
On Deletion of Outsourced Data in Cloud Computing

Zhen Mo, Qingjun Xiao, Yian Zhou, Shigang Chen
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, FL 32611 Email:{zmo, qxiao, yian, sgchen}@cise.ufl.edu

Abstract—Data security is a major concern in cloud computing.
After clients outsource their data to the cloud, will they lose control
of the data? Prior research has proposed various schemes for
clients to confirm the existence of their data on the cloud servers,
and the goal is to ensure data integrity. This paper investigates a
complementary problem: When clients delete data, how can they
be sure that the deleted data will never resurface in the future if the
clients do not perform the actual data removal themselves? How to
confirm the non-existence of their data when the data is not in their
possession? One obvious solution is to encrypt the outsourced data,
but this solution has a significant technical challenge because a huge
amount of key materials may have to be maintained if we allow fine-
grained deletion. In this paper, we explore the feasibility of relieving
clients from such a burden by outsourcing keys (after encryption)
to the cloud. We propose a novel multi-layered key structure, called
Recursively Encrypted Red-black Key tree (RERK), that ensures
no key materials will be leaked, yet the client is able to manipulate
keys by performing tree operations in collaboration with the servers.
We implement our solution on the Amazon EC2. The experimental
results show that our solution can efficiently support the deletion
of outsourced data in cloud computing.

I. INTRODUCTION

One major problem of cloud services is how to ensure the

security of the data stored on servers. This problem stems from

the fact that users lost physical control of their outsourced data,

while they cannot fully trust the cloud service providers. For

instance, the servers may be compromised, the providers may be

forced to hand over data to law enforcement, or their employees

who have access to the data may sell them under the table to

competitors. To address such concern, much research work has

been done to ensure the privacy and integrity of the outsourced

data [13], [19], [10], [23], [12], [3]. One of their goals is to verify

the existence of the data in its entirety on the cloud servers. This

paper investigates a complementary problem that is important

but has received much less attention: When users delete data in

the cloud, how can they be sure that the deleted data will never

resurface in the future if the actual data removal is preformed by

someone else? How to confirm the non-existence of their data

when the data is not in their possession?

In order for a client to render its data on a server inaccessible,

a straightforward approach is to encrypt the data before out-

sourcing. The client keeps the encryption key, while the server

keeps the encrypted data. To make sure that the data cannot

be recovered in the future, the client needs to securely delete

the key, while informing the server to delete the encrypted

data. Regarding this approach, there is an important question to

answer: How many keys to be used? If we use one key to encrypt
all data, whenever we delete one data item, we have to re-encrypt

all other data items with a new key because otherwise they would

also become inaccessible after the old key is deleted. If we assign
one key to each file [22], [18], there will be numerous keys if the

number of files is large. Moreover, even if we only want to delete

one block in a file, we will have to retrieve the entire encrypted

file from the server, decrypt it, delete that block, remove the old

key, choose a new key, and re-encrypt the entire file. Now, what

about the outsourced is a large database? It is better modeled as

a collection of data records, rather than files. We should be able

to efficiently delete any record in the database without having to

frequently re-encrypt other data that are not directly related to

the deletion. To do that, we may assign one key to each record.

Clearly, we should not keep that many keys at the client side

because it defeats, at least partially, the benefit of outsourcing

data to the cloud.

That translates the deletion of cloud data into a problem of

key management, and the challenge is how to do so efficiently.

The FADE system [22] introduces a trusted third party to help

managing the keys. The role of a trusted third party in FADE

is fundamentally different from that of a trusted third party in

PKI. The former has to store keys. It is involved in all operations

of data access, insertion and deletion. Hence, it is potentially a

performance bottleneck and a single point of failure. The latter

only signs the public keys, and it is not involved in actual data

access. Moreover, if we cannot fully trust a cloud system under

the concern that its servers may be compromised by external or

internal attackers, we will naturally have the same concern on

the servers of a trusted third party that holds our keys.

This paper explores the feasibility of permanently deleting

data without involving a third party between clients and servers

in a cloud system. We not only outsource the data but also

outsource key materials that are used to encrypt the data to

the cloud system. Yet we prevent any possibility for the cloud

service providers or anyone who compromises the cloud servers

to circumvent deletion or break data privacy. Our solution is

based on a novel multi-layered key structure, called Recursively

Encrypted Red-black Key tree (RERK), that ensures no key

materials will be leaked. The client only maintains a small

amount of metadata, and it is able to manipulate keys by

performing tree operations in collaboration with the servers.

A client may apply the RERK only to its security-sensitive

information, while using conventional storage schemes for other

bulk data. Modest addition of overhead by the RERK is justified

by the peace of mind that its property of security-assured

deletion can bring to the client. We have implemented our key

management system in Amazon Elastic Compute Cloud (EC2).

The evaluation results show that our system is efficient.

The rest of the paper is organized as follows: Section II

discusses the prior art. Section III defines the problem and

the adversary model. Section IV introduces a basic two party

solution for deletion. Section V presents our new RERK solution.

