
Enabling Non-repudiable Data Possession
Verification in Cloud Storage Systems

Zhen Mo, Yian Zhou, Shigang Chen
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, FL 32611

Chengzhong Xu
Department of Electrical and Computer Engineering

Wayne State University, Detroit, MI 48202

Abstract—After clients outsource their data to the cloud, they
will lose physical control of their data. Many schemes are proposed
for clients to verify the integrity of their data. This paper considers
a complementary problem: When a client claims that the server
has lost their data, how can we be sure that the client is correct
and honest about the loss? It is possible that the client’s meta
data is corrupted or the client is lying in order to blackmail the
server. In addition, most previous work relies on sequential indices.
However, the indices bring significant overhead to bind an index
to each block. We propose to replace sequential indices with much
flexible non-sequential coordinates. The binding of coordinates to
data blocks is performed through a Coordinate Merkle Hash Tree
(CMHT). Based on CMHT, we can improve both the average
and the worst-case update overhead by simplifying the updating
algorithm.

I. INTRODUCTION

While cloud storage has become a fast-growing market, it

also brings security issues. One major concern is about the

integrity of user data. By outsourcing data to an off-site storage

system and removing local copies, cloud users are relieved

from the burden of storage, but in the meantime lose physical

control of their data. Can we trust the cloud service providers?

Even if we assume that service providers will not deliberately

hinder clients’ correct access to their own data (after all this is

the providers’ lifeline business), involuntary security breaches

may occur. For example, a provider may lose user data due

to hardware failure, human mistakes or external intrusion. Not

having the data, the provider may attempt to hide such an

incident in order to save reputation. To address this issue, we

should give clients a means to challenge their provider for a

proof that it indeed possesses all client data.

Most existing solutions can be categorized along two research

threads: Proof of Retrievability (PoR) [1], [2], [3], [4] and

Provable Data Possession (PDP) [5], [6]. Both categories allow

users to verify if the cloud correctly possesses their data. That

is, by keeping some local meta data and verifying the proof

returned from the cloud, users can (probabilistically) determine

whether their data are intact. The above schemes have two

limitations: First, they either do not support dynamic data update

or do so with significant overhead, particularly in terms of

worst-case complexities. Second, they protect users from the

cloud’s misbehavior, but do not protect the cloud from the users’

misbehavior. This paper expands data integrity protection by

covering an important complementary problem: When a user

claims a data loss, how can we be sure that the user is correct

and honest about the loss? If a user tries to blackmail the cloud

by lying about data loss, how can the cloud prove its innocence?

We propose a data-possession verification scheme for cloud

storage that makes two major contributions:

• It has a new non-repudiation property that allows the cloud

and the users to supervise each other, so that users are able to

detect whether the cloud has lost their data and the cloud is able

to fend off the false claims of data loss from users. Comparing

with previous work, our scheme can protect the rights of both

sides.

• Another important concern in designing data-possession

verification schemes in cloud storage is the amount of overhead

they introduce into the system. We design a new Coordinate

Merkle Hash Tree (CMHT) to assist the verification procedure,

whose worst-case computation/communication overhead for

inserting/deleting/updating a data block is O(log n), comparing

with O(n) worst-case overhead in [7], [1]. Our simulation

results demonstrate that the average overhead of CMHT is also

much smaller than the best existing work.

II. RELATED WORK

Ateniese et al. [5] propose the first provable data possession

(PDP) model to check the integrity of outsourced data. But

their scheme does not support data update. A followup work

by Ateniese et al. [6] introduces a dynamic version of PDP.

Unfortunately, it cannot support all types of data update

operations.

Juels and Kaliski formalizes a scheme called Proofs of

Retrievability (PoR) to verify data integrity through “sentinel”

blocks [3], but it does not support data update, either. Shacham

et al. introduce an improved version of PoR called Compact

PoR [2]. But still their scheme is not designed to efficiently

support dynamic data updates.

Following the work of [2], Erway et al. [7] propose a

dynamic provable data possession scheme (DPDP). Using a

rank-based skiplist, their scheme supports dynamic data update.

However, maintaining the sequential order among nodes at the

bottom level of a skiplist makes updating (such as deletion)

complicated. Moreover, the skiplist is a probabilistic data

structure, whose worst-case overhead complexity is O(n) [8],

where n is the number of blocks.

Wang et al. [1] define a dynamic version of PoR based on the

BLS signature and a sequenced Merkle Hash Tree (MHT) [9].

After inserting or deleting data blocks, the tree will become

unbalanced. Particularly, if the client keeps appending blocks

at the end of the file, the height of the tree will increase

2014 IEEE International Conference on Cloud Computing

978-1-4799-5063-8/14 $31.00 © 2014 IEEE

DOI 10.1109/CLOUD.2014.40

232

2014 IEEE International Conference on Cloud Computing

978-1-4799-5063-8/14 $31.00 © 2014 IEEE

DOI 10.1109/CLOUD.2014.40

232

linearly. Our earlier work tries to rebalance the tree through

rotation [10]. But performing tree rotation remotely requires

significant information exchange between the client and the

server. Our experiments reveal that its average update overhead

is considerably higher than DPDP [7].

