
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014 1079

Missing-Tag Detection and Energy–Time Tradeoff in
Large-Scale RFID Systems With Unreliable Channels

Wen Luo, Shigang Chen, Senior Member, IEEE, Yan Qiao, and Tao Li

Abstract—Radio frequency identification (RFID) technologies
are poised to revolutionize retail, warehouse, and supply chain
management. One of their interesting applications is to automat-
ically detect missing tags in a large storage space, which may
have to be performed frequently to catch any missing event such
as theft in time. Because RFID systems typically work under
low-rate channels, past research has focused on reducing exe-
cution time of a detection protocol to prevent excessively long
protocol execution from interfering normal inventory operations.
However, when active tags are used for a large spatial coverage,
energy efficiency becomes critical in prolonging the lifetime of
these battery-powered tags. Furthermore, much of the existing
literature assumes that the channel between a reader and tags is
reliable, which is not always true in reality because of noise/in-
terference in the environment. Given these concerns, this paper
makes three contributions. First, we propose a novel protocol
design that considers both energy efficiency and time efficiency.
It achieves multifold reduction in both energy cost and execution
time when compared to the best existing work. Second, we reveal a
fundamental energy–time tradeoff in missing-tag detection, which
can be flexibly controlled through a couple of system parameters
in order to achieve desirable performance. Third, we extend our
protocol design to consider channel error under two different
models. We find that energy/time cost will be higher in unreliable
channel conditions, but the energy–time tradeoff relation persists.

Index Terms—Energy-efficient, missing tag detection, radio
frequency identification (RFID), time-efficient.

I. INTRODUCTION

R ADIO frequency identification (RFID) technologies
[1]–[12] are poised to revolutionize retail, warehouse,

and supply chain management. One of the interesting appli-
cations is to detect missing items in a large storage. Consider
a major warehouse that keeps thousands of apparel, shoes,
pallets, cases, appliances, electronics, etc. How can one find out
if anything is missing? We may have someone walk through
the warehouse and count items. This is not only laborious,
but also error-prone, considering that clothes may be stacked
together, goods on racks may need a ladder to access, and they

Manuscript received June 24, 2012; revised February 05, 2013 and May 29,
2013; accepted May 30, 2013; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor G. Bianchi. Date of publication July 22, 2013; date of cur-
rent version August 14, 2014. A preliminary version of this paper appeared in
the Proceedings of the ACM International Symposium on Mobile Ad Hoc Net-
working and Computing (MobiHoc), Hilton Head Island, SC, USA, June 11–14,
2012.
W. Luo, S. Chen, and Y. Qiao are with the Department of Computer and

Information Science and Engineering, University of Florida, Gainesville, FL
32611 USA (e-mail: wluo@cise.ufl.edu; sgchen@cise.ufl.edu; yqiao@cise.ufl.
edu).
T. Li is with Google, Inc., Mountain View, CA 94041 USA (e-mail:

lita@google.com).
Digital Object Identifier 10.1109/TNET.2013.2270444

may be blocked behind columns. If we attach an RFID tag to
each item,1 the whole detection process can be automated with
one or multiple RFID readers communicating with tags to find
out whether any tags (and their associated objects) are absent.
There are two different missing-tag detection problems: exact

detection and probabilistic detection. The objective of exact de-
tection is to identify exactly which tags are missing. The objec-
tive of probabilistic detection is to detect a missing-tag event
with a certain predefined probability. An exact detection pro-
tocol [13]–[15] gives much stronger results, but its overhead is
far greater than a probabilistic detection protocol [5], [16]–[18].
Hence, they both have their values. In fact, they are complemen-
tary to each other and should be used together. For example,
a probabilistic detection protocol may be scheduled to execute
frequently, e.g., once every minute, in order to timely catch any
loss event such as theft. Once it detects some tags are missing, it
may invoke an exact detection protocol to pinpoint which tags
are missing. If one execution of a probabilistic detection pro-
tocol detects a missing-tag event with 99% probability, five in-
dependent executions will detect the event with 99.99999999%
probability. If that is not enough, we may schedule an exact de-
tection protocol every five times the probabilistic detection pro-
tocol is executed.
This paper focuses on probabilistic detection. Because it is

performed frequently, its performance becomes very important.
Suppose a missing-tag detection protocol is scheduled to exe-
cute once every few minutes in a warehouse. If the execution
time of the protocol is a minute, any normal operations that
move goods out have a good chance to trigger a false alarm.
To reduce the chance of interfering with normal operations, we
want to make the protocol’s execution time as small as possible.
Another performance requirement is to minimize the protocol’s
energy cost. To cover a large area, battery-powered active tags
are preferred. In order to prolong their lifetime, we need to make
any periodically executed protocol as energy-efficient as pos-
sible, particularly if one is scheduled to execute once every few
minutes for 24 h a day, day by day.
Despite its importance, the problem of probabilistic

missing-tag detection is relatively new and underinvesti-
gated. The basic detection method is introduced in the pioneer
work [5]: An RFID reader monitors a time frame of slots.
Through a hash function, each tag pseudo-randomly selects a
slot in the time frame to transmit. The reader can predict in
which slot each known tag will transmit. It detects a missing-tag
event if no tag transmits during a slot when there is supposed
to be tag(s) transmitting. However, multiple tags may select
the same slot to transmit. If a tag is missing, its slot may be

