the set to the words in the same way as
we do for Bloom-1. Each element is mapped to and
encoded in exactly one word. We keep track of the
elements that are encoded in each word. In the second
phase, we pick a word W1 that has the largest number of
encoded members. We then “split” these members: for
each member, we use log2 l additional hash bits to locate a
second word W2 and move its last bk=2c membership bits
from W1 to W2. Finally, the flag bit in W1 is set to one; we
call W1 a split word. We keep splitting the heaviest loaded

100 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1, JANUARY 2014

Fig. 11. False positive ratio of Bloom-1 with respect to load of words.
Parameters: m ¼ 220, w ¼ 64, load factor n=m ¼ 0:1.

Fig. 12. Frequency distribution of words with respect to load values.
Parameters: m ¼ 220, w ¼ 64, load factor n=m ¼ 0:1 for both filters.

Fig. 10. False positive ratios of the Bloom filter with k ¼ 3, the Bloom-1
filter with k ¼ 6, and the Bloom-2 filter with k ¼ 5. Parameters: m ¼ 220

and w ¼ 64.

word until a certain predefined fraction � of members are
split, i.e., the number of members having two membership
words reaches �n. As split words cannot be split again,
this process will terminate as soon as enough members
are split.

The construction of Bloom-� ensures that if the flag of a
word is one, the members mapped to the word must have
two membership words; if the flag is zero, the members
have one membership word. Bloom-1 is a special case of
Bloom-� with � ¼ 0.

To perform membership check on an element e0, we first
hash the element to locate its membership word W1. If the
flag of the word is zero, we check k membership bits in this
word. If all these bits are ones, e0 is a member of the set;
Otherwise, it is not. If the flag of the word is one, we check
the first dk=2e membership bits in W1. If any of these bits is
zero, we are sure that e0 is not a member and there is no
need to check the second word. However, if all these bits
are ones, we find the second membership word by using
log2 l additional hash bits and check the remaining bk=2c
membership bits in that word. We claim that e0 is a member
of the set only if all those bits are also ones.

We analyze the query overhead in Table 6. Consider an
arbitrary element e0. If e0 is mapped to a word whose flag is
zero, it takes one memory access. If e0 is mapped to a split
word whose flag is one, it takes one or two memory
accesses, depending on whether any of the first dk=2e
membership bits is zero. The chance for e0 to be mapped to
any word is equal. Hence, the probability for e0 to be
mapped to a split word is equal to the fraction (or
percentage) of words that are split. Considering that we
split the most heavily loaded words, the average load of
these words is larger than (or equal to, only if members are
evenly distributed) that of the whole word array. Hence,
the fraction of words being split is smaller than (or equal to)
the fraction (i.e., �) of members being split. Therefore, the
average number of memory accesses per query is bounded
by 1� ð1� �Þ þ 2� � ¼ 1þ �. Our experiment results in
the next section show that, for � ¼ 0:5, the average number
of memory accesses is actually very close to one. Because
Bloom-� needs log2 l additional hash bits to locate a second
word, its total number of hash bits per query is
2 log2 lþ k log2 w, comparing with log2 lþ k log2 w hash bits
needed by Bloom-1.

Fig. 13 compares false positive ratios of Bloom-1,
Bloom-2, and Bloom-� with k ¼ 3 by simulations. The
false positive ratio of Bloom-� is between those of Bloom-1
and Bloom-2. When the value of � is increased from 25 to
50 percent, the false positive ratio of Bloom-� is decreased,
suggesting a performance-overhead tradeoff because the

average number of memory accesses will increase. When

� ¼ 50%, the false positive ratio of Bloom-� is close to that

of Bloom-2.

5 CONCLUSION AND FUTURE WORK

In this paper, we study one memory access Bloom filters
and their generalization. This family of data structures
enriches the design space of the Bloom filters and their
application scope by reducing the query overhead to allow
high throughput. Using a number of random bits in a word
instead of from the entire bit array, we analyze the impact
of this design change in terms of overhead and false
positive ratio. This change also opens the door for
constructing other variants for performance tradeoff. In
this enlarged design space, we can configure filters that not
only make fewer memory accesses but also have compar-
able or superior false positive ratios in scenarios where the
standard Bloom filter with the optimal value of k incurs too
much overhead to be practical.