Zhang and Blanton take a different approach [11] that

requires the client to locally record information about update

history, using a balanced update tree whose size is O(M), where

M is the number of updates. Even though sequential indices

are explicitly bound with blocks through MACs, the update

tree allows the client to translate indexing information without

having to re-computing MACs. The above approach however

puts significant storage burden on the client. This paper will

follow the path of the prior work [5], [3], [7], [1] whose client

storage requirement is a constant. See table I for a summary of

the existing work.

III. MODELS AND OBJECTIVE

A. System Model

Our system model consists of two parties: (1) The clients
are individual users or companies. They have a large amount

of data to be stored, but do not want to maintain their own

storage systems. By outsourcing their data to the cloud and

deleting the local copies, they are freed from the burden of

storage management. (2) The cloud servers have a huge amount

of storage space and computing power. They offer resources to

clients on a pay-as-you-go manner.

B. Threat Model

Server: Because of management error, hardware failure or

external intrusion, the server may lose or corrupt the hosted

data. When this happens, the service provider may try to hide

the truth of data loss and pretend to possess the data.

Client: Some clients may falsely claim data loss in order

to damage the reputation of a cloud service provider (possibly

backed by competitors) or to blackmail the provider.

C. Data Possession Verification and Basic Approach

Consider an arbitrary client and an arbitrary file F that the

client outsources to the cloud. Suppose F consists of n data

blocks, {m1,m2, ...,mn}. Each block may contain a data key

(ID) to allow lookup and access of a specific block of interest

(for example, the record of a particularly employee indexed by

the employee ID in a payroll file). The blocks do not necessarily

have the same size. The problem is to design a data-possession

verification scheme that allows the client to (1) detect whether

some of the blocks have been lost or corrupted at the cloud

server, and (2) in the meantime make sure that the cloud can

fend off false claims of client data loss.

Much existing work focuses on addressing the first part of the

above problem based on a common basic approach [7], [1], [2]:

The client randomly selects a subset of k blocks and queries the

cloud for a proof, demonstrating that it possesses these blocks.

After receiving the proof, the client verifies the proof using the

meta data it has pre-computed and kept locally. If the received

proof does not match what’s expected from the meta data, the

client claims that the cloud has lost some of its data. It is known

that if the cloud loses k′ data blocks, the probability of being

detected after a single client query of k blocks is 1 − (n−k′
k)

(nk)

[5]. As an example, if 1% blocks are lost by the server, the

client can achieve 99% detection probability by querying 460

blocks. If the above approach is performed periodically for l
times, each time on an independent subset of 460 blocks, the

detection probability will become 1− (1− 99%)l = 1− 10−2l.

One problem is that the server may cheat: If one of the 460

blocks is lost, the server may simply substitute it with another

block that it has. To prevent such cheating, the prior work [7],

[1] has a worst-case overhead of O(n) through ranked lists or

Merkle tree, as we have mentioned earlier. We try to improve not

only the average performance but also the worst-case overhead

to O(log n) without expensive tree rotation.

Even though the presentation of our data-possession

verification scheme will be based on a file F , the notation F
can be generalized to be a single file, a part of a large file, a

set of files, a data stream, or a segment of a data stream. Using

key-based authenticated dictionaries, the proposed scheme for

a file can be extended for a file system consisting of many files

with a directory structure in a similar way as [7].

IV. COORDINATE MERKLE HASH TREE (CMHT)

We prepare data structures for our data-possession verification

scheme.

A. Tag and Signature

Block tag: For each block mi ∈ F , we define its tag as

ti = H(mi)||ci, where H is a collision-resistant hash function

and ci is a coordinate value assigned to mi, which will be

discussed shortly. A tag is a fixed length representation of a

data block (whose length may be arbitrarily set) in the data

structure of CMHT.

Homomorphic Signature: The client chooses N = pq where

p and q are two large primes and g is an element of high order

in Z
∗
N . The client keeps p and q, and sends N and g to the

server. The signature for block mi is defined as

σi = ti · gmi mod N,

where ti is the tag of mi. Note that it is possible for our scheme

to use other homomorphic signatures such as BLS [12]. We

denote the set of signatures as Φ = {σi}. These signatures

will be used for data-possession verification. In particular, it is

essential to include ti in the signature in order to ensure non-

repudiation.

B. Tree Construction

The client binds each block mi to a unique coordinate

ci through a coordinate Merkle hash tree. To do so, it

first constructs a complete binary tree with n leaves. For

convenience, we denote the n leaves from left to right as w1,

w2, ..., wn. Each leaf wi represents a data block mj and is

assigned a coordinate cj , which encodes the path from the root

to the leaf: Initialize cj to be nil. Traverse from the root to wi.

Append a bit ‘0’ to cj whenever taking a left-child link or a bit

‘1’ whenever taking a right-child link.

233233

Features
Different Schemes

Ateniese J&K [3] Shacham [2] Wang [1] Erway [7]
Dynamic updates NO NO NO YES YES
Public verification NO NO YES YES YES

Worst comm. complexity O(1) O(1) O(1) O(n) O(n)
Worst comp. complexity O(1) O(1) O(1) O(n) O(n)

Average comm. complexity O(1) O(1) O(1) O(logn) O(logn)
Average comp. complexity O(1) O(1) O(1) O(logn) O(logn)

TABLE I
SUMMARY OF EXISTING WORK

Fig. 1. A Coordinate Merkle Hash Tree (CMHT) constructed for 5 blocks

Fig. 2. The partial CMHT from the root to w3

The client arbitrarily decides which leaf node represents

which block. For example, in Figure 1, w2 represents m1, whose

tag t1 is shown inside the rectangle node of w2. The value c1
is 001 as the path from the root takes two left-child links and

then a right-child link before reaching w2. In the figure, we use

letter subscribes (such as wa, wb and wc) for internal nodes to

help distinguish them from leaves. We use wr for the root of

the tree.

