
DAWN: A Novel Strategy for Detecting ASCII
Worms in Networks

Parbati Kumar Manna Sanjay Ranka Shigang Chen
Department of Computer and Information Science and Engineering, University of Florida

{pkmanna, ranka, sgchen}@cise.ufl.edu

Abstract—While a considerable amount of research has been
done for detecting the binary worms exploiting the vulnerability
of buffer overflow, very little effort has been spent in detecting
worms that consist of only text, i.e., printable ASCII characters.
We show that the existing worm detectors often either do not
examine the ASCII stream or are not well suited to efficiently
detect worms in the ASCII stream due to the structural properties
of the ASCII payload. In this paper, we analyze the potentials
and constraints of the ASCII worms vis-a-vis their binary
counterpart, and devise a detection technique that would exploit
those limitations. We introduce DAWN, a novel ASCII worm
detection strategy that is fast, easily deployable, and has very
little overhead. Unlike many signature–based detection methods,
DAWN is completely signature-free and therefore capable of
detecting zero-day outbreak of ASCII worms.

I. INTRODUCTION

Computer worms interest the security analysts immensely
due to their ability to infect millions of computers in a very
short period of time. Among various worms, ASCII worms
(consisting of text, i.e. entirely printable ASCII characters) are
very appealing since they can sneak in places where a worm is
not expected to be able to get in under normal circumstances.
For example, in many cases the server expects certain kind of
traffic to be strictly text, as is the case with many important
applications working with HTTP and XML. To ensure that
only the text characters get in at times when text is expected
(like the email traffic or the URL in a HTTP request), these
servers usually employ ASCII filters [1] which drops or
mangles any binary input. Since worms are presumed to be
binary, the act of filtering alone (without subjecting the text
stream for malware detection) gives a false sense of security
against worms. Even when the ASCII stream does undergo
detection for malware, there are cases where it can still be
bypassed internally by the detector itself (e.g. SigFree [2], in
order to avoid significant performance degradation). Thus, we
observe that there are cases where the ASCII traffic effectively
does not undergo any kind of worm detection. Therefore, if
there is a way to have worms that are completely ASCII,
these servers will be immediately vulnerable to worm attacks.
Rix [3], and later Eller [1] showed a few years ago that it is
indeed possible to convert any binary worm into ASCII, and
if required, even alphanumeric. This implies that the ASCII
traffic does pose a real threat, and bypassing it altogether from
the worm detection mechanism may not be a good idea.

Next we demonstrate that even when the ASCII traffic
is not bypassed, payload-based detection mechanisms for

binary worms may still not be adequately suited for efficiently
detecting ASCII worms. We specifically consider two such
schemes: 1) that detects by disassembling the input into in-
structions and then checking for the validity and executability
of instruction sequences (e.g. APE [4]), and 2) that detects
by looking at the frequency distribution and other statistical
properties of the payload (e.g. PAYL [5]). There are two
potential problems with the disassembly-based scheme. First,
nearly all ASCII strings translate into syntactically correct
sequences of instructions, which means checking for syntactic
validity is of little value for detecting ASCII worms. Second,
since most of the branch opcodes are ASCII, the proportion
of branch instructions for ASCII data is significantly higher
than that for binary. Since each branch instruction forks the
current execution path into two directions, having a lot of
them exponentially increases the total number of paths to
be inspected by a detector that employs pseudo-execution.
Therefore, for disassembly-based detectors, one must find
novel ways to prune the number of the paths to be inspected
to ensure quick detection of worms in ASCII data. Also, the
detection approach of examining the frequency distribution
and other statistical properties of the payload is not foolproof
either, as there have been instances where ASCII worms have
been shown to have successfully evaded such detectors. For
example, Kolesnikov et al [6] showed the way to create an
ASCII worm that follows normal traffic pattern to the extent
that it can evade even a robust payload-based detector like
PAYL [6]. Finally, we scanned the ASCII worms that we used
for our testing using a commercial malware detector and no
alarms were raised. Thus, we conclude that the threat of ASCII
worm is real, and we can ignore them only at our own peril.

The structure of the rest of the paper is as follows. Section
II provides the details of ASCII worm. We focus on the
constraints and weaknesses of the ASCII worm in Section
III and devise a scheme to detect it. In Section IV, we lay
down the implementation details of our detection method
and evaluate the results. In Section V, we show why binary
detectors are unsuitable for ASCII, and finally in Section VI,
we conclude with the limitations of our detection strategy.