Section VII gives security analysis. Section VIII describes our

2014 IEEE International Conference on Cloud Computing

978-1-4799-5063-8/14 $31.00 © 2014 IEEE

DOI 10.1109/CLOUD.2014.54

344

2014 IEEE International Conference on Cloud Computing

978-1-4799-5063-8/14 $31.00 © 2014 IEEE

DOI 10.1109/CLOUD.2014.54

344

implementation and presents the experimental results. Section IX

draws the conclusion.

II. RELATED WORK

Perlman proposes the first approach for assured file deletion

in [16]. Together with the followup works [7], [15], [2], [1],

[21], they form the so-called Ephemerizer family of solutions.

Their goal is to ensure the privacy of past messages transferred

between two parties, such as emails or SMS. The main approach

is to encrypt each message with a data key, and the data keys

whose expiration times are the same will be encrypted by an

ephemeral public key. These public keys are managed by one or

more trusted third parties, named “the ephemerizers.” As the

ephemeral private keys are only known to the ephemerizers,

deleting one ephemeral private key will make the data keys

encrypted by the corresponding public key unrecoverable. All

Ephemerizer solutions require the trusted third parties to perform

the deletion operations; if the third parties are down, certain

operations will become unavailable. In addition, risks arise when

the third parties are internally or externally compromised.

Instead of relying on centralized third parties to manage the

keys, Geambasu et al. design a decentralized approach called

the Vanish [11] using a distributed hash table (DHT) [20]. The

Vanish is vulnerable to Sybil attacks [9]. It has been proved

by Wolchok et al. [24] that attackers can continuously crawl

the DHT and save each stored value before it expires. They can

efficiently recover keys for more than 99% of the messages. Zeng

et al. propose SafeVanish [25] and Castelluccia et al. design

EphPub [5] to fix the security problems of Vanish.

However, Vanish was originally designed to ensure the privacy

of past messages transferred between two parties. Some of its

properties make it unsuitable for a cloud system: First, it protects

data that only need to be available for hours or days, such as

emails, SMSs, trash bin files, etc. Data in a cloud system may

stay for months, years, or permanently. Second, Vanish assumes

users know approximately the lifetime of their data, but that may

not be the case in a cloud system. Third, Vanish is designed for

data whose privacy is more important than accessibility. That is,

users may not be able to access their data before the specified

timeout in Vanish, which will not be generally acceptable to

users of a cloud system. Finally, Vanish creates a Vanish Data

Object (V DO) for each data item. Because V DOs have to be

stored by clients and they cannot be outsourced to cloud servers,

it creates a significant storage burden for users.

Most related is Tang’s policy-based system named FADE [22],

which is designed to perform assured file deletion for a cloud

storage system. Their basic approach is to encrypt each file

with a data key, which is in turn encrypted by a control key.

There is a policy associated with each control key. The policies

are managed by one or multiple trusted third parties. When the

client deletes a file, it will revoke the corresponding policy and

instruct the third party to remove the key. The problem with

the FADE’s third party has been discussed in the introduction.

Arthur Rahumed et al. design a system called FadeVersion [18],

which supports both version control and assured deletion. But

it needs users to manage the keys by themselves through a key

escrow system. This may create a heavy burden on users because

the volume of the keys can be huge if fine-grained deletion is

required.

III. PRELIMINARIES

A. System Model

A cloud system consists of two parties: (1) The clients are

individual users or companies. They have a large amount of

data to be stored, but do not want to maintain their own storage

systems. By outsourcing their data to the cloud and deleting

the local copies, they are freed from the burden of storage

management. (2) The cloud servers have a huge amount of

storage space and computing power. They offer resources to

clients on a pay-as-you-go manner.

After putting data on cloud servers, the clients lost direct

control of their data. They may query and retrieve their data,

or change the data by sending requests to the servers. Upon

receiving the requests, the servers will perform operations for

insertion, modification, deletion, etc. Due to possible exter-

nal/internal compromise, the clients cannot fully trust the servers.

Hence, it is important for the cloud-system design to have built-

in mechanisms that guard the security of clients’ data against

any misbehavior of the servers.

B. Problem Statement

We investigate the problem of assured data deletion, which

guarantees that the data deleted from a cloud system will be

permanently inaccessible. Our goal is to protect the forward

privacy of deleted data. Suppose all data items are encrypted

before sending to the cloud. Assured deletion requires that the

encryption key of a data item must be unrecoverable once the

data is deleted. This requirement becomes challenging if we want

to outsource both data and keys that encrypt the data to the cloud,

so as to keep the clients as storage-light as possible. In addition,

we require a two-party design that does not involve any third

party in the operations between clients and servers.

C. Adversary Model and Security Definition

Consider a data item D that is deleted by a client at time T
from a cloud server. We adopt the worst-case adversary model

that gives attackers the following capabilities: (1) they may have

full control of the server at all time and (2) they may compromise

the client’s host after time T .

The first attacking capability reflects the possibility that the

server may be compromised before T . Hence, the attackers have

access to everything on the server, and they are able to control

the actions of the server in response to the client’s requests.

The second attacking capability reflects the possibility that

the client’s host may be compromised after T . In this case, the

attackers have access to everything stored on the client side,

including any key materials remained on the client.

We want to make sure that, under the above model, the

attackers are unable to figure out the deleted data. However, if

the attackers manage to compromise the client’s host before T ,

they will know the data, which has not been deleted yet.