Let wx be an arbitrary node in the tree. To support the Merkle

tree operations, we define its label, l(wx), as follows: If wx is

a leaf node representing a block mj , its label is simply the tag

tj of the block; if wx is an internal node whose two children

are wleft and wright, its label is computed by hashing the

concatenation of the labels of the children.

l(wx) =

{
H(l(wleft)||l(wright)) if wx is an internal node

tj if wx is a leaf node for block mj

Note that the CMHT is a complete binary tree and it does not

have any internal node with one child.

C. Meta Data

After the client constructs the CMHT, it sends the tree to the

cloud server, together with F and Φ. The server verifies the

labels on the tree. Let T be the current time stamp. We define

the meta data as follows:

M = {l(wr), T, n, σM},
which includes the root’s label l(wr), the time stamp T , the

total number n of blocks, and a digital signature [13], σM =

Signsks(Signskc(l(wr)||T ||n)), jointly signed by the client and

the server using their private keys, skc and sks. The meta data

is stored by the client and the server separately as Mc and Ms.

Both sides can use the other’s public key to verify the signature

on the meta data, which enforces authenticity and consistency

between the two sides. Compared to the meta data in [1], [2],

our meta data has the following two security properties.

Unforgeability: As the meta data includes the signature signed

by both the client and the server, neither the client nor the server

can forge the meta data.

Distinguishability: After each update of the tree, the client

and the server will agree on a new time stamp and update the

signature. As the time stamp T increases monotonically, if the

two sides have dispute over which meta data is current, it is easy

to resolve the dispute by authenticating the signatures with their

public keys and comparing the time stamps.

The client only stores the meta data Mc. Everything else,

including CMHT, F and Φ, is outsourced to the server. The

server needs to maintain an internal data structure to map

between data blocks and their corresponding nodes in the

CMHT. When the server stores the CMHT, it keeps a location

field in each leaf node, specifying where the corresponding data

block is stored. The server also keeps track of each data block’s

size and its coordinate in the CMHT, allowing flexible access

of the node in the tree for any given data block.

D. Use of Coordinates

Interestingly, the client does not need to keep track of the

exact coordinate of each data block because it is not used in

data access. The only purpose of introducing coordinates is to

help the client detect data loss, which is performed in a random-

sampling way: Since the client knows n from its meta data, it

knows the exact shape of the complete binary tree CMHT and

thus knows the set of valid coordinates. The client challenges

the server with a randomly selected subset of valid coordinates

{ci}, which corresponds to a subset of data blocks {mi} to be

verified, where mi is the block currently assigned with ci. We

stress that the whole purpose of designing CMHT is to make

sure that the server will return the correct tags {H(mi)||ci}
that match the client’s current meta data, more specifically, the

root’s label l(wr), using the standard Merkle tree operations

(which prevent the server from cheating). After that, the server

is required to produce a compact proof of its knowledge of

blocks {mi} that match the blocks’ fingerprint {H(mi)||ci}.
All current data blocks must be represented in the CMHT,

but their specific coordinates (e.g., locations in the tree) are not
important to data-possession verification because coordinates

234234

are randomly sampled and each block (its coordinate) has equal

chance to be sampled.

E. Partial CMHT

We define a partial CMHT to a leaf node wj at coordinate c
as the subset of nodes including wj and the siblings of the nodes

on the path from the root to wj . As an example, for the CMHT

in Figure 1, we show a partial tree to the leaf w3 at coordinate

01 in Figure 2, where the nodes in the partial tree are shaded.

Note that the shape of the partial tree is uniquely determined

by the coordinate c, which specifies the exact sequence of left

or right child links that the path from the root to the leaf wj

must take.

A partial CMHT to multiple leaf nodes at multiple

coordinates is the combination of the partial trees to each of

those leaf nodes.

V. NON-REPUDIATION POSSESSION VERIFICATION SCHEME

A. Interaction between Client and Server

Before we present the implementation of our scheme, we give

an overview of the interaction between the client and the server

in the form of thirteen basic algorithms.

• Gen(1k) −→ (pk, sk) is the algorithm in the digital

signature scheme Π defined by [13]. Gen is executed by both

the client and the server to produce a pair of public and private

keys. The client stores its private key skc and sends the public

key pkc to the server. The server stores its private key sks and

sends the public key pks to the client.

• Signsk(m) −→ σ is the algorithm in the digital signature

scheme Π. It takes the private key sk and a message m as input,

and outputs a signature σ on the message using the private key.

In our scheme, the client and the server apply this algorithm to

jointly produce the signature σM of the meta data.

• V erifySignpk(m,σ) −→ (TRUE,FALSE) is the

algorithm in the digital signature scheme Π. It takes as input

the message and the signature. It verifies the correctness of

the signature using the public key and outputs the result of the

verification. It is used by both the client and the server to verify

the authenticity of the meta data.