II. INSIDE THE ASCII WORM

In this section, we start with a formal definition of the ASCII
worm and discuss a typical construction of an ASCII worm.
The treatment of the ASCII worms here forms the foundation
of the detection strategy detailed in the next section.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

978-1-4244-2026-1/08/$25.00 © 2008 IEEE 276

A. Definitions and Terminologies

We use the following definitions throughout this article:

• ASCII data: data consisting of only text, i.e. keyboard-
enterable, or in other words, printable ASCII characters
(0x20 through 0x7E). A worm whose payload consists of
entirely ASCII data is called an ASCII worm.

• Binary data: character stream consisting of text as well
as non-text characters. A worm whose payload contains
binary data is called a binary worm.

• Valid (or invalid) instruction: an instruction that will not
(or will) cause the running process to abort by raising an
error during its execution.

• MEL (Maximum Executable Length): length of the
longest sequence of consecutively-executed valid instruc-
tions in an instruction stream (binary or ASCII).

The concept of MEL was introduced in Abstract Payload
Execution (APE) [4] for detecting the binary worms. However,
it will be shown in section V why APE does not work for
ASCII worms (or for any current binary worms for that matter)
and how our work is different from APE.

B. Construction of a Typical ASCII Worm

It is well known that a worm needs to make system
calls and perform similar activities (like opening sockets for
propagation). However, the opcodes required for those are
not available in ASCII. The only available Intel opcodes and
instruction prefixes in the ASCII data are:

• Dual-operand register/memory manipulation or compari-
son opcodes: sub, xor, and, inc, imul and cmp

• Single-operand register manipulation opcodes: inc, dec
• Stack-manipulation opcodes: push, pop, and popa
• Jump opcodes: jo, jno, jb, jae, je, jne, jbe, ja, js, jns, jp,

jnp, jnge, jnl and jng
• I/O operation opcodes: insb, insd, outsb and outsd
• Miscellaneous opcodes: aaa, daa, das, bound and arpl
• Operand and Segment override prefixes: cs, ds, es, fs, gs,

ss, a16 and o16

It is evident that in order to create a potent ASCII worm, the
required non-ASCII opcodes must be dynamically generated
using ASCII opcodes at runtime. It is possible to generate any
binary byte using ASCII data only, e.g., the binary character 0
can be generated by doing ’a’⊕’a’. While it is impossible
to enumerate all the possible ways to create an ASCII worm, a
typical construction method known as the “stack” method [3]
is shown in Figure 1.

In this paper, we refer to the process of turning an ASCII
worm into binary code as decryption. The worm itself must
carry a decrypter, a cleartext ASCII instruction sequence that
performs the decryption. In many cases, the whole worm is a
decrypter, as is the case with the worm shown in figure 1.

III. DETECTION STRATEGY FOR ASCII WORMS

In this section we start with a description of the constraints
that are imposed on an ASCII worm. Next we characterize how

I1 I5I3I2 I4

1 2 3 44 3 2 1 5

4 3 2 1

I6

Binary worm

Fig. 1. Creation of a binary worm on stack from ASCII code. For generating
a n-word binary worm B = b1b2...bn, the corresponding ASCII worm code
is Init anan−1...a2a1, where Init denotes some initialization code and
the ASCII code block ai dynamically generates corresponding binary word
bi. Observe the reverse order of binary word genration so that control is
automatically passed to the binary worm once it is fully created.

an ASCII worm must behave in order to overcome these con-
straints. Once we pinpoint the behavioral characteristic (high
MEL), we proceed towards devising a practicable detection
scheme exploiting that characteristics.

A. Constraints of an ASCII Worm

The following are the inherent limitations of ASCII worms:

• Opcode Unavailability: It has been stated earlier that in
order to propagate to other host, a worm must perform
certain actions (like opening a socket, etc.) that require
making system calls, for which opcodes are unavailable in
ASCII data. Therefore, the ASCII worms are constrained
to generate these opcodes dynamically.