345345

D. Security Definition

A solution for deleting data in a cloud system is secure if

for an arbitrary time T all data that have been deleted before

time T will be unrecoverable in polynomial time even when

the Probabilistic Polynomial Time (PPT) adversary is able to

gain full control of servers before T and full control of clients

after T , assuming (1) the existence of a collision-resistant hash

function such that the probability of finding two hash inputs that

produce the same output or finding a hash input to produce a

specific output in polynomial time is negligibly small, and (2) the

existence of a symmetric encryption scheme that is secure against

CPA (chosen plaintext attack) such that the probability of finding

the plaintext of a ciphertext in polynomial time without knowing

the encryption key is negligibly small, given the knowledge of

a polynomial number of plaintext/ciphertext pairs.

IV. STRAIGHTFORWARD TWO-PARTY SOLUTIONS

We show that simple two-party solutions do not work for

assured deletion. We use {m}k as the notation for encrypting

m with key k.

A. A Master Key based Solution

Suppose the client has n data items, denoted as M = {m1,

m2, ..., mn}. The client selects a master K. From the master key,

it derives a different key ki = PRF (K, i) for each data item,

where PRF is a pseudo random function with two inputs and i
is the index of item mi, for 1 ≤ i ≤ n. The client encrypts each

data item with its corresponding key, ci = {mih(mi)}ki , i ∈
[1, n], where h is a cryptographic hash function and h(mi) serves

the purpose of integrity protection. After encryption, the client

stores the master key and sends all ciphertext to the cloud.

The advantage of the solution is that the client only needs to

store one master key. But if the client wants to delete mi, it has

to delete ki, which means that it has to delete K. Otherwise,

if K is not deleted and it is revealed at a later time (possibly

by external attack that compromises the client’s computer), ki
can be recovered through PRF (K, i). So for each deletion, the

client has to choose a new K, re-generate ki and other data keys,

and finally re-encrypt all data items.

B. An Individual Key based Solution

To address the above problem, the client may adopt a different

solution. It generates a sequence of n independent keys, denoted

as K = {k1, k2, ..., kn}, where ki is used to encrypt mi, 1 ≤
i ≤ n. The client stores all encrypted data at the server side and

keeps the keys by itself.

If the client wants to delete the ith data item mi, it finds the

ith key ki, permanently deletes ki from local storage, and sends

the server a request to delete ci. Since the key ki is known only

by the client, deleting ki will make ci undecryptable.

The weakness of the above approach is that the client has to

manage all the keys, which is a burden if the system has a large

number of data items. See the introduction for more detailed

discussion.

Fig. 1. A Recursively Encrypted Key tree (RERK) constructed on 5 keys

V. DELETION BASED ON RECURSIVELY ENCRYPTED KEY

TREE

Before presenting our approach, we first introduce a novel

data structure called Recursively Encrypted Red-black Key tree
(RERK). The RERK design has the following four goals: (1)

Confidentiality — after the keys are outsourced to the cloud,

the RERK should be able to preserve the confidentiality of the

keys. (2) Integrity and correctness — if the keys are lost by the

cloud or a compromised cloud server does not send the client

the correct key material, the client should be able to detect it.

(3) Efficiency — the worst-case communication and computation

cost of RERK operations are logarithmically bounded. (4) Key
assured deletion — if the client wants to delete a key in RERK,

the key will be made unrecoverable.

Before we describe the deletion algorithm in RERK, we

must first explain how the RERK is constructed step by step

for confidentiality, integrity, and efficiency, which are critical

ingredients to set the stage for efficient assured deletion in a

cloud environment.

A. Confidentiality

The client first constructs a red-black tree with n leaves. We

denote the n leaves from left to right as w1, w2, ..., wn. Each

leaf wi represents a key ki in the sequence K. Recall that keys

in K are used to encrypt data items. We call them data keys.

We use letter subscribes (such as wa, wb and wc in Figure

1) to denote internal nodes, which helps distinguish them from

leaves. For each internal node, the client randomly chooses an

auxiliary key (used for encrypting other keys). Finally, the client

arbitrarily picks a metakey k∗. Notice that the red color will

show up as grey in black-n-white print in Figure 1 as well as

other figures.

We use wx to denote an arbitrary node in the tree, where x
may be a number or a letter. Let kx be the key of wx, which

may be a data key or an auxiliary key, depending on whether

wx is a leaf node or an internal node. Let px be the key of wx’s

parent node. We define a value called Encrypted Key (EK) for

node wx as follows:

EK(wx) =

{ {kx}k∗ if wx is the root

{kx}px
otherwise

(1)

It is the node’s key encrypted by its parent’s key, except for the

root, whose key is encrypted by the metakey. An example is

shown in Figure 1, where the EK value of each node is shown

inside the box representing that node.

346346

The client will then outsource the EK values of all nodes to

the cloud. After that, it securely deletes all data/auxiliary keys

and only keeps the metakey k∗.

All data/auxiliary keys are now stored in the cloud, but they

are recursively encrypted from the root of RERK to the leaves.

Only the client holds the metakey to decrypt them.