1A tag may be attached in a way that ruins the product if it is detached inap-
propriately, such as releasing ink onto clothing.

1063-6692 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1080 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

kept busy by transmission from another tag. Consequently, the
reader cannot guarantee the detection of a missing-tag event.
The protocol in [5] only considers time efficiency, but not
energy efficiency. A follow-up work [16] further improves the
time efficiency. Firner et al. [17] design a simple communi-
cation protocol, Uni-HB, to detect missing items for fail-safe
presence assurance systems and demonstrate it can lead to
longer system lifetime and higher communication reliability
than several popular protocols. The protocol, however, does
not consider time efficiency and requires all tags to participate
and transmit, which will be less efficient than a sampling-based
protocol design that requires only a small fraction of the tags to
participate. Similarly, the method in [18] also requires all tags
to participate.
In addition, we observe that much of the existing literature as-

sumes that the communication channel between an RFID reader
and tags is reliable, which means that information transmitted
is never corrupted. However, in reality, errors may occur due to
low signal strength and noise interference in the operating envi-
ronment. The occurrence of errors usually follows a certain dis-
tribution, which is characterized by an error model, describing
the statistical properties of underlying error sequences.
In this paper, we make three contributions. First, we propose

a new, more sophisticated protocol design for missing-tag
detection. It takes both energy efficiency and time efficiency
into consideration. By introducing multiple hash seeds, our
new design provides multiple degrees of freedom for tags to
choose in which slots they will transmit. This design drastically
reduces the chance of collision, and consequently achieves
multiple-fold reduction in both energy cost and execution
time. In some cases, the reduction is more than an order of
magnitude. Second, with the new design, we reveal a fun-
damental energy–time tradeoff in missing-tag detection. Our
analysis shows that better energy efficiency can be achieved
at the expense of longer execution time, and vice versa. The
performance tradeoff can be easily controlled by a couple
of system parameters. Through our analytical framework for
energy–time tradeoff, we are able to compute the optimal
parameter settings that achieve the smallest protocol execution
time or the smallest energy cost. The framework also enables
us to solve the energy-constrained least-time problem and the
time-constrained least-energy problem in missing-tag detec-
tion. Third, we extend our protocol design to consider channel
error under two different error models. Our protocol can be
configured to work under these error conditions.
The rest of the paper is organized as follows. Section II gives

the system model and problem definition, as well as the prior
art. Section III proposes a new missing-tag detection protocol.
Section IV investigates energy–time tradeoff in protocol con-
figuration. Section V extends the protocol under two different
error models. Section VI evaluates the protocol through simu-
lations. Section VII draws the conclusion.

II. PRELIMINARIES

A. System Model

There are three types of RFID tags. Passive tags are most
widely deployed today. They are cheap, but do not have in-
ternal power sources. Passive tags rely on radio waves emitted
from an RFID reader to power their circuit and transmit infor-
mation back to the reader through backscattering. They have

short operational ranges, typically a few meters in an indoor en-
vironment, which seriously limits their applicability. Semi-pas-
sive tags carry batteries to power their circuit, but still rely on
backscattering to transmit information.Active tags use their own
battery power to transmit, and consequently do not need any
energy supply from the reader. Active tags operate at a much
longer distance, making them particularly suitable for applica-
tions that cover a large area, where one or a few RFID readers
are installed to access all tagged objects and perform manage-
ment functions automatically. With richer on-board resources,
active tags are likely to gain more popularity in the future, when
their prices drop over time as manufacture technologies are im-
proved and markets are expanded. They are particularly attrac-
tive for high-valued objects such as luxury bags, laptops, cell
phones, TVs, etc., or when the tags are reused over and over
again.
Communication between a reader and tags is time-slotted.

The reader’s signal synchronizes the clocks of tags. There are
different types of time-slots [13], among which two types are
of interest in this paper. The first type is called a tag-ID slot,
whose length is denoted as , during which a reader is able
to broadcast a tag ID. The second type is called a short-response
slot, whose length is denoted as , during which a tag is
able to transmit one-bit information to the reader, for instance,
announcing its presence.
In this paper, we consider active tags. Besides communicating

with a reader, we assume the tags have the following capability:
performing a hash function, carrying a small internal storage to
keep a few parameters and a 96-bit seed-selection segment from
the reader, being able to check the values in the segment, and
having a clock that enables a tag to transmit at a specific slot of
a time frame or wait up at a prescheduled time.