• Prepare(skc, F) −→ (Φ, CMHT, Signskc
(l(wr)||T ||n))

is an algorithm run by the client. It takes as input the client’s

private key skc and a data file F = {mi}. The output

contains (1) a set of block signatures, Φ = {σi}, as defined

in Section IV-A, (2) a CMHT constructed based on the block

tags {ti}, where ti = H(mi)||ci, and (3) a digital signature

on the meta data, Signskc
(l(wr)||T ||n). The client sends the

output and F to the server.

• GenMeta(sks, pkc, sigskc
(l(wr)||T ||n)) −→ Ms is

executed by the server. After verifying the correctness of

the signature Signskc
(l(wr)||T ||n) using pkc, the server

signs the signature using its private key sks: σM =
Signsks(Signskc(l(wr)||T ||n)). Then the server sends the meta

data Ms = {l(wr), T, n, σM} to the client.

• Contract(pkc, pks,Ms, l(wr)||T ||n) −→ Mc is an

algorithm run by the client. After verifying the correctness of

the signature σM using pks and pkc, the client deletes all local

copies of data and only stores a copy of meta dataMc, identical

to Ms.

• GenChallenge(n) −→ Rk is an algorithm executed by the

client. It takes n as input, and outputs a request Rk which

contains a set of k randomly-selected coordinates as well as k
randomly-selected constants. The client sends Rk to the server

and asks the server to return a proof that it has the blocks whose

coordinates are in Rk.

• GenProof(Rk, CMHT,F,Φ) −→ P is executed by the

server after receiving Rk. The input contains the request Rk,

the CMHT, the file F , and the block signatures Φ. The server

returns a proof P that allows the client whether it indeed has

the blocks in the Rk.

• V erifyProof(Rk, P,Mc) −→ (TRUE,FALSE) is an

algorithm executed by the client. After receiving the proof P ,

the client can verify if the server possesses the blocks in Rk

based on its meta data. It outputs TRUE if the proof P passes

the verification. Otherwise, it returns FALSE.

• Judge(pks, pkc, Ec, Es) −→ (ClientWin, ServerWin) is

an algorithm executed by a judge during litigation after the

client detects data loss but the server disputes that. It takes as

input the public keys of the server and the client, the evidence

from the client, Ec = {Rk,Mc}, and the evidence from the

server, Es = {P,Rk,Ms}. The requests Rk in both Ec and

Es must be the same. It decides whether the client wins or the

server wins.

• UpdateRequest() −→ RU is an algorithm executed by the

client. It outputs an update requestRU which contains an update

Order ∈ {Modify, Insert,Delete} and a block Location in

form of data key or byte offset. If the Order is Modify or

Insert, RU should contain a new block m∗ and its signature

σ∗.
• Update(F,Φ, CMHT,RU) −→ Pupdate is an algorithm

run by the server. After receiving the update request RU from

the client, the server takes F , Φ, and the CMHT as input. It

performs the update, outputs a proof Pupdate, and sends the

proof back to the client.

• V erifyUpdate(Pupdate) −→ (TRUE,FALSE) is

executed by the client. It takes the proof Pupdate as input

and outputs TRUE if the the proof passes the verification.

Otherwise, the client will return FALSE.

B. Our Scheme

Our scheme has three components. 1) Preprocessing: Before

outsourcing a file to the server, the client generates the

meta data that it keeps locally as well as the information

that it outsources to the server together with the file. 2)

Data-possession Verification: After outsourcing, the client will

periodically check the integrity of its remotely-stored data. 3)

Updating: When needed, the client sends the server requests to

update the file. After each update, the server will prove to the

client that the update is correctly executed.

1) Preprocessing: It includes four algorithms: Gen,

Prepare, GenMeta and Contract. Before outsourcing data

to the server, the client generates the set Φ of block signatures

and the CMHT. It agrees on a time stamp T with the server,

235235

and produces the meta data. Then, it outsources F , Φ, and the

CMHT to the server, only keeping the meta data locally.

2) Data-possession verification: It is performed periodically,

including four algorithms: GenChallenge, GenProof ,

V erifyProof and optionally Judge. The client queries the

server with a randomly-choosing subset of coordinates, and the

server generates a proof in response. After verifying the proof,

the client will return TRUE or FALSE.

• Generate a Request: Knowing the value of n, the client

knows the exact shape of the complete tree of CMHT. Hence, it

knows all valid coordinates for leaf nodes. The client randomly

selects k(<< n) leaf nodes, whose coordinates are denoted as

{ci1 , ci2 , ..., cik}, for data blocks {mi1 ,mi2 , ...,mik} that are

represented by the selected leaf nodes. For convenience, we

let Ω = {i1, i2, ..., ik}, and the set of selected coordinates is

{ci | i ∈ Ω}. The corresponding data blocks are {mi | i ∈ Ω}.
The client generates a request Rk = {(ci, vi) | i ∈ Ω}, where

vi is a constant. It sends Rk to the server.

• Generate a Proof: After receiving the request, the server

generates a proof P . It computes

μ =
∑
i∈Ω

vimi, σ =
∏
i∈Ω

σi
vi mod N,

where σi is the block signature of mi.