Key Lookup: When the client wants to look up for the ith

data key ki, it will send a lookup request to the cloud server that

handles this client. The server will reply with a node sequence

from the ith leaf node wi to the root and their siblings in RERK.

The siblings are used to ensure the integrity and correctness of

the node sequence which will be explained next. By decrypting

the keys recursively, the client can acquire the key ki.

B. Integrity and Correctness

By recursive encryption, we minimize the amount of metadata

that the client has to store, yet we are able to keep the confiden-

tiality of the outsourced keys. However, a critical problem needs

to be addressed before we can complete the tree construction:

The client has no idea whether the key information sent back

from the server is correct or not. Those EK values may have

been corrupted or tampered intentionally by an intruder. So the

client needs a mechanism to verify the integrity and correctness

of the key information from the server.

The Merkle hash tree [14] has been widely used for integrity

verification. However, we cannot directly combine the Merkle

tree with our RERK because the former cannot verify index

information: When a client wants to delete ki, the server may

send back the node sequence from another leaf node wj to the

root, which will pass the Merkle hash check and thus be able

to trick the client to delete kj instead. To address this problem,

we adopt the rank idea [10] — which was originally applied to

skip lists — into the Merkle tree construction.

Besides the EK value, each node wx in the RERK carries

two more values: a rank r(wx) and a tag t(wx). The rank is

defined as the number of leaf nodes in the subtree rooted at wx.

For example, in Figure 1, r(w1) is 1, r(wb) is 3, and r(wa) is

5. The tag of a leaf node wi is computed by hashing EK(wi)
and r(wi), where a collision resistant hash function should be

used. The tag of an internal node wx is computed by hashing

the concatenation of EK(wx), r(wx), and the tags of two child

nodes. More specifically, let wl and wr be the child nodes of

wx, and we define

t(wx) = h(EK(wx)||r(wx)||t (wx)), (2)

where || is the concatenation operator and

t (wx) =

{
NULL if w is a leaf node

h(t(wl)||t(wr)) otherwise
(3)

Clearly, the tags are designed to implement the Merkle tree for

integrity check of EK values and rank values. The ranks are

designed to ensure that correct key information is returned from

the server. The client outsources the ranks and tags of all nodes

in the RERK to the cloud, while storing only the tag of the root.

After the client receives the node sequence from wi to the

root as well as their siblings, it verifies the integrity of the EK
and rank information received from the server by re-computing

the tags of the node sequence from wi to the root. The client

compares the re-computed tag of the root with the stored value.

If they match, it confirms the integrity of the received EK and

rank information, i.e., the EK and rank values are not tampered

after being outsourced.

Next, from the rank values, the client can find out the number

of leaves before wi in the inorder traversal of RERK as follows:

Initialize a variable v to zero. Walk through the node sequence

(received from the server) backward from the root to wi. When

moving to a right child, add the rank of the left sibling to v.

When moving to a left child, do nothing. After the walk-through

is completed, v is the number of leaves before wi in the inorder

traversal of RERK. If v is equal to i−1, the client knows that the

received wi is the correct one; otherwise, the server has cheated.

We have shown above how to compute the index position of

any data key in K by using the ranks of the left sibling nodes

along the path from the root to the leaf in RERK. When we delete

a leaf wi, the ranks of the nodes on the path must be decreased

by one, which automatically decreases the index position of all

leaves after wi by one. Similarly, when we insert a leaf node, the

ranks of the nodes on the path to the root are increased by one,

which automatically increases the index position of all leaves

after the inserted one.

C. Efficiency

As the RERK is a red-black tree, two new values are defined

for each node wx in the RERK: a color col(wx) and a red-

children counter red(wx). The color col(wx) is 1 if wx is a red

node, and it is 0 if wx is a black node. The counter red(wx) is

0 (1 or 2) if wx has no (one or two) red children. These values

are set by the client during the tree operations but stored at the

server. In order to ensure their integrity, they must be included

in the tag computation together with the EK and rank values.

We give the new tag definition as follows:

t(wx) = h(EK(wx)||r(wx)||t (wx)||col(wx)||red(wx)). (4)

When nodes are inserted or deleted, RERK may become

imbalanced. Then it will need rotation and color changing to

re-balance the tree before the client re-computes and sends back

the new EK values. The operations of red-black tree are highly

efficient. It is easy to prove that re-balancing will only involve

O(log n) nodes, and we will discuss the overhead issue after the

key operations below.

Depend on different application scenarios, we can choose dif-

ferent self-balancing data structure to store EK values. Therefore,

the red-black tree can be replaced by an AVL tree or a splay tree.

In this paper, we assume that clients require frequent insertion

and deletion. So according to the performance comparison in

[17], we choose the red-black tree.

D. Key Operations

We present the deletion algorithm first. The confidentiality

and integrity protection mechanisms embedded in RERK (Sec-

tion V-A-V-B) ensure the correctness of this algorithm, as our

security analysis will show. The red-black tree embedded in

RERK (Section V-C) ensures its logarithmic worst-case overhead

bound.

Key Deletion: Suppose the client wants to delete a data key

ki. It performs the following operations:

347347

Fig. 2. Example for key deletion in the RERK. Double-boxes in the left top
represent the node sequence from the leaf node to the root, and other nodes are
their siblings.