B. Missing-Tag Detection Problem

The problem is to design an efficient protocol for an RFID
reader to detect whether some tags are missing, subject to a de-
tection requirement: A single execution of the protocol should
detect a missing-tag event with probability if or more tags
are missing, where and are two system parameters. For
example, consider a big shoe store that carries tens of thou-
sands of shoes, and we may set the parameters to be %
and , so that one execution of the protocol will detect
any event of missing 10 or more shoes with 99% probability. If
we perform independent executions of the protocol periodically,
the detection probability of any missing event will approach to
100%, no matter what the values of and are. Furthermore,
as we have explained in the Introduction, a low-overhead prob-
abilistic detection protocol may be used in conjunction with
a high-overhead exact detection protocol (which is scheduled
much less frequently) to catch any miss.
We assume that the RFID reader has access to a database

that stores the IDs of all tags. This assumption is necessary [5].
Without any prior knowledge of a tag’s existence, how can we
know that it is missing? The assumption can be easily satisfied
if the tag IDs are read into a database when new objects are
moved into the system, and they are removed from the database
when the objects aremoved out—this is what a typical inventory
management procedure will do. Even if such information is lost
due to a database failure, we can recover the information by
executing an ID-collection protocol [19]–[23] that reads the IDs

LUO et al.: MISSING-TAG DETECTION AND ENERGY–TIME TRADEOFF IN LARGE-SCALE RFID SYSTEMS WITH UNRELIABLE CHANNELS 1081

TABLE I
NOTATIONS

from the tags. In this case, we will not detect missing-tag events
that have already happened. However, once we have the IDs of
the remaining tags, we can detect the missing-tag events after
this point of time.
Notations (most of which are introduced later) are summa-

rized in Table I for quick reference.

C. Performance Metrics

We consider two performance metrics, execution time of the
protocol and energy cost to the tags. First, RFID systems use
low-rate communication channels. Low rates, coupled with a
large number of tags, often take RFID protocols long time to
finish their operations. Hence, in order to apply such protocols
in a busy warehouse environment, it is desirable to adopt novel
designs to reduce execution time as much as possible.
Second, active tags carry limited battery power. Replacing

tags is a tedious, manual operation. One way of saving energy
is to minimize the number of tags that are needed to participate
in each protocol execution. When a tag participates in a pro-
tocol execution, it has to power its circuit during the execution,
receive request information from the reader, and transmit back.
When a tag does not participate, it goes into the sleep mode and
incurs insignificant energy expenditure.
The energy cost to the RFID reader is less of a concern be-

cause the reader’s battery can be easily replaced or it may be
powered by an external source.

D. Clock Synchronization

For any missing-tag detection protocol that is scheduled to
execute at fixed time intervals, there is a need to synchronize
the clocks of the tags so that they can wake up at the right mo-
ments. To achieve very low energy consumption during sleep,
these active RFID tags may use low-power RC oscillators as
clock sources, which however have relatively large drift. The
drift will become significant if the clock is left unsynchronized
for an extended period of time. Following the argument in the
Introduction, we expect the missing-tag detection protocols to
run frequently. One solution to deal with the drift problem is
to calibrate all tags’ clocks at the beginning of each scheduled
protocol execution in order to keep them synchronized. The tags
that are not supposed to participate in a round of execution will

go back to sleep after clock synchronization. It will add a fixed
amount of energy expenditure to all missing-tag detection proto-
cols that require the reader to pull information from tags at fixed
time intervals. Because synchronization overhead is common to
all such protocols, we will not include it in performance com-
parison. Also note that this overhead is relatively small when
compared to the energy cost needed to power a tag for receiving,
transmitting, and computing in the entire duration of a protocol
execution. Another solution is only letting the participating tags
wake up, but they need to wake up a little earlier than scheduled
to compensate for the clock drift, such that they can receive the
requests from the reader. This approach also incurs additional
energy overhead because tags have to be powered a little longer
for receiving.
The energy overhead for clock synchronization does not

exist for a push-based missing-item detection protocol such
as Uni-HB [17], where every sensor (attached to an item)
transmits its ID and a sequence number to a base station in
each epoch. In order to lower the collision probability, Uni-HB
spreads sensor transmissions in each epoch, which means the
protocol execution continues over each epoch since the IDs
may be sent by the sensors at any time. In the Introduction,
however, we have argued for short protocol execution time
to avoid interference from busy warehouse operations that
move items in and out. Furthermore, Uni-HB requires all tags
to participate by sending their IDs to the base station in each
epoch, whereas we prefer an approach that involves only a
fraction of tags to save energy. For these reasons, Uni-HB is
not suitable for meeting the requirements in this paper.