The proof P sent to the client consists of μ, σ, and a partial

CMHT, denoted as Γ, consisting of the leaf nodes wj with the

selected coordinates ci and the siblings of the nodes on the

paths from the root to wj . For each node in Γ, the server only

needs to send the label of the node. If a node is a leaf, the label

is simply the tag of the block represented by the leaf. Hence,

the tags ti of blocks with coordinates ci are carried by Γ.

• Verify: After receiving the proof P , the client will run the

algorithm V erifyProof to check the correctness of the proof.

The client first verifies the integrity of the partial CMHT by the

standard Merkle tree operations, which ensures the correctness

of the tags ti carried by the leaf nodes of Γ. The client then

checks whether the following equation holds:

σ = (
∏
i∈Ω

ti
vi) · gμ mod N. (1)

If it does, the client is sure that the server possesses the

queried blocks correctly, as we will prove later in our security

analysis. Otherwise, the server fails to prove it has all the data

intact.

• Judge: If the client detects data loss through V erifyProof
but the server disputes it, they may present their evidences

to a court where Judge is executed. After receiving the

evidence Ec = {Rk,Mc} from the client and the evidence

Es = {P,Ms} from the server, the judge first verifies the

correctness of the proof P through V erifyProof based on

information from the client. Then it checks the signatures in

Mc and Ms. If both signatures are correct, it compares the

time stamps to determine whose evidence is valid. Depending

on whose time stamp is more recent, the judge decides the

winner based on the algorithm in Fig. 3.

Input: pkc, pks, Ec = {Rk,Mc}, Mc = {lc(wr), Tc, nc, σMc},
Es = {P,Ms}, Ms = {ls(wr), Ts, ns, σMs}

1. if (V erifyProof(Rk, P,Mc) = TRUE)
2. return server as the winner;
3. else
4. if (V erifySignpks,pkc(σMc , lc(wr)||Tc||nc) = FALSE)
5. return server as the winner;
6. if (V erifySignpks,pkc(σMs , ls(wr)||Ts||ns) = FALSE)
7. return client as the winner;
8. else
9. if (σMc = σMs)
10. return client as the winner;
11. else if (Ts > Tc)
13. return server as the winner;
14. else
15. return client as the winner;

Fig. 3. Algorithm for Judge

3) Updating: If the client wants to update a block, it

first runs algorithm UpdateRequest() −→ RU to generate

an update request and send the request to the server. Upon

receiving the request, the server will update the block

and execute the algorithm Update(F,Φ, CMHT,RU) to

generate a proof Pupdate. The client will use the algorithm

V erifyUpdate(Pupdate) to verify the update. If the update is

correct, the client and the server will agree on a new meta data

using algorithms GenMeta and Contract.
• Modification: Suppose a client wants to change a data

block mi to m∗. It generates an update request RU =
{Modify, Location,m∗}, and sends it to the server, which

will replace the old data mi with the new one m∗. Let ci be

the coordinate of mi. The server constructs a partial CMHT

(denoted as Γ) to the leaf node wj at coordinate ci, updates

wj with a new label H(m∗)||ci, and recomputes the labels of

the nodes on the path from wj to the root. Let l(wr′) be the

new label of the root. After that, the server generates a proof

Pupdate = {Γ, ci, l(wr′)}, where Γ is the partial CMHT to wj

before modification.

To ensure that Γ has the correct leaf node wj for mi, the client

checks whether the received label of wj (before modification)

contains H(mi) and verifies the labels of the partial CMHT

using the Merkle tree operations. Then it performs what the

server does: replacing the label of wj with H(m∗)||ci and re-

computing the labels of nodes on the path to the root, whose

new label is denoted as lc(wr′′). The modification is successful

only if lc(wr′′) is equal to the received value of l(wr′). In this

case, the client will send the new homomorphic signature σ∗ to

the server and generate a new meta data with the server, where

σ∗ = H(m∗)||ci · gm∗ mod N .

• Insertion: Suppose a client wants to insert a new block

m∗. It will inform the server to insert m∗ into the file at a

specified offset location, insert a corresponding leaf node w∗

into the CMHT, and update the meta data. The location in the

CMHT where w∗ will be inserted is determined by finding

the coordinate c of the leftmost leaf node wi with minimum

level, where the level of a node is defined as the length of

the path from the node to the root. We call wi the split node;

its location is where we will insert w∗. See the left plot of

236236

Fig. 4. Insert a new leaf node w∗ into the CMHT, where w3 is the split node

Figure 4 for an example. Both the server and the client can

independently determine c. Recall that the client knows the

shape of the complete binary tree based on the value of n.

The client generates an update request RU =
{Insert, Location,m∗, σ∗}, and send it to the server.

After receiving the request, the server will insert the block into

the file, constructs a partial CMHT (denoted as Γ) to the split

node wi at coordinate c, and then inserts a leaf node w∗ as

follows: replacing wi with a new internal node wd, and making

wi and w∗ to be the left and right children of wd, respectively.

(See Figure 4 for a simple, illustrative example.) The server

adds m∗ and w∗ into its data structure that maps between data

blocks and their leaf nodes in the CMHT. Finally, it updates

the labels of all nodes on the path from w∗ to the root. Let

l(wr′) be the new label of the root.