• Difficulty in Encryption: In oder to avoid detection, it
is a common practice to convert a cleartext worm into an
encrypted payload preceded by a small cleartext decrypter.
In order to encrypt a binary worm into ASCII efficiently,
one has to realize the following goals: 1) both the decrypter
and the encrypted payload should be ASCII, 2) the size of
the decrypter should be small, and 3) there should not be a
significant size discrepancy between the encrypted payload
and the cleartext, as the vulnerability can very well have a
size constraint. However, there are a few difficulties with
realizing these goals. First, since the ASCII domain is a
proper subset of the binary domain, it is not possible to have
a one-to-one correspondence between the two. Therefore,
when one byte of binary data is encrypted into ASCII,
the size of the output is more than one byte. This has the
undesirable effect that the size of the encrypted payload is
larger than the original cleartext by a factor rather than by
a constant. Finally, without the one-to-one correspondence
the decryption logic is more complex, thus resulting in a
significantly larger decrypter.

• Control Flow Constraints: Decryption routines are cus-
tomarily implemented using loops, which involves control
redirection using opcodes mainly belonging to the loop
or jump family followed by a negative displacement byte
(to “go back” to the beginning of the decrypter loop).
However, since all the printable ASCII characters have

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

277

0 in their most significant bit, it is not possible to have
a negative displacement byte. Therefore, by using jump
statements, one can only go forward in an ASCII worm
but not backwards. As a result, the option of re-executing
the same decrypter for each word of the encrypted payload
is precluded – for a n-word encrypted payload, one must
have O(n) decrypter blocks where each decrypter block will
decrypt one individual word. While it is theoretically pos-
sible to overcome this difficulty by generating the negative
displacement dynamically, that would very likely make the
decrypter more complicated and increase its size and MEL
(this issue will be discussed in greater detail in Section VI).

To summarize, due to the opcode constraints, an ASCII
worm must decrypt itself to generate the actual binary worm
at runtime. The encryption and control flow constraints imply
that the decryption process would involve a relatively large
cleartext decrypter, which will have a high MEL. Therefore,
if an ASCII stream has a high MEL, it can be reasonably
presumed to contain an ASCII worm.

B. Benign ASCII Stream Tends to Have Low MEL

Here, it is shown that the benign text does not tend to have a
high MEL. This is because benign ASCII stream is frequently
interspersed with invalid (error-raising) instructions that prune
the execution path into smaller segments, and thus result in a
lower MEL. The errors are raised due to the following reasons:

Prevalence of Privileged Instructions: The characters ‘l’,
‘m’, ‘n’ and ‘o’, which occur frequently in text correspond to
the opcodes insb, insd, outsb and outsd respectively.
These are privileged I/O instructions that cannot be invoked
from any user-level application without generating an error [7].
Thus, benign ASCII data may have these instructions, but a
worm will never have them in its execution path.

Illegal Memory Access: Since ASCII characters have 0 in
their most significant bits, direct register-register instructions
are ruled out. Thus, to manipulate a register, the value must
come from memory (other than inc dec, or pop). Violations
during the memory access can happen in the following ways:

• Uninitialized Register: If an uninitialized register is used
to address a memory location, the memory address pointed
to by the register will be an unpredictable one, with a high
probability of being outside of the allocated memory block
for this process. This implies that any attempt to access that
address would cause a protection exception error.

• Wrong Segment Selector: For memory-accessing dual-
operand instructions, if the instruction is preceded by an
arbitrary segment override prefix, it could lead to a memory
address which is outside the bounds for this process and
thus raise a protection exception. During our experiments,
it was observed that FS and GS segment prefixes resulted
in a protection exception error.

• Explicit Memory Address: For certain ASCII ModR/M
bytes (‘%’, ‘–’ , ‘5’, ‘=’, ‘&’, ‘.’, ‘6’ and ‘>’), the

memory address is expressed as an explicit 4-byte or 2-
byte displacement. Linux randomizes the start address of
each program, and similar porpositions have been made to
randomize the static libraries in Windows [8]. Thus, it is
very likely that using an explicit memory address will raise
a memory violation.

Based on the above analysis, we conclude that a benign stream
of ASCII will have a low MEL, and hence a threshold on
MEL can be used to determine whether an ASCII stream is
malicious or benign.