1) The client looks up for the ith key and the server returns

the node sequence in RERK from the ith leaf node wi to

the root and their siblings. The client constructs a partial

RERK using these nodes and verifies their integrity and

correctness through the embedded Merkle tree with rank

information. After that, using the metakey k∗, it recursively

decrypts all keys in the partial RERK.

2) The client removes the node wi and replaces wi’s parent

with its sibling node wj . In the resulting partial RERK, it

generates a new key for each node on the path from wj’s

parent to the root. The tree will become imbalanced if a

black node is removed (in our case, if wi’s parent is black),

which triggers the standard algorithm for red-black tree re-

balancing [6] in cooperation with the server. (Because the

client only has a partial RERK, it may need to lookup

another leaf node and retrieve O(log n) additional nodes

from the server.) It is easy to prove that the red-black tree

deletion only involves O(log n) nodes.

3) The client replaces the old metakey k∗ with a new metakey

k′∗. It re-computes the new EK values in its partial RERK

using the new keys.

4) The client sends new values in its partial RERK back to

the server and only keeps the new metakey k′∗.

An example is given in Figure 2, where k4 (thus data item

m4) is deleted from the RERK in Figure 1. The left-top plot in

Figure 2 is the partial RERK sent from the server to the client.

After replacing wd with w5 and generating a new key for wa, the

RERK becomes imbalanced, as illustrated by the right-top plot.

Following the standard re-balancing algorithm, the client needs

to look up the key k3 and fetch additional nodes wc and w3, as

illustrated by the right-bottom plot. The result of re-balancing is

shown by the left-bottom plot.

With k∗ being permanently deleted by the client, even if the

cloud server does not remove the EK value for ki, there is no

way for anyone to decrypt it for ki. With ki being unrecoverable,

the corresponding data item mi becomes unrecoverable even if

the server does not remove the ciphertext ci from its storage.

Key Insertion: While the RERK is designed to support

Fig. 3. Example for key insertion in the RERK

assured deletion, we also need the insertion algorithm for

completeness. Suppose the client wants to insert a data key k′i
at the ith position. It performs the following operations:

1) The client looks up for the ith key and the server returns

the node sequence in RERK from the ith leaf node wi to

the root and their siblings. The client constructs a partial

RERK using these nodes and verifies their integrity and

correctness. After that, using the metakey k∗, it recursively

decrypts all keys in the partial RERK.

2) The client creates a new leaf node w′
i for k′i. Then it

replaces the node wi with a new internal node wnew whose

auxiliary key knew is randomly selected. It assigns w′
i and

wi as the left and the right children of wnew. If the new

node’s parent (i.e., wi’s previous parent) is a red node, the

tree will become imbalanced, which triggers the standard

algorithm for red-black tree re-balancing [6]. Different

from deletion, the partial RERK already contains all nodes

for re-balancing.

3) The client re-computes the new EK values in its partial

RERK using the new keys.

4) The client sends new values in its partial RERK back to

the server.

An example is given in Figure 3, where a new key k′2 is

inserted at the 2nd position of the RERK in Figure 1. The left-

top plot in Figure 2 is the partial RERK sent from the server

to the client. After inserting the new internal node wnew, the

partial RERK becomes imbalanced, as illustrated by the right-

top plot. Based on the standard re-balancing algorithm, the client

re-balance the partial RERK and the result of re-balancing is

shown by the bottom plot.

VI. ASSURED DATA DELETION SCHEME

We give the set of algorithms that together form our assured

data deletion scheme.

• KeyGen(1s) −→ k is an algorithm executed by the client. It

takes a security parameter 1s as input and returns a symmetric

348348

key k. Note that k is randomly picked from the key space, so if

the client runs this algorithm n times to generate n keys, these

keys should be independent from each other.
• Prepare(k∗, D) −→ (RERK, tR, C) is an algorithm run

by the client. It takes as input the metakey k∗ and the user

database D composed of a sequence of data items {mi}, where

i from 1 to n. The client first generates a sequence of keys,

k1, k2, ..., kn using algorithm KeyGen, to encrypt data items

m1 through mn into c1 through cn. Then the client constructs a

RERK RERK based on the keys. Finally, the client outsources

the RERK RERK and all ciphtertexts, C = {ci} to the server

and only keeps the metakey k∗ and the tag of the root of RERK

tR.
• Lookup −→ L is an algorithm run by the client. As input, it

takes nothing as input and returns a lookup request L = {i} to

the server, where i is the index number of a data item.
• GenProof(L) −→ (ci, Pi) is an algorithm run by the

server. Upon receiving the lookup request, the server will first

find the ciphertext ci of the ith data item. Then it gener-

ates a proof which contains a sequence of nodes from the

ith leaf node to the root and their siblings. Each node wx

in the sequence can be represented by a message Mx =
{EK(kx), r(wx), red(wx), t (wx), col(wx)}.
• V erify(Pi, k∗, tR) −→ ({true, ki,RERKp}, false) is an

algorithm executed by the client. It takes the proof Pi, the

metakey k∗ and the tag of the root as input. The client will

first verifies the integrity and correctness of the proof using

the algorithm described in Section V-B. If the proof passes the

verification, the client can construct a partial RERK RERKp,

and extract the data key ki by decrypting the EK values

recursively. Otherwise, it will return false.
• PrepareUpdate(i, info) −→ RU is an algorithm run