The server generates a proof Pupdate = {Γ, l(wr′)} and

sends it to the client, where Γ is the partial CMHT to the split

node before insertion. For each node in the partial CMHT, the

server only needs to send its label. Recall that the client can

independently determine c and thus know the exact shape of

this partial CMHT. Using the labels of the nodes and following

the standard Merkle tree operations, the client can verify the

integrity of the partial CMHT. Next, the client re-performs the

same insertion as the server does, and re-computes the label of

the root l(wr′′) based on the partial CMHT after insertion. The

insertion is successful only if l(wr′) equals to l(wr′′). In this

case, the client will agree on a new time stamp T ′ with the

server, and together they will generate a new meta data with

the new root label l(wr′).

• Deletion: Suppose a client wants to delete a data block

mi. It sends an update request RU = {Delete, Location} to

the server, which deletes mi from the file, reconstructs a partial

CMHT (denoted as Γ) to a leaf node wj which represents mi

at a certain coordinate ci, and deletes wj using the following

algorithm: Let wk be wj’s sibling node. There are two cases.

(1) If wj or wk is the rightmost leaf node at the highest level,

the server deletes wj and replaces wj’s parent with wk. (2)

Otherwise, it finds the rightmost leaf node w′ at the highest

level, and expands Γ to that node. In this expanded partial

CMHT that covers both wi and w′, the server replaces the

parent of w′ with its sibling and then moves w′ to the location

of wj after removing wj from the tree. Hence, we call w′ the

replacement node. (See Figure 5 for a deletion example.) The

server re-computes the labels in the partial CMHT from leaf(s)

to the root. Let l(wr′) be the new root value.

Next, the server generates a proof Pupdate = {Γ, l(wr′)},
where Γ is the partial CMHT to wj (possibly also to w′) before

deletion. Knowing the shape of the CMHT based on the value

Fig. 5. Delete the leaf node w4 from the CMHT

of n, the client can independently determine the coordinate of

the replacement node for case (2) of the deletion algorithm.

After receiving the proof, the client first verifies whether the

label of wj contains H(mi), verifies if the coordinate of the

replacement node (if there is one in Γ) is correct, and then

verifies the integrity of Γ through the Merkle tree operations.

Finally, it performs the same deletion algorithm as the server

does. Let lc(wr′′) be the new label of the root that the client

computes. The deletion is successful only if lc(wr′) equals to

l(wr′′). In this case, the client will generates a new meta data

with the server.

C. Client Caching

To improve the client’s performance, we may cache the upper

levels of the tree on the client side. Due to the nature of a

complete binary tree structure, the upper levels account for a

very small fraction of the whole tree, but it can significantly

reduce the amount of computation and communication between

the client and the server. For a file of 106 data blocks, if we

cache the top 10 levels of CMHT at the client side (which

accounts for less than 0.1% of the whole CMHT tree), we can

reduce the communication overhead by half.

VI. SECURITY ANALYSIS

Theorem 1: Suppose factoring N = pq is polynomially

infeasible for two sufficiently large primes p and q. Given a

client request Rk, if the server does not possess one or more

data blocks whose coordinates belong to Rk (due to data loss

or corruption), the probability for a proof P produced by the

server in polynomial time to pass the client’s integrity check

V erifyProof(Rk, P,Mc) is negligibly small.

Proof: We prove the theorem by contradiction. Recall that

Rk = {(ci, vi) | i ∈ Ω}, and we use mi to denote the data block

that is represented by a leaf node in CMHT whose coordinate is

ci. Assume (1) the server does not possess one or more blocks in

{mi | i ∈ Ω}, and yet (2) it has a polynomial method to produce

a proof P = (μ, σ,Γ) that can pass the client’s integrity check

with non-negligible probability,

σ = (
∏
i∈Ω

ti
vi) · gμ mod N, (2)

where ti = H(mi)||ci. The integrity of the tags ti is protected

by the Merkle tree operations performed on Γ. Hence, unless the

server has a way to break the collision-resistant hash function

used by the CMHT, the correct tags for blocks in {mi | i ∈ Ω}
must be used in (2). This prevents the server from using other

blocks not in {mi | i ∈ Ω} and their tags to produce a proof

that would make (2) hold.

Recall that μ is supposed to be set to
∑

i∈Ω vimi. But because

the server does not have one or more of these blocks, it does

237237

not know the value of
∑

i∈Ω vimi. Hence, the probability for a

chosen value μ to equal
∑

i∈Ω vimi will be negligibly small if

the data blocks are sufficiently large. In other words, with high

probability,

μ �=
∑
i∈Ω

vimi. (3)

By definition, σ =
∏

i∈Ω σi
vi mod N , and σi = ti · gmi

mod N . Applying them to (2), we have∏
i∈Ω

(ti · gmi)vi = (
∏
i∈Ω

ti
vi) · gμ mod N

∏
i∈Ω

gvimi = gμ mod N

g
∑

i∈Ω vimi = gμ mod N.