IV. IMPLEMENTATION OF DAWN

This section describes DAWN, the proposed detection
strategy for ASCII worms. Briefly, DAWN operates in two
main stages: instruction disassembly and instruction sequence
analysis. First it disassembles the ASCII input from every
possible position. Next, by performing pseudo-execution of the
instruction stream, it attempts to see if any such disassembly
could potentially lead to a malicious code. If it detects a long
sequence of valid instructions (longer than a certain threshold),
then an alert is raised. The individual steps are delineated
in more detail in the next two subsections, followed by the
experimental results.

A. Step 1: Instruction Disassembly

Since it is not possible to predict the entry point of the worm
in the input stream, the input (say of length n bytes) needs to
be disassembled from all possible n entry points. It has been
shown [9] that if one starts interpreting the same instruction
stream from two adjoining bytes, the instruction boundaries
of the two instruction sequences tend to get aligned within 6
instructions (max 78 bytes) with a very high probability. Thus,
for every entry point we need to disassemble an average of
6 instruction before we can re-use the instruction sequence
that has been already disassembled. Therefore, although the
disassembly is technically a O(n2) process, it is linear from
a practical standpoint.

B. Step 2: Instruction Sequence Analysis

The main purpose of this stage is to ascertain how long
an instruction sequence (which may start anywhere within the
ASCII data) may execute without generating an error. The
error may result either from using a privileged instruction, or
from a memory access violation. As DAWN proceeds with the
pseudo-execution of the instruction sequence, it keeps track
of which registers have been initialized properly. When an
uninitialized register is used to address memory (as source or
destination), it is considered to be the end of that sequence.
For a control flow bifurcation (like jump), DAWN recursively
considers both the possible routes (jump target as well as the
fall-through instructions) and chooses the longest path between
the two. It should be noted that as there are only forward jumps
in ASCII data, there is no chance of DAWN “looping around”
in the code endlessly. If the length of the longest executable
instruction sequence exceeds a certain threshold (considering
all n possible entry points), then an alarm is raised.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

278

The sketch of the detection algorithm implementing the
above ideas is given below.

Algorithm 1 DetectWormASCII (printable ASCII stream A)
1: D = disassembleInstructionsFromEveryEntryPoint(A);
2: for startPoint s = 1 to size(A) do
3: v ⇐ 0; // maximum length of valid instructions
4: Π ⇐ ∅; // set of properly populated registers
5: RecursiveDetect(D, s, v, Π);
6: if v > threshold then
7: Raise Worm Alert;
8: end if
9: end for

Algorithm 2 RecursiveDetect(disassembled instructions D,
entry point s, max valid length v, populated register set Π)

1: is ⇐ D[s]; // instruction starting at byte s
2: snext ⇐ s + length(is); // location of the next instruction
3: if status(is) ∈ (invalid, truncated) then
4: return;
5: else if is is a privileged instruction or accesses memory with an

inappropriate segment override prefix then
6: return;
7: else if is is a single-register or register→stack instruction (e.g.

inc, dec, push) then
8: v ⇐ v + 1 ;
9: RecursiveDetect(D, snext, v, Π);

10: else if is is a immediate→register or stack→register instruction
(e.g. pop, popa) then

11: v ⇐ v + 1 ;
12: Π ⇐ Π ∪ (destination registers); // Initialization
13: RecursiveDetect(D, snext, v, Π);
14: else if is is a register–memory operand instruction (e.g. xor) then
15: Σ ⇐ memory-accessing registers;
16: if Σ �⊆ Π then
17: return;
18: else
19: v ⇐ v + 1 ;
20: Π ⇐ Π ∪ (destination registers); // Initialization
21: RecursiveDetect(D, snext, v, Π);
22: end if
23: else if is is control-flow instruction (e.g. jne, jae etc.) then
24: vtarget ⇐ vfallthrough ⇐ v;
25: Πtarget ⇐ Πfallthrough ⇐ Π;
26: RecursiveDetect(D, starget, vtarget, Πtarget);
27: RecursiveDetect(D, sfallthrough, vfallthrough, Πfallthrough);
28: v ⇐ max(vtarget, vfallthrough); // Also set Π accordingly
29: end if
30: return;

C. Evaluation

The effectiveness of DAWN was evaluated by running the
experiments in a Linux machine with an Intel(R) Pentium-IV
2.40 GHz CPU with 1GB of RAM. For creating the ASCII
worms, the frameworks provided by RIX [3] and Eller [1]
were used to convert binary buffer overflow programs into
their ASCII counterparts. For creating the benign dataset,
approximately 0.5 MB of real web traffic were collected using
Ethereal. After stripping off the headers, 100 cases, each
containing approximately 4K printable ASCII characters, were
selected to serve as the benign data.