by the client. The input contains the index of the block

to be updated and the update related information info =
{(insert,m′

i), delete} which specifies what kind of update to

perform. If the update action is insertion, then info will include

the new data item m′
i. The output contains the index of the block

and the related information.
• GenUpdateProof(RU) −→ PU is an algorithm executed by

the server. The server takes the update request RU as input and

outputs an update proof PU . If the update request is insertion,

then PU = Pi, where Pi is the proof of the ith leaf node. If the

update request is deletion, as we mentioned in Section V-D, PU

may contain two proofs: Pi and Pj , where Pi is the proof of the

ith leaf node and Pj is the proof of another leaf node.
• V erifyUpdateProof(PU , k∗, tR) −→ ({true,RERKp},

false) is an algorithm run by the client. It verifies the update

proof using the algorithm described in Section V-B. If the

algorithm accepts, the client will construct a partial RERK

RERKp based on the proof. Otherwise, it will return false. Note

that if the update action is deletion, PU may contain two proofs.

So the partial RERK RERKp will include two sequences of

nodes.
• Update(RERKp, info) −→ (RERK′

p, k
′
∗, t

′
R, c

′
i) is an

algorithm executed by the client. It takes the partial RERK

RERKp and the update related information info as input. After

performing the update on the partial RERK RERKp using

algorithm described in Section V-D, the client will return the

new partial RERK RERK′
p to the server, delete local temporary

files, and only store the new metakey k′∗ and the new tag of root

t′R. If the update is insertion, the client will generate a new key

k′i to encrypt the new data item, c′i = {m′
i}k′

i
and return the

ciphertext c′i to the server.

VII. SECURITY ANALYSIS

Theorem 1: If there exist (1) a collision-resistant hash func-

tion which is used in the RERK construction and (2) an

IND-CPA secure encryption scheme which is used to encrypt

the outsourced data items, then the proposed assured deletion

scheme is secure, i.e., for an arbitrary time T all data that have

been deleted before time T will be unrecoverable in polynomial

time even when the adversary is able to gain full control of

servers before T and full control of clients after T .

Proof: We prove the theorem in two steps. First, we

show that outsourcing the RERK tree is as good as keeping

it locally because the probability for a compromised server to

return an forged invalid proof (containing a required partial

RERK tree) and successfully pass the verification algorithm

V erifyUpdateProof is negligibly small. Second, we show that

if the adversary can recover the deleted text, it can break the

encryption scheme used in the assured deletion scheme.

The partial RERK tree returned from a compromised server

includes the node sequence from the root to the leaf wi, as well

as their sibling nodes. Refer to (4) and (3). Because the above

Merkle tree construction is adopted to create parent-child hashing

dependency by including the tags of child nodes in the hash

input of any parent node, all nodal information must be truthful

— the difficulty for the server to provide false nodal information

without being detected is the same as breaking the security

of the hash function used in Merkle tree. In other words, the

probability for an invalid proof to pass the verification algorithm

V erifyUpdateProof is no greater than the probability of

finding different input to produce the given hash output in the

required partial RERK tree, which is negligibly small when a

collision-resistent hash function is used. Moreover, as proved in

[10], the rank value can uniquely determine the index of each

key. Hence, the compromised server cannot cheat the client by

returning another key in CMHT to pass the verification.

Next, given that the client has access to valid RERK, we show

that a deleted data mi will be unrecoverable by the adversary.

Let ki be the data key of mi and ci be the ciphertext. We

consider three time phases. The first phase is from the creation

of the data item to the beginning of the deletion. During this

phase, the compromised server has the complete information

about RERK. To know the data key, the compromised server

needs to know the auxiliary key of the parent node in RERK.

Recursively applying the same token, the compromised server

needs to know the metakey in order to decrypt the root node of

RERK. The metakey is however only known to the client (that

is not compromised yet). Hence, the difficulty of acquiring ki
is the same as the difficulty of breaking the IND-CPA secure

encryption scheme that RERK uses to recursively encrypt the

auxiliary keys and the data items.

The second phase is from the beginning of the deletion to

the accomplishment of deletion. We argue that if the client

successfully deletes one key in RERK, the compromised server

349349

cannot recover the key even if it acquires the newest metakey

after deletion. According to the deletion algorithm described

in Section V-D, the client first deletes the key, then replaces

all auxiliary keys of nodes on the path from the parent of the

deleted key to the root and the metakey. Next it re-balance the

partial RERK tree and encrypt all keys in the partial RERK

tree transitively by using a new metakey k′∗, and permanently

delete the old metakey. Here, the important point is that the
key sequence from the deleted key to the old metakey is not
in the reconstructed partial RERK, and therefore ki is never
transitively encrypted by the new metakey k′∗ through a sequence
of intermediate auxiliary keys. After the partial RERK is sent

back to the server, since the partial tree does not carry any

information about ki, and all keys are randomly generated, no

new information about ki is revealed to the compromised server.

The third phase starts after the client has finished the deletion.

The compromised server acquires k′∗, but not the original meta

k∗, which has already been permanently deleted by the client.