That, together with (3), means we have found μ−∑
i∈Ω vimi �=

0 such that gμ−
∑

i∈Ω vimi = 1 mod N . Therefore, μ −∑
i∈Ω vimi can be used to factor N , following Miller’s Lemma

[14].
The above analysis shows that if the server has a polynomial

method to produce a proof that passes integrity check with

non-negligible probability, then that method can factor N
with non-negligible probability, which contradicts the theorem

assumption that factoring a large integer N is polynomially

infeasible.
Theorem 2: If the client makes false claim about data loss,

the server is able to provide non-repudiable evidence that the

client have lied.
Proof: Let the client request be Rk = {(ci, vi) | i ∈ Ω},

and we use mi to denote the data block that is represented

by a leaf node in CMHT whose coordinate is ci. If the server

possesses all blocks in {mi | i ∈ Ω}, it can correctly calculate

μ =
∑

i∈Ω vimi. The server can also correctly compute σ =∏
i∈Ω σi

vi mod N . Note that the correctness of the tags ti =
H(mi)||ci and the signatures σi = ti ·gmi mod N is verifiable

by the server based on mi. Hence, we have

σ =
∏
i∈Ω

σi
vi = (

∏
i∈Ω

ti
vi)·g

∑
i∈Ω vimi = (

∏
i∈Ω

ti
vi)·gμ mod N.

Moreover, the correctness of the CMHT is also completely

verifiable by the server through hashing. The server will not

sign the meta data at any time when it finds that the CMHT

fails the integrity check based on its meta data Ms. Hence, the

partial tree Γ produced by the server will also pass the Merkle-

tree operations.
In order for the client to make a successful false claim, it

has to make sure that Judge(pks, pkc, Ec, Es) does not execute

Line 2, 5 or 13 in Figure 3 because otherwise the server will be

declared as the winner. To avoid Line 2, the client must provide

a false meta data Mc, which is different from Ms, because the

latter (together with the proof P also provided by the server)

will pass the data-possession verification in Line 1 as we have

argued previously. Hence, Mc �=Ms.
To avoid Line 5, the client must provide Mc that was signed

by the server such that the signature verification in Line 5 can

pass.
The server has signed both Ms and Mc. Because the server

always keeps the latest meta data as Ms, Mc must have

been signed earlier with a smaller timestamp. In this case,

Line 13 will be executed, which still declares the server as

the winner. Therefore, the evidence provided by the server,

Es = {P,Rk,Ms}, will non-repudiably result in the judicator

declaring the server as the winner when the client makes false

claim, regardless of what evidence the client will provide.

VII. EVALUATION

We use experiments to evaluate the performance of our

scheme in terms of communication overhead and computational

overhead. The results show that our scheme performs much

better than the best existing work, DPDP [7].

Our experiments are performed on a desktop computer with

Intel Core i7-3770 @3.40 GHz, 8 GB RAM, and a 2TB hard

driver. Algorithms are implemented using C++. We implement

the block signature and the hash function using the crypto

library of OpenSSL version 1.0.1 [15].

The size of the file used in our experiments is 1GB. After

dividing the file into blocks, we measure the communication

and computational overhead incurred at the client side and

the server side for performing data-possession verification and

update operations. We evaluate the performance of our scheme

and compare it with DPDP under different block sizes. We let

the client cache the upper half of the levels in the CMHT or

in the skiplist of DPDP. The cached data is about 0.1% of the

tree (or skiplist). For CMHT, when the block size is 1024KB,

the total cached data is just 1.25KB; when the block size is

2KB, the total cashed data is 80KB, which is still very small

comparing with the file size of 1GB. For DPDP, the amount

of cached data is larger because each node in skiplist needs to

store an extra rank number.

Note that DPDP does not address false client claims as our

scheme does. This is a qualitative difference not included in the

quantitative comparison below.

A. Communication overhead

We first compare our scheme and DPDP in terms of

communication overhead for data-possession verification over a

request Rk for k data blocks. As proved in [5], detecting a 1%

file corruption with 99% confidence needs querying a constant

number of 460 blocks. So we set k = 460. The dominating

overhead is the proof sent from the server to the client. It is

not affected by the number of corrupted blocks at the server.

We measure both average overhead and maximum overhead.

The former is the average over 100 independent runs, each run

verifying 460 random selected blocks. The latter is the overhead

for the case where Rk contains 460 leaf nodes with highest

levels.

We present the experimental result in Figure 6. The x-

axis shows the block size in KB. The y-axis shows the

communication overhead in KB. The left plot presents the

average overhead, and the right plot presents the maximum

overhead. The overhead of our scheme is consistently less than

half of the overhead in DPDP. More specifically, our average

overhead is 31% ∼ 50% of DPDP’s in the left plot, and our

maximum overhead is 13% ∼ 46% of DPDP’s in the right

plot. When the block size is 2KB, our scheme reduces the

238238

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 200 400 600 800 1000

A
ve

ra
ge

 p
ro

of
 si

ze
 (K

B
)

Block size (KB)

DPDP
Our scheme

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 200 400 600 800 1000M
ax

im
um

 p
ro

of
 si

ze
 (K

B
)

Block size (KB)

DPDP
Our scheme

Fig. 6. Comparing our scheme (CMHT) and DPDP in terms of average or
maximum communication overhead for data-possession verification with client
cache

average (maximum) overhead by 69% (87%) when comparing

with DPDP.

Next, we measure the communication overhead between

the client and the server for updating a data block. It

includes all information sent by UpdateRequest, Update, and

V erifyUpdate. We perform query, insert, delete, and modify

once for every data block of the file to measure the average

communication overhead. For all operations, when we work on

one block, all other data blocks of the file are assumed to be

present in the server, and so does their corresponding leaf nodes

in CMHT. (Using deletion as an example, we will delete one

block at a time. Before we delete the next block, we put back

the previously deleted one.) For insertion and modification, we

do not account the transmission of the new block as overhead.