E. Prior Work

We first describe the Trusted Reader Protocol (TRP) by
Tan et al. [5]. Given a time frame of slots, the RFID reader
maps each tag to a slot in the frame by hashing its ID and a
random number . After the reader maps all tags to the slots, it
classifies slots into three categories. A slot is said to be empty
if no tag is mapped to the slot. It is called a singleton slot if
exactly one tag is mapped to the slot. It is a collision slot if
more than one tag is mapped to the slot. Because the reader
knows the IDs of all tags, it knows which tags are mapped to
which slots. It knows exactly which slots are empty, which are
singletons, and which are collision slots.
To initiate the execution of the protocol, an RFID reader

broadcasts a detection request, asking the tags to respond in a
time frame of slots. The detection request has two parameters,
the frame size and the random number . After receiving the
request, each tag maps itself to a slot in the frame through the
same hash function. It then transmits during that slot.
Listening to the channel, the reader records the state of each

slot, which is either busy when one or more tags transmit or idle
when no tag transmits. This is binary information where each
slot carries either “1” or “0.” When a tag transmits, it does not
have to send any particular information. It only needs to make
the channel busy. When no tag is missing, the reader expects
all singleton and collision slots are busy. However, if the reader
finds an expected busy slot to be actually idle, it knows that the
tag(s) that is mapped to this slot must be missing.
TRP is designed to minimize execution time by using the

smallest frame size that ensures a detection probability if
or more tags are missing. Certainly, if fewer tags are missing,

1082 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

the detection probability will be lower. A follow-up work [14]
essentially executes TRP iteratively to identify which tags are
missing.
A serious limitation of TRP is that it only considers time effi-

ciency. It is not energy-efficient because all tags must be active
and transmit during the time frame. Firner et al. [17] consider
energy cost, but their protocol requires all tags to participate and
transmit, which will be less efficient than a sampling-based so-
lution where only a small fraction of tags participate.
The efficient missing-tag detection protocol (EMD) [16] is

similar to TRP except that each tag is sampled with a prob-
ability for participation in each protocol execution. Only a
sampled tag will select a slot to transmit. Simulations show that
EMD performs better than TRP. However, the paper does not
give a way to determine the optimal sampling probability.
In this paper, we show TRP and EMD are special cases of a

much broader protocol design space. Not only are there protocol
configurations that perform much better than TRP and EMD in
terms of both time and energy efficiencies, but we also reveal
a fundamental energy–time tradeoff in this design space, which
allows us to adapt protocol performance to suit various needs in
practical systems.

III. MULTIPLE-SEED MISSING-TAG DETECTION PROTOCOL
(MSMD)

In this section, we begin our protocol design by assuming a
reliable channel. We will then expand the new protocol to work
under different error models in the next section.

A. Motivation

Both TRP [5] and EMD [16] map tags to time-slots using a
hash function. We derive the probability that an arbitrary slot
will become a singleton, which happens when only one tag is
sampled and mapped to slot while all other tags are either not
sampled or mapped to other slots. The probability for any given
tag to be sampled and mapped to is , where is the number
of slots and is the sampling probability, which is 100% for
TRP. The probability for all other tags to be either not sampled
or not mapped to slot is , where is the number of
tags. Hence, we have

%

where reaches its maximum value when . This
upper bound for is true for both TRP and EMD.
Singletons are important in missing-tag detection. If a

missing tag is sampled and mapped to a singleton slot, since
no other tag is mapped the same slot, this expected singleton
slot will turn out to be idle, which is observed by the reader,
resulting in missing-tag detection.
The problem is that the majority of all slots, 63.2% or more of

them, are either empty slots or collision slots. They are mostly
wasted. Obviously, empty slots do not contribute anything in
missing-tag detection. If a collision slot only has missing tags,
detection will be successfully made because the reader will find
this expected busy slot to be actually idle. However, when the
number of missing tags is small when compared to the total

number of tags, the chance for a collision slot to have only
missing tags is also small.
Naturally, we want a protocol design that ensures a large

value of , much larger than 36.8%, because more singleton
slots increase detection power. However, the value of in TRP
is in fact much smaller than 36.8% because TRP minimizes its
execution time by using as few time-slots as possible, which re-
sults in a large percentage of collision slots. The detection prob-
ability of TRP is about because each of the
missing tags has a probability of to map to a singleton slot
and thus be detected.2 As an example, if the requirement is to
detect a missing-tag event with 99% probability when 100 tags
are missing, TRP will reduce its frame size to such a level that