In our future work, we plan to extend the techniques in
this paper to counting Bloom filters. The basic idea is to
divide every word into a number of small counters. Each
member is first mapped to a word in the available memory,
and then further mapped to k counters in the same word.
To encode a member, we fetch the corresponding word in
one memory access, increase k counters in the word (likely
by simple hardware), and write the word back in another
memory access. We will analyze this variant of counting
Bloom filter theoretically and perform experiments to
evaluate its performance in practical scenarios.

Another research direction is to consider multibanked
on-die memory. With k banks, we can make k memory
accesses in parallel. If a standard Bloom filter is implemen-
ted on multibanked memory, it may be able to perform
membership query in one memory access time if its
k memory accesses are made to different banks. Similarly,
if we implement the Bloom-1 filter on multibanked
memory, it may process up to k membership queries
simultaneously in one memory access time. We will
investigate the strategy of splitting the filter among the
k banks to maximize the throughput of membership query.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation under grant CNS-1115548.

QIAO ET AL.: FAST BLOOM FILTERS AND THEIR GENERALIZATION 101

TABLE 6
Query Overhead Comparison of Bloom-1, Bloom-2,

and Bloom-� Filter

Fig. 13. False positive ratios of Bloom-1, Bloom-2 and Bloom-� Filter
with k ¼ 3. Parameters: m ¼ 220, w ¼ 64 for all filters.

REFERENCES

[1] Y. Qiao, S. Chen, and T. Li, “One Memory Access Bloom Filters
and Their Generalization,” Proc. IEEE INFOCOM ’11, 2011.

[2] B.H. Bloom, “Space/Time Trade-Offs in Hash Coding with
Allowable Errors,” Comm. the ACM, vol. 13, no. 7, pp. 422-426,
1970.

[3] A. Broder and M. Mitzenmacher, “Network Applications of
Bloom Filters: A Survey,” Internet Math., vol. 1, no. 4, pp. 485-509,
2004.

[4] S. Tarkoma, C. Rothenberg, and E. Lagerspetz, “Theory and
Practice of Bloom Filters for Distributed Systems,” IEEE Comm.
Surveys & Tutorials, vol. 99, pp. 1-25, 2012.

[5] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor, “Longest
Prefix Matching Using Bloom Filters,” Proc. ACM Conf. Applica-
tions, Technologies, Architectures, and Protocols for Computer Comm.
(SIGCOMM), Aug. 2003.

[6] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast
Hash Table Lookup Using Extended Bloom Filter: An Aid to
Network Processing,” Proc. ACM Conf. Applications, Technologies,
Architectures, and Protocols for Computer Comm. (SIGCOMM),
Aug. 2005.

[7] H. Song, F. Hao, M. Kodialam, and T. Lakshman, “IPv6 Lookups
Using Distributed and Load Balanced Bloom Filters for 100Gbps
Core Router Line Cards,” Proc. IEEE INFOCOM, Apr. 2009.

[8] A. Kumar, J. Xu, J. Wang, O. Spatschek, and L. Li, “Space-Code
Bloom Filter for Efficient Per-Flow Traffic Measurement,” Proc.
IEEE INFOCOM, Mar. 2004.

[9] Y. Lu and B. Prabhakar, “Robust Counting via Counter Braids: An
Error-Resilient Network Measurement Architecture,” Proc. IEEE
INFOCOM, Apr. 2009.

[10] P. Reynolds and A. Vahdat, “Efficient Peer-to-Peer Keyword
Searching,” Proc. Int’l Middleware Conf., June 2003.

[11] A. Kumar, J. Xu, and E. Zegura, “Efficient and Scalable Query
Routing for Unstructured Peer-to-Peer Networks,” Proc. IEEE
INFOCOM, Mar. 2005.

[12] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary Cache: A
Scalable Wide-Area Web Cache Sharing Protocol,” IEEE/ACM
Trans. Networking, vol. 8, no. 3, pp. 281-293, June 2000.

[13] L. Maccari, R. Fantacci, P. Neira, and R. Gasca, “Mesh
Network Firewalling with Bloom Filters,” Proc. IEEE Int’l Conf.
Comm., June 2007.