The MEL threshold was chosen to be 40 by observing
the MEL distribution in the benign data set. In our limited
empirical experiments, this threshold caught all the worms
but no benign stream got wrongly classified, thus yielding
zero false positive and zero false negative rates. The MELs for
benign and malicious test data are compared in Figure 2. While
none of the MELs exceed 40 (our estimated threshold) for the
benign data, for the ASCII worm data all the MEL figures are
greater than 120, thereby marking a clear differentiator.

V. BINARY DETECTORS INEFFECTIVE FOR ASCII

In this section, it is shown that even though ASCII is a sub-
set of binary, binary worm detectors (especially disassembly-
based and frequency-based ones) do not work well for ASCII
worms. For disassembly-based detectors, particular attention
is paid to the Abstract Payload Execution (APE [4]) method
because it introduced the concept of MEL. APE detected
binary worms by finding their NOP sled, which had a high
MEL. However, sleds are almost obsolete now [10], and
as a result, APE’s effectiveness is severely dwindled today.
Without the sled, APE is unlikely to detect the binary worm
by catching the decrypter either, because a binary decrypter
can be very short and thus have a low MEL. While an ASCII
decrypter does have a high MEL, it is observed that APE, in its
current form, is not effective for detecting that either. This is
because APE, which was designed for binary worms, did not
exploit the ASCII-specific properties. The definition of invalid
instruction in APE is narrower than ours; APE considered
an instruction invalid only when it is either incorrect or has
a memory operand accessing an illegal address. This is a
special case of our definition; we introduce new ways to
invalidate more instructions in text (like I/O instructions etc.).
Moreover, the APE paper [4] did not present any specific
method to determine which instructions are valid and which
are invalid. Finally, APE runs on random samples of data,
while we examine the full content. We implemented an APE-
like algorithm (which we refer to as APE-L) that did not
exploit the ASCII-specific criteria that we presented in this
paper, and compared the detection sensitivity in table I and
figures 2 and 3. As expected, the ranges of MEL for malicious
and benign are distinct for DAWN but overlapping for APE-L.

The high frequency of jump instructions in ASCII data is
another reason why disassembly-based binary worm detectors
do not work well for ASCII. Since every branch forks an
execution path into two, having too many of them increases
the number of execution paths to be searched exponentially.
So, unless the ASCII-specific criteria is used to invalidate
instructions to prune this search space, detectors may take very
large time to run for ASCII data. This finding is corroborated
by the observation that compared to DAWN, APE-L runs much
slower for ASCII (see table II), to the extent that for some
cases APE-L does not even terminate for hours.

Frequency-based detectors are not suitable against ASCII
either, as Koleshnikov et al [6] showed how an ASCII
worm could easily evade a powerful and robust detector like
PAYL [5]. However, running DAWN on the same portion of

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

279

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 50 100 150 200 250

F
re

qu
en

cy

MEL

Frequency of MEL for Benign and Malicious ASCII Data

Range of
MEL for
Benign

Range of MEL
for Malicious

Benign
Malicious

Fig. 2. Comparison of frequency charts of maximum valid instruction
sequence length for benign and malicious ASCII traffic in DAWN

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 50 100 150 200 250 300 350

F
re

qu
en

cy

MEL

Frequency of MEL for Benign and Malicious ASCII Data

Range of MEL
for Benign

Range of MEL
for Malicious

Benign
Malicious

Fig. 3. Comparison of frequency charts of maximum valid instruction
sequence length for benign and malicious ASCII traffic in APE-L

the worm as shown in their paper [6] resulted in a high MEL
of 78, and an alarm was raised. Finally, the malicious ASCII
data used in our experiments were also run past commercial
malware detector McAfee but no alarm was raised.