%, just enough to ensure 99% detection probability.
This leaves a great room for improvement. We show that

a new protocol design, different from that of TRP and EMD,
can reduce the frame size to a level that is much smaller than
they can do, yet keep at a value much greater than 36.8%.
Our design, called Multiple-Seed Missing-tag Detection pro-
tocol (MSMD), turns most empty/collision slots into singletons.
There is a compound effect of such a new design when it is cou-
pled with sampling: Suppose % and , same as
in the previous paragraph. Under sampling, the detection proba-
bility is because each of the missing tags has a
probability of to be sampled and mapped to a singleton slot.
If our protocol design can improve to 90%, we will be able
to set %. With such a sampling probability, we achieve
much better energy efficiency because only 5% of all tags par-
ticipate in each protocol execution. We also achieve far better
time efficiency because, with much fewer tags transmitting, the
chance of collision is reduced and a fewer number of time-slots
is needed to ensure a certain level of singletons.

B. Basic Idea

We have known that under a random mapping from tags to
slots, an arbitrary slot only has a probability of up to 36.8%
to be a singleton. Now, if we separately apply two indepen-
dent random mappings from tags to slots, a slot will have a
probability of up to % % to be a sin-
gleton in one of the two mappings. If we separately apply in-
dependent mappings from tags to slots, it has a probability of

% to be a singleton in one of the mappings.
The value of % quickly approaches to 100% as
we increase .
It is easy to generate multiple mappings. In the detection

request, the RFID reader can broadcast seeds, ,
to tags. Each seed corresponds to a different mapping, where
a tag is mapped to a slot indexed by , which is a hash
function such as [13] that takes an ID and a seed to produce
an output (belonging to a required range through modulo
operation).
A slot may be a singleton under one mapping, but a colli-

sion slot under other mappings. Different slots may be single-
tons under different mappings. To maximize the number of sin-
gletons, the reader—with the knowledge of all tag IDs and all
seeds—selects a mapping (i.e., a seed) for each slot, such that
the slot can be a singleton. The reader also makes sure that each

2To quickly get to the point without dealing with too much detail, we ignore
the small contribution of collision slots in detection.

LUO et al.: MISSING-TAG DETECTION AND ENERGY–TIME TRADEOFF IN LARGE-SCALE RFID SYSTEMS WITH UNRELIABLE CHANNELS 1083

tag is assigned to a singleton only once. From each slot’s point
of view, a specific seed is used to map tags to it. From the whole
system’s point of view, multiple seeds are used to map different
tags to different slots.
In our protocol, the reader determines system parameters, in-

cluding the sampling probability and the frame size . After
selecting random seeds, the reader chooses a seed for each slot
and constructs a seed-selection vector (or selection vector for
short), which contains selectors, one for each slot in the time
frame. Each selector has a range of . If , it means
that the th seed, i.e., , should be used for its corresponding
slot. If , it means that the slot is not a singleton under any
seed. Finally, the reader broadcasts the selection vector to the
tags. Based on the selectors, each tag determines which slot it
should use to respond.
We will address the problems of how to choose the optimal

system parameters, and , and how the number of seeds
will affect the protocol performance in Section IV. Before we
describe the operations of the protocol, we introduce the concept
of segmentation. In our design, the above idea is actually applied
segment by segment.

C. Segmentation

The seed-selection vector has selectors, each of which are
bits long. may be too large for the whole vector

to fit in a single slot. For example, if , each selector is
3 bits long. If we use the same slot for carrying a 96-bit
ID to carry the selection vector, it can only accommodate 32 se-
lectors. When is more than that, we have to divide the se-
lection vector into 96-bit segments, so that they can fit in
slots. Each segment contains selectors. The total

number of seed-selection segments are , and the th segment
is denoted as .
Since we divide the selection vector into segments, we also

divide the time frame into subframes, each containing slots ac-
cordingly. The th time subframe is denoted as . This allows
our protocol to deal with one subframe at a time.

D. Protocol Overview

Our protocol consists of two phases. Phase One performs
tag assignment, where the reader identifies the set of sampled
tags and assigns the sample tags to the subframes uniformly
at random. The subset of sampled tags that are assigned to the
th subframe is denoted as . For each subframe , the reader
selects a seed for each of its slots, constructs the seed-select seg-
ment , andmaps the tags in to slots in using the selected
seeds.
Phase Two performsmissing-tag detection. The reader broad-

casts the seed-selection segments one after another, each in a
slot of . Each seed-selection segment is followed by a time
subframe of slots, each of which is long. The tags in
will respond in these slots. Each tag only needs to be active

during its subframe, which conserves energy. The exchange be-
tween the reader and tags in Phase Two is illustrated in Fig. 1.