[14] D. Suresh, Z. Guo, B. Buyukkurt, and W. Najjar, “Automatic
Compilation Framework for Bloom Filter Based Intrusion Detec-
tion,” Reconfigurable Computing: Architectures and Applications,
vol. 3985, pp. 413-418, 2006.

[15] K. Malde and B. O ~OSullivan, “Using Bloom Filters for Large Scale
Gene Sequence Analysis in Haskell,” Proc. 11th Int’l Symp. Practical
Aspects of Declarative Languages, pp. 183-194, 2009.

[16] J. Mullin, “Optimal Semijoins for Distributed Database Systems,”
IEEE Trans. Software Eng., vol. 16, no. 5, pp. 558-560, May 1990.

[17] W. Wang, H. Jiang, H. Lu, and J. Yu, “Bloom Histogram: Path
Selectivity Estimation for XML Data with Updates,” Proc. 30th Int’l
Conf. Very Large Data Bases (VLDB), pp. 240-251, 2004.

[18] Z. Yuan, J. Miao, Y. Jia, and L. Wang, “Counting Data Stream
Based on Improved Counting Bloom Filter,” Proc. Ninth Int’l
Conf. Web-Age Information Management (WAIM), pp. 512-519,
2008.

[19] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M.
Burrows, T. Chandra, A. Fikes, and R. Gruber, “Bigtable: A
Distributed Storage System for Structured Data,” ACM Trans.
Computer Systems, vol. 26, no. 2, article 4, 2008.

[20] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A.
Kabbani, “Counter Braids: A Novel Counter Architecture for
Per-Flow Measurement,” Proc. ACM SIGMETRICS Int’l Conf.
Measurement and Modeling of Computer Systems, June 2008.

[21] “Context-Based Access Control (CBAC): Introduction and
Configuration,” http://www.cisco.com/en/US/products/sw/
secursw/ps1018/products_tech_note09186a0080094e8b.shtml,
2008.

[22] E. Horowitz, S. Sahni, and S. Rajasekaran, Computer Algorithms
C++ (Chapter 3.2). WH Freeman, 1996.

[23] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Heide, H. Rohnert,
and R. Tarjan, “Dynamic Perfect Hashing: Upper and Lower
Bounds,” SIAM J. Computing, vol. 23, no. 4, pp. 738-761, 1994.

[24] M.K.F. Hao and T. Lakshman, “Building High Accuracy Bloom
Filters Using Partitioned Hashing,” Proc. ACM SIGMETRICS Int’l
Conf. Measurement and Modeling of Computer Systems, June 2007.

[25] F. Hao, M. Kodialam, T. Lakshman, and H. Song, “Fast Multiset
Membership Testing Using Combinatorial Bloom Filters,” Proc.
IEEE INFOCOM, 2009.

[26] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, “The Dynamic
Bloom Filters,” IEEE Trans. Knowledge & Data Eng., vol. 22, no. 1,
pp. 120-133, Jan. 2010.

[27] O. Rottenstreich, Y. Kanizo, and I. Keslassy, “The Variable-
Increment Counting Bloom Filter,” Proc. IEEE INFOCOM, 2012.

[28] Y. Lu, B. Prabhakar, and F. Bonomi, “Bloom Filters: Design
Innovations and Novel Applications,” Proc. Allerton Conf., 2005.

[29] M. Moreira, R. Laufer, P. Velloso, and O. Duarte, “Capacity and
Robustness Tradeoffs in Bloom Filters for Distributed Applica-
tions,” IEEE Trans. Parallel & Distributed Systems, vol. 23, no. 12,
pp. 2219-2230, Dec. 2012.

[30] F. Bonomi, M. Mitzenmacher, R. Panigrah, S. Singh, and G.
Varghese, “Beyond Bloom Filters: From Approximate Member-
ship Checks to Approximate State Machines,” ACM SIGCOMM
Computer Comm. Rev., vol. 36, no. 4, pp. 315-326, 2006.

[31] A. Pagh, R. Pagh, and S. Rao, “An Optimal Bloom Filter
Replacement,” Proc. ACM-SIAM Symp. Discrete Algorithms,
pp. 823-829, 2005.

[32] M. Mitzenmacher, “Compressed Bloom Filters,” IEEE/ACM Trans.
Networking, vol. 10, no. 5, pp. 604-612, Oct. 2002.