Sensitivity MEL Avg MEL Range
DAWN APE-L DAWN APE-L

Benign 22.5 73.7 13 − 46 25 − 359
Malicious 138.1 152.9 117 − 327 132 − 353

TABLE I
COMPARISON OF DAWN AND APE-L FOR DETECTION SENSITIVITY

Performance Runtime Avg Runtime Range
DAWN APE-L DAWN APE-L

Benign 0.58s 22.0s 0 − 1s 0 − 3hr
Malicious 0.23s 0.3s 0 − 1s 0 − 2s

TABLE II
COMPARISON OF PERFORMANCE (RUNTIME) FOR DAWN AND APE-L

VI. LIMITATIONS AND CONCLUSIONS

Here we discuss some of the limitations of our detection
strategy. It can be contended that an ASCII worm may have a
relatively short decrypter by dynamically creating a loop. To
achieve that in an ASCII worm, one needs to first insert the
loop opcode or a negative displacement for a jump statement
dynamically, and then proceed to enjoy the benefits of a
small decrypter. However, we envisage two problems with
this argument. First, we predict that the dynamic insertion
itself would increase the number of valid instructions in the
decrypter significantly due to the lack of the opcodes in ASCII.
However, the bigger problem is that in absence of a one-to-
one correspondence between the binary domain and ASCII
domain, the decryption logic will not be simple, which again
would increase the size of the decrypter code. The issue
of obtaining one-to-one correspondence through multilevel
encryption (Russian doll architecture) is discussed below.

Suppose the binary worm is first converted into ASCII, and
then this ASCII worm is re-encrypted in such a way that
the output is yet again ASCII. Since the second encryption
is happening within the ASCII domain, it can be envisaged to

use a short decrypter employing one-to-one correspondence.
Although it is impossible to consider all encryption schemes,
we show why encryption even within ASCII domain is com-
plicated by demonstrating the case of using xor, which is
a favorite choice for encryption. We observe that there is no
single decryption key (an ASCII byte) with the property that
xor-ing it with any other ASCII byte will still yield ASCII
data. In fact, when two ASCII characters are xor-ed, for 33%
of all possible cases the result is not ASCII. So, in order to
use xor, a constant decryption key cannot be used for all
of the ASCII cleartext. Consequently, the complexity of the
decryption logic will increase, leading to a larger decrypter.

To conclude, we have proposed and successfully imple-
mented DAWN, a worm detector specifically for the ASCII
worms. It is signature-free, capable of detecting zero-day
polymorphic ASCII worms, fast and easily deployable.

REFERENCES

[1] R. Eller, “Bypassing MSB Data Filters for Buffer Overflow Exploits
on Intel platforms,” http://community.core-sdi.com/∼juliano/bypass-
msb.txt, 2003.

[2] X. Wang, C. Pan, P. Liu, and S. Zhu, “A Signature-free Buffer Overflow
Attack Blocker,” In Proc. of 15th USENIX Security Symposium, July
2006.

[3] RIX, “Writing IA32 Alphanumeric Shellcodes,” Phrack, 2001. [Online].
Available: http://www.phrack.org/issues.html?issue=57&id=15#article

[4] T. Toth and C. Kruegel, “Accurate buffer overflow detection via abstract
payload execution,” In Proc. of 5th International Symposium on RAID,
October 2002.

[5] K. Wang and S. Stolfo, “Anomalous Payload-based Network Intrusion
Detection,” RAID 2004: In Proc. of 7th Internation Symposium on
Recent Advances in Intrusion Detection, September 2004.

[6] O. Kolesnikov and W. Lee, “Advanced polymorphic worms: Evading
ids by blending in with normal traffic,” Technical report, Georgia Tech,
2004.

[7] “Intel Architecture Software Developers Manual, Basic Architecture,”
vol. 1, 1999.

[8] S. Bhatkar, R. Sekar, and D. DuVarney, “Efficient Techniques for
Comprehensive Protection from Memory Error Exploits,” In Proc. of
the 14th USENIX Security Symposium, July 2005.

[9] R. Chinchani and E. V. D. Berg, “A Fast Static Analysis Approach to
Detect Exploit Code Inside Network Flows,” In Proceedings of RAID
2005, September 2005.

[10] J. Crandall, S. Wu, and F. Chong, “Experiences Using Minos as A Tool
for Capturing and Analyzing Novel Worms for Unknown Vulnerabili-
ties,” In Proc. of DIMVA, July 2005.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

280