E. Phase One: Tag Assignment

Phase One consists of three steps, which are explained below.
An illustrative example can be found in Fig. 2.
1) Determining Sampled Tags: The reader starts Phase One

by uniquely identifying the set of participating tags through

Fig. 1. In Phase Two, the reader broadcasts the seed-selection segments,
through , one at a time. Each segment is immediately followed by a
subframe of slots, during which the tags transmit.

sampling. To implement the sampling probability , the reader
broadcasts an integer and a prime number , where
is a large, preconfigured constant (e.g.,). During the

th round of protocol execution, a tag is sampled if and only if
the hash result , which is a pseudo-random number in
the range of , is smaller than , where is the tag’s ID.
After receiving and , each tag can predict in which rounds

of protocol execution it will participate. Since the protocol is
scheduled to execute periodically with predefined intervals,
each tag knows when it should wake to participate. The reader,
with the knowledge of all tag information, can predict which
tags are sampled for each protocol execution.
2) Assigning Sampled Tags to Subframes: When assigning

sampled tags to time subframes, the reader selects an additional
random seed , which is different from . For each
sampled tag, the reader produces a hash output and
assigns the tag to the th subframe, where is the tag’s
ID and the range of is). Note that each tag will
know to which subframe it is assigned, after it receives in the
detection request broadcast by the reader at the beginning of
Phase Two.
3) Determining Seed-Selection Segments: Each seed-selec-

tion segment is determined independently. All selectors in
are initialized to zeros as shown in Fig. 2(b). The reader begins
by using the first seed to map tags in to slots in , as
shown in Fig. 2(c). For each tag in , the reader produces a
hash output and maps the tag to the th slot
in , where is the tag’s ID and the range of is

. After mapping, the reader finds singleton slots. Each sin-
gleton has one and only one tag mapped to it—as an example,
the first and third slots in Fig. 2(c). We assign the tag to the
slot so that it will transmit in the slot, free of collision, during
Phase Two. The reader sets the corresponding selector in to
be 1, meaning that the first seed should be used for this slot.
The slot is now called a used slot, and the sole tag mapped to it
will be called an assigned tag.
The reader repeats the above process with other seeds, one at

a time, for the remaining mappings. For each mapping, we only
consider the slots whose selectors have not been determined yet
and only consider the tags that have not been assigned to any
slots yet, as shown by Fig. 2(d). In other words, the used slots
and the assigned tags will not be considered. For a singleton slot
that is found using seed , the corresponding selector in will
be set to be .
After all mappings, if the value of a selector in remains

zero, it means that the corresponding slot in is not a sin-
gleton under any seed. As a final attempt to utilize these unused
slots, if there exist unassigned tags in , the reader randomly
assigns the unassigned tags to unused slots. More specifically,
it chooses an additional random seed and produces a hash

1084 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

Fig. 2. Arrows represent the mapping from tags to slots based on hash functions. Among them, thick arrows represent the assignment of tags to slots. In this
example, . (a) Segmentation of time frame and seed-selection vector. We consider the tags that are assigned to a subframe . (b) Phase One: initial status
of seed-selection vector segment. (c) Phase One: Tags are mapped to slots using the first hash seed . Two tags, ID and ID , are assigned to the first slot and
the third slot in , respectively. The first and third selectors in the seed-selection segment are thus set to 1. (d) Phase One: Remaining tags are mapped to slots
using the second seed . Two more tags, ID and ID , are assigned. The corresponding selectors in the seed-selection segment are set to “2.” (e) Phase One: In
the final attempt, the reader randomly assigns the remaining unassigned tags to the unused slots. (f) Phase 2: After receiving the seed-selection segment, the tag
with determines to which slot it is assigned. As it is mapped to the sixth slot by the second hash seed and the corresponding selector is also 2, the tag knows
that it must be assigned to the sixth slot.

output to assign each tag that is not assigned yet to
the th unused slot, where is the tag’s ID. In case that
only one tag is assigned to an unused slot, we will have an extra
singleton, as shown in Fig. 2(e). Since the whole tag-to-slot as-
signment is pseudo-random, the reader knows which unused
slots will become singletons. As we will see later in Phase Two,
after receiving , each tag will know whether it is as-
signed to a slot. If not, from the received , it will know to
which unused slot it is assigned.