The compromised server only has the original ciphertexts of ki
transitively encrypted by k∗. The knowledge of k′∗, which has

no relation with k∗, does not provide any help in decryption.

Even the auxiliary keys used in the transitive encryption of ki
are totally replaced when k′∗ is introduced in the second phase.

Hence, if all keys in RERK are randomly generated, k′∗ is useless

to the decryption of any node in the sequence from the root to

wi and wj in the original RERK before deletion.

Now suppose the adversary has a way to recover the deleted

data item mi with non-negligible probability. Based on the

above analysis, A has no knowledge about the data key ki that

encrypts mi, nor does it know the corresponding meta key k∗
or any auxiliary key that leads to ki. It only has the knowledge

of ciphertext ci. This means that the adversary can break the

encryption scheme, which is against the theorem assumption that

the adopted encryption scheme is IND-CPA secure.

VIII. EVALUATION

We implement a cloud storage server on Amazon Elastic

Compute Cloud (Amazon EC2) system. By purchasing an

“instance” from Amazon EC2, we can completely control the

remote resources and run the server programs on the instance.

We evaluate our solution in terms of communication and

computational overhead. When a client performs deletion, lookup

and insertion on a key, the server will send back O(log n) nodes

in the RERK, where n is the total number of data items. Hence,

the communication overhead is O(log n). It takes a constant time

for the client to process each node. In addition, the red-black

tree rotation has a complexity of O(log n). Hence, the overall

computation overhead is also O(log n).

A. Experimental Setting

Our experiments are performed between two parties: the client

and the server. We implement cloud storage servers on Amazon

EC2. Each server instance has the following parameters: 2

virtual cores, each with 2 Compute Units; 7.5 GB RAM; 850

GB instance storage; Microsoft Windows Server 2008 R2 Base

64-bit. Note that although Amazon S3 provides cloud storage

services, developers cannot directly run programs on Amazon

S3. We use an ordinary desktop computer in our lab for the

client, with the following configuration: Intel Core i7-3770 3.40

GHz, 8 GB RAM, 1 TB driver, and Windows 8 Professional

64-bit.

We use Secure Hash Algorithm-1 (SHA-1) [4] in the RERK.

SHA-1 produces a 160-bit message digest. We choose Advanced

Encryption Standard (AES) [8] to encrypt each data item and

each key. AES has a key size of 128, 192, or 256 bits. In our

implementation, we use 128-bit keys.

B. Communication Overhead

We measure the communication overhead between the client

and the server through experiments, and the results are shown

in Figure 4. The x-axis shows the total number of data items

stored in the cloud in logarithmic scale. The y-axis shows the

average communication overhead in KB. To measure the average

communication overhead of deleting a data key, we tries to delete

each data key in the RERK and count the number of bytes in the

client message and the number of bytes in the server messages

that carry the nodes involved. Similarly, we perform insertion and

lookup on each data key and measure the average communication

overhead among all keys.

 0

 1

 2

 3

 4

 5

 6

101 102 103 104 105 106 107

A
ve

ra
ge

 c
om

m
. o

ve
rh

ea
d(

K
B

)

Total number of data blocks

Delete a data key
Insert a data key

Look up a data key

Fig. 4. Average Communication overhead between the client and the server.
The x-axis shows the total number of data items in logarithmic scale. The y-axis
shows the average communication overhead in KB.

Clearly, all measured communication overheads increase log-

arithmically with respect to the number of data items, demon-

strating good scalability. For a data set of 106 items, the

communication overhead can fit in a few IP packets of 1500

bytes each in most cases.

C. Computational Overhead

Next, we measure the computational overhead of the server

and the client separately. On the server side, the main com-

putational overhead is to construct server messages and send

relevant nodes in the RERK to the client in these messages.

The set of nodes to be sent only depends on the data key,

regardless of what operation it is. On the client side, upon

receiving the nodes from the server, it computes tags to verify

the integrity of the information carried by the nodes, and uses

ranks to determine if correct nodes are received. After that, the

client performs the intended operation, whether it is deletion,

insertion or lookup. It performs tree rotation if needed. Finally,

it sends new information back to server. The client’s computation

overhead varies for different operations. Hence, we measure them

separately.

350350

1) Client Computation: Figure 5 shows the computational

overhead of the client. We perform the experiments on the

desktop computer mentioned above. The most costly operation

is deletion, which is followed by modification, then insertion,

and finally lookup (query). The difference is due to (1) re-

computation of nodal information such as EK and tag and (2)

re-balancing of the tree. Deletion requires significant overhead

on both, whereas lookup requires neither. All overheads scale

logarithmically with respect to the number of data items. When

there are 107 items, it takes the client about 1.2ms to delete a

key.

 0

 0.5

 1

 1.5

 2

101 102 103 104 105 106 107

A
ve

ra
ge

 c
om

p.
 o

ve
rh

ea
d

(m
s)

Total number of data blocks

Delete a data key
Insert a data key

Look up a data key

Fig. 5. Client computational overhead. The x-axis shows the number of data
items in logarithmic scale. The y-axis shows the average computational time of
the client.

2) Server Computation: We perform lookups on all keys.