[33] Y. Zhu, H. Jiang, and J. Wang, “Hierarchical Bloom Filter Arrays
(HBA): A Novel, Scalable Metadata Management System for
Large Cluster-Based Storage,” Proc. IEEE Int’l Conf. Cluster
Computing, pp. 165-174, 2004.

[34] Y. Chen, A. Kumar, and J. Xu, “A New Design of Bloom Filter for
Packet Inspection Speedup,” Proc. IEEE GLOBECOM, 2007.

[35] M. Canim, G. Mihaila, B. Bhattacharhee, C. Lang, and K. Ross,
“Buffered Bloom Filters on Solid State Storage,” Proc. VLDB
ADMS Workshop, 2010.

[36] B. Debnath, S. Sengupta, J. Li, D. Lilja, and D. Du, “BloomFlash:
Bloom Filter on Flash-Based Storage,” Proc. 31st Int’l Conf.
Distributed Computing Systems (ICDCS), pp. 635-644, 2011.

[37] S. Lumetta and M. Mitzenmacher, “Using the Power of Two
Choices to Improve Bloom Filters,” Internet Math., vol. 4, no. 1,
pp. 17-33, 2007.

[38] A. Kirsch and M. Mitzenmacher, “Less Hashing, Same Perfor-
mance: Building a Better Bloom Filter,” Proc. 14th Conf. Ann.
European Symp., Sept. 2006.

[39] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The Bloomier
Filter: An Efficient Data Structure for Static Support Lookup
Tables,” Proc. ACM-SIAM Symp. Discrete Algorithms (SODA), 2004.

[40] S. Cohen and Y. Matias, “Spectral Bloom Filters,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, pp. 241-252, 2003.

[41] Y. Hua and B. Xiao, “A Multi-Attribute Data Structure with
Parallel Bloom Filters for Network Services,” Proc. 13th Int’l Conf.
High Performance Computing (HiPC), pp. 277-288, 2006.

[42] B. Xiao and Y. Hua, “Using Parallel Bloom Filters for Multi-
Attribute Representation on Network Services,” IEEE Trans.
Parallel & Distributed Systems, vol. 21, no. 1, pp. 20-32, Jan. 2010.

[43] E. Porat, “An Optimal Bloom Filter Replacement Based on Matrix
Solving,” Computer Science-Theory and Applications, pp. 263-273,
2009.

[44] S. Lovett and E. Porat, “A Lower Bound for Dynamic Approx-
imate Membership Data Structures,” Proc. Foundations of Computer
Science (FOCS), pp. 797-804, 2010.

Yan Qiao received the BS degree in computer
science and Technology from Shanghai Jiao
Tong University, China in 2009. She is currently
working toward the PhD degree at the Uni-
versity of Florida (as of 2012) and her advisor is
Dr. Shigang Chen. Her research interests
include network measurement, algorithms,
and RFID protocols. She is a student member
of the IEEE.

102 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1, JANUARY 2014

Tao Li received the BS degree in computer
science from the University of Science and
Technology of China in 2007, and the PhD
degree from the University of Florida in 2012.
His advisor is Dr. Shigang Chen, and his
research interests include network traffic mea-
surement and RFID technologies.

Shigang Chen is a professor with the Depart-
ment of Computer and Information Science and
Engineering at the University of Florida. He
received the BS degree in computer science
from the University of Science and Technology
of China in 1993. He received the MS and PhD
degrees in computer science from the University
of Illinois at Urbana-Champaign in 1996 and
1999, respectively. After graduation, he was with
Cisco Systems for three years before joining the

University of Florida in 2002. He served on the technical advisory board
for Protego Networks in 2002-2003. His research interests include
computer networks, Internet security, wireless communications, and
distributed computing. He published more than 100 peer-reviewed
journal/conference papers. He received IEEE Communications Society
Best Tutorial Paper Award in 1999 and US National science Foundation
(NSF) CAREER Award in 2007. He holds 11 US patents. He is an
associate editor for IEEE/ACM Transactions on Networking, Elsevier
Journal of Computer Networks, and IEEE Transactions on Vehicular
Technology. He has been serving in the steering committee of IEEE
IWQoS since 2010. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

QIAO ET AL.: FAST BLOOM FILTERS AND THEIR GENERALIZATION 103

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