F. Phase Two: Missing-Tag Detection

At the beginning of this phase, the reader broadcasts a de-
tection request, which is followed by a time frame for sampled
tags to respond. The detection request consists of a frame size
and a sequence of seeds, , and . The time frame
is divided into subframes. Before each subframe , the reader
broadcasts the corresponding seed-selection segment in a
single tag-ID slot . It is followed by short slots of
the subframe, during which the tags in can respond. Recall
that each selection segment is 96 bits long. If , a segment
has selectors, and thus each time subframe
has 32 slots.
Consider an arbitrary tag . It wakes up to participate in a

scheduled protocol execution for which it is sampled. After re-
ceives the detection request from the reader, it uses to
determine to which subframe it is assigned. Without loss of gen-
erality, let the subframe be . The tag sets the timer to wake up
before begins. After receiving the seed-selection segment ,
tag uses to find out to which time-slot it is mapped
by seed . It then checks whether the corresponding selector
in is 1. If the selector is 1, according to the construction of

in Section III-E.3, must be the sole tag that is mapped (and
assigned) to this slot under . If the selector is not 1, it means
that should not be used to map any tag to this slot. In the latter
case, will move on to other seeds and repeat the same process
to determine if it is assigned to a slot. If so, it will transmit during
that slot. Otherwise, if is not assigned to a slot after all seeds,
it will make a final attempt by finding out all unused slots (whose
corresponding selectors in are zeros) and using as
index to identify an unused slot to transmit.
In summary, after Phase One, the reader knows: 1) to which

subframe each sampled tag is assigned; 2) which slot each sam-
pled tag is expected to transmit; 3) which slots are expected to
be singletons; and 4) which slots are expected to be collision
slots (due to the final attempt using). After Phase Two, if an
expected singleton/collision slot turns out to be idle, the reader
detects a missing-tag event. Because multiple mappings reduce
the number of empty/collision slots, both energy efficiency and
time efficiency are greatly improved, as we will demonstrate an-
alytically and by simulations in the following sections.

IV. ENERGY–TIME TRADEOFF IN PROTOCOL CONFIGURATION

We study the energy–time tradeoff of our protocol and show
how to compute the system parameters.

A. Execution Time and Energy Cost

The protocol execution time includes the time for the reader
to transmit a detection request, the time for the reader to transmit
the seed-selection vector of selectors, and the time frame of
slots for tags to transmit, where the seed-selection vector is

divided into segments and the time frame is divided into sub-
frames. The request only carries a few parameters. Its time is

LUO et al.: MISSING-TAG DETECTION AND ENERGY–TIME TRADEOFF IN LARGE-SCALE RFID SYSTEMS WITH UNRELIABLE CHANNELS 1085

negligible when compared to the time frame and the seed-se-
lection vector if is large. Hence, the protocol execution time
is roughly proportional to . To investigate the energy–time
tradeoff in relative terms, we characterize the protocol execu-
tion time by using the frame size . A smaller value of means
a shorter protocol execution time. The actual execution time,
measured in seconds, will be studied through simulations in
Section VI.
The computation at each tag is mostly hashing. The hash

function can be made very simple, such as [13] where hash
output is produced by selecting a certain number of bits from
a prestored bit ring. Moreover, once the tags receive the hash
seeds from the reader’s detection request, they can produce the
needed hash values ahead of time, and all tags do so in parallel,
while the reader is sending its seed-selection vector.
Our protocol design pushes most of its complexity to the

reader. The tags’ operation is simple: A tag wakes up to partic-
ipate in a scheduled protocol execution for which it is sampled.
It receives the detection request, determines to which subframe
it is assigned, wakes up again before the subframe starts, re-
ceives the 96-bit seed-selection segment, determines to which
slot it is assigned, and transmits a signal in that slot. Because
each participating tag performs a similar operation, the energy
cost to each participating tag is also similar. The total energy
cost among all tags for each protocol execution is proportional
to the number of participating tags; note that different tags will
be sampled to participate in different protocol executions uni-
formly at random. Hence, we may characterize the energy cost
of a protocol execution by using the expected number of partic-
ipating tags, , which is in turn proportional to the sampling
probability .

B. Detection Probability

To find the detection probability after one protocol execution,
we need to first derive the probability for an arbitrary sampled
tag to be assigned to a singleton slot during Phase One. There
are mappings. Let be the probability that tag is assigned
to a singleton slot after the first mappings. Let be the total
number of tags and be the number of sampled tags that are
mapped to the same subframe as does. Assume the hash func-
tion assigns sampled tags to subframes uniformly at random.
follows a binomial distribution, , i.e.,

(1)

. We derive a recursive formula for .
After the first mappings, there are two cases.
Case 1) Tag has been assigned to a slot; the probability for

this to happen is .
Case 2) Tag has not been assigned to a slot; the probability

for this case is .
We focus on the second case.
In the th mapping, the slot that tag is mapped to has a prob-

ability of to be unused. Each of the other
tags has a probability to be unassigned. If it is unas-
signed, the tag has a probability of to be mapped to the same
slot as does. Hence, the probability for tag to be the only
one that is mapped to an unused slot is

(2)

Recall that we are considering Case 2 here. Combining both
cases, we have

(3)

where the first item on the right side is the probability for a tag to
be assigned to a slot by the first mappings, and the second
item is the probability for the tag to be assigned to a slot by the
th mapping. The probability for tag to be assigned to a slot
after all mappings is .
After the mapping, we have a final attempt, in which an

unassigned tag may be mapped to a singleton slot or a collision
slot. If the tag is mapped to a collision slot, it is highly unlikely
that all tags in that slot will be missing because the parameter
is typically set far smaller than . Hence, the contribution of
collision slots to missing-tag detection can be ignored.When the
tag is mapped to a singleton slot, detectionwill bemade if the tag
is missing. Therefore, the final mapping has no difference from
the previous mappings. The probability for tag to transmit in a
singleton slot is , which can be computed recursively from
(3).
Each of the missing tags has a probability to be sampled.