Figure 6 shows the average time it takes the server to process

each lookup; the time for the server to handle other operations

(deletion / insertion) is the same. Clearly, the computational

overhead of the server increases logarithmically with respect to

the total number of data items. When the number of data items

is 107, it takes about 0.4ms to process a request. Our EC2 server

has limited capacity. In real world, the cloud servers are expected

to be much more powerful and should be able to process requests

at much higher rates.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

101 102 103 104 105 106 107

C
om

pu
ta

tio
na

l t
im

e
(m

s)

Total number of data blocks

Fig. 6. Server computational overhead. The x-axis shows the number of data
items in logarithmic scale. The y-axis represents the average time for the server
to process a client request.

IX. CONCLUSION

The development of cloud computing brings a number of

security problems. This paper presents a two-party solution for

protecting the privacy of deleted data that has been outsourced

by the clients to the cloud. The main challenges in addressing

this problem are how to avoid burdening the clients with key

management and how to make key outsourcing work in a two-

party model. That is, we want to delegate the key management

job to the cloud while preserving the confidentiality, integrity

and correctness of the keys. We design a new data structure

named Recursively Encrypted Red-black Key tree (RERK) to

fulfill these design goals. We implement our solution on the

Amazon EC2 system, and the evaluation results show that the

proposed RERK is viable even with limited resources deployed

in the experiments.

X. ACKNOWLEDGEMENTS

This work was supported in part by Cisco Systems, the US

National Science Foundation under grant CNS-1115548, and

the National Natural Science Foundation of China under grant

61170277.

REFERENCES

[1] C. Arora and M. Turuani. Adding Integrity to the Ephemerizer’s Protocol.
Proc. of AVoCS, 2006.

[2] C. Arora and M. Turuani. Validating Integrity for the Ephemerizers Protocol
with CL-Atse. Formal to Practical Security, 2009.

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song. Provable Data Possession at Untrusted Stores. Proc. of CCS,
2007.

[4] J. Burrows. Secure Hash Standard. Technical report, DTIC Document,
1995.

[5] C. Castelluccia, E. D. Cristofaro, A. Francillon, and M. Kaafar. EphPub:
Toward Robust Ephemeral Publishing. Proc. of ICNP, 2011.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. The MIT Press, ISBN 0-262-03141-8, McGraw-Hill, ISBN
0-07-013143-0, 1986.

[7] B. Crispo, M. Dashti, S. Nair, and A. Tanenbaum. A Hybrid PKI-IBC
Based Ephemerizer System. Proc. of EuroPKI, 2009.

[8] J. Daemen and V. Rijmen. The Design of Rijndael: AES–the Advanced
Encryption Standard. Springer-Verlag, ISBN 3-540-42580-2, New York,
2002.

[9] J. Douceur. The Sybil Attack. Proc. of IPTPS, 2002.
[10] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia. Dynamic Provable

Data Possession. Proc. of CCS, 2009.
[11] R. Geambasu, T. Kohno, A. Levy, and H. Levy. Vanish: Increasing Data

Privacy with Self-destructing Data. Proc. of USENIX, 2009.
[12] A. Juels and B. K. Jr. PORs: Proofs of Retrievability for Large Files. Proc.

of CCS, 2007.
[13] S. Kamara and K. Lauter. Cryptographic Cloud Cstorage. Proc. of FC,

2010.
[14] R. Merkle. A digital signature based on a conventional encryption function.

Advances in Cryptology (CRYPTO), 1988.
[15] R. Perlman. File System Design with Assured Delete. Proc. of SISW, 2005.
[16] R. Perlman. The Ephemerizer: Making Data Disappear. Information System

Security, 2005.
[17] B. Pfaff. Performance Analysis of BSTs in System Software. Proc. of

SIGMETRICS, 2004.
[18] A. Rahumed, H. Chen, Y. Tang, P. Lee, and J. Lui. A Secure Cloud Backup

System with Assured Deletion and Version Control. Proc. of ICPPW, 2011.
[19] H. Shacham and B. Waters. Compact Proofs of Retrievability. Proc. of

ASIACRYPT, 2008.
[20] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord:

A scalable Peer-to-peer Lookup Service for Internet Applications. Proc. of
SIGCOMM, 2001.

[21] Q. Tang. From Ephemerizer to Timed-Ephemerizer: Achieve Assured
Lifecycle Enforcement for Sensitive Data. Technical Report TR-CTIT-10-
01, 2010.

[22] Y. Tang, P. Lee, J. Lui, and R. Perlman. FADE: Secure Overlay Cloud
Storage with File Assured Deletion. Proc. of SecureComm, 2010.

[23] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou. Enabling Public Verifiability
and Data Dynamics for Storage Security in Cloud Computing. Proc. of
ESORICS, 2009.

[24] S. Wolchok, O. Hofmann, N. Heninger, E. Felten, J. Halderman, C. Ross-
bach, B. Waters, and E. Witchel. Defeating Vanish with Low-cost Sybil
Attacks against Large DHTs. Proc. of NDSS, 2010.

[25] L. Zeng, Z. Shi, S. Xu, and D. Feng. SafeVanish: An Improved Data
Self-Destruction for Protecting Data Privacy. Proc. of CloudCom, 2010.

351351