The experimental results are shown in Figure 7. The x-

axis is the block size in logarithmic scale. The y-axis is the

communication overhead in KB. The average overhead of our

scheme is significantly lower than that of DPDP — less than

one third of it when the block sizes are relatively small. The

gap for the maximum communication overhead is even larger,

which we omit due to space limitation.

 0
 0.2

 0.4
 0.6

 0.8
 1

2 22 23 24 25 26 27 28 29 210C
om

m
. o

ve
rh

ea
d

(K
B

)

Block size (KB)

Query a block

DPDP
Our scheme

 0
 0.2

 0.4
 0.6

 0.8
 1

2 22 23 24 25 26 27 28 29 210C
om

m
. o

ve
rh

ea
d

(K
B

)

Block size (KB)

Insert a block

DPDP
Our scheme

 0

 0.2
 0.4

 0.6
 0.8

 1

2 22 23 24 25 26 27 28 29 210C
om

m
. o

ve
rh

ea
d

(K
B

)

Block size (KB)

Modify a block

DPDP
Our scheme

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

2 22 23 24 25 26 27 28 29 210C
om

m
. o

ve
rh

ea
d

(K
B

)

Block size (KB)

Delete a block

DPDP
Our scheme

Fig. 7. Comparing our scheme and DPDP in terms of average communication
overhead for updating a block with client cache

B. Computational overhead

 5
 10
 15
 20
 25
 30
 35
 40

2 22 23 24 25 26 27 28 29 210

C
om

p.
 o

ve
rh

ea
d

(m
s)

Block size (KB)

Our scheme
DPDP

 20
 40
 60
 80

 100
 120
 140

2 22 23 24 25 26 27 28 29 210

C
om

p.
 o

ve
rh

ea
d

(m
s)

Block size (KB)

Our scheme
DPDP

Fig. 8. Average and maximum computational overheads by a client to verify
a proof with client cache

We measure the computational overhead for a client to verify

a proof returned from the server for data-possession verification,

including both the verification of (1) and the Merkle tree

operations on the partial CMHT tree. We make 100 randomly-

generated data possession verification requests and measure the

average and maximum computational overhead per request. The

results are presented in Figure 8. The x-axis shows the block

size in logarithmic scale. The y-axis shows the computational

overhead in second. Again, our scheme performs better in the

average case as well as the maximum case. More specifically,

our scheme reduces the average computational overhead by up

to 58.5% and the maximum computational overhead by up to

78.7%, when comparing with DPDP.

VIII. CONCLUSION

The development of cloud storage systems brings a number

of security problems. This paper proposes a non-repudiable data

possession verification scheme that protects both the client and

the server. The new scheme makes sure that the server cannot

cheat the client by lying about data loss, and the client cannot

untruthfully claim data loss. We also design a new data structure

named Coordinate Merkle Hash Tree (CMHT) to optimize the

communication and computational overhead. We compare our

scheme with previous work through experiments, and the result

shows that our scheme has better performance.

IX. ACKNOWLEDGEMENTS

This work was supported in part by Cisco Systems, the US

National Science Foundation under grant CNS-1115548, and

the National Natural Science Foundation of China under grant

61170277.

REFERENCES

[1] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling
Public Verifiability and Data Dynamics for Storage Security in Cloud
Computing,” Proc. of ESORICS, 2009.

[2] H. Shacham and B. Waters, “Compact Proofs of Retrievability,” Proc. of
ASIACRYPT, 2008.

[3] A. Juels and B. Kaliski Jr., “Pors: Proofs of Retrievability for Large Files,”
Proc. of ACM CCS, 2007.

[4] K. D Bowers, A. Juels, and A. Oprea, “Proofs of Retrievability: Theory
and Implementation,” Proc. of ACM CCSW, 2009.

[5] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable Data Possession at Untrusted Stores,” Proc. of
ACM CCS, 2007.

[6] G. Ateniese, R. Di Pietro, L. V Mancini, and G. Tsudik, “Scalable and
Efficient Provable Data Possession,” Proc. of SecureComm, 2008.

[7] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic
Provable Data Possession,” Proc. of ACM CCS, 2009.

[8] W. Pugh, “Skip lists: A Probabilistic Alternative to Balanced Trees,”
Communications of the ACM, 1990.

[9] R. Merkle, “A Digital Signature Based on a Conventional Encryption
Function,” Journal of CRYPTO, 1987.

[10] Z. Mo, Y. Zhou, and S. Chen, “A Dynamic Proof of Retrievability (PoR)
Scheme with O(logn) Complexity,” Proc. of IEEE ICC, 2012.

[11] M. Blanton Y. Zhang, “Efficient Dynamic Provable Possession of Remote
Data via Balanced Update Trees,” AsiaCCS, 2013.

[12] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the Weil
Pairing,” Proc. of ASIACRYPT, 2001.

[13] J. Katz and Y. Lindell, Introduction to Modern Cryptography, 2007.
[14] G. Miller, “Riemann’s Hypothesis and Tests for Primality,” Proc. of ACM

STOC, 1975.
[15] “Openssl 1.0.1,” http://www.openssl.org/, Feb. 2013.

239239