When the tag is sampled, it has a probability of to be
assigned a singleton slot. When that happens, since a missing
tag cannot transmit, the reader will observe an idle slot instead,
resulting in the detection. Therefore, the detection probability
of MSMD, denoted as , is

(4)

The value of not only depends on the choice of
and , but also depends on , and , which are not included
in the notation for simplicity. The values of and are deter-
mined by the reader and broadcast to tags. They control the en-
ergy–time tradeoff as we will reveal shortly. The values of ,
and are preknown, where is known because it is simply the
number of tags that the reader expects to be in the system, is
known as a given parameter in the detection requirement, and
is determined before the tags are deployed.
EMD [16] is a special case of MSMDwith and without

the final attempt. Hence, the detection probability of EMD, de-
noted as , is

(5)

TRP [5] is a special case of EMD with . Namely, sam-
pling is turned off.

C. Energy–Time Tradeoff Curve

We cannot arbitrarily pick small values for and . They
must satisfy the requirement . Subject to this
constraint, we show that the values of and cannot be mini-
mized simultaneously. The choice of and represents an en-
ergy–time tradeoff.

1086 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

Fig. 3. Detection probability with respect to the frame size
when , and %.

Fig. 4. (left) Energy–time tradeoff curve, i.e., frame size with respect
to sampling probability , when , and
%. (right) Energy–time tradeoff curve in the range , which

corresponds to the curve segment to the left of the dashed line in the left plot.

If we fix the value of becomes a function
of . The solid line in Fig. 3 shows an example of the curve

with respect to when
, and %. Because is an increasing

function, the minimum value of that satisfies the requirement
can be found by solving the following

equation:

The solution is denoted as . See Fig. 3 for illustration.
For each different sampling probability , we can compute the

smallest usable frame size that satisfies .
Hence, can be considered as a function of , denoted as

. A practical RFID system may consider a frame size be-
yond a certain upper bound to be unacceptable due to exces-
sively long execution time. In addition, must be an integer.
Considering these factors, we give a more accurate definition of
as follows:

(6)

We can find the value of through bisection search.
The left plot in Fig. 4 shows the curve of when

, and %. We call it the en-
ergy–time tradeoff curve. Each point, , represents an
operating point whose energy cost is measured as partici-
pating tags and whose time frame consists of slots. The
symbols in the plot will be explained later. The energy–time
tradeoff is controlled by the sampling probability . If we de-
crease the value of , we decrease the energy cost, but at the
mean time the value of may have to increase, which in-
creases the execution time.

Fig. 5. (left) Value of with respect to . (right) Value of with respect
to .

D. Minimum Energy Cost

When the sampling probability is too small, the detection
probability will be smaller than for any value of
. Such a small sampling probability cannot be used. We can
use bisection search to find the smallest value of , denoted as

, which can satisfy with a frame size no
greater than the upper bound . When and are
used, the energy cost is minimized.

E. Minimum Execution Time

From the energy–time tradeoff curve (the left plot in Fig. 4),
we can find the smallest value of , denoted as , that
minimizes the execution time

(7)

Let be the corresponding sampling probability. Namely,
. The values of and can be deter-

mined through bisection search. When and are used, the
protocol execution time is minimized.
We amplify the segment of the energy–time tradeoff curve

between point and point in the right
plot of Fig. 4. When we increase the value of from to
, the energy cost of the protocol is linearly increased, while

the execution time of the protocol is decreased. We should not
choose because both energy cost and execution time will
increase when the sampling probability is greater than .

F. Offline Computation

Because the computation of , and relies
only on the values of , and , we can calculate them of-
fline in advance. The values of and are preconfigured as part
of the system requirement. The value of is determined before
tag deployment. Hence, we can precompute ,
and in a table format with respect to different values of ,
so that these values can be looked up during online operations.
When performing such computation, we observe that when

we change , the values of and remain largely constants,
as shown in Fig. 5. Hence, their values are actually determined
by , and . It means that as long as the detection require-
ment specified by and does not change, and can be
approximately viewed as constants even though the number of
tags in the system changes.
Suppose the values of and may be changed only at the be-

ginning of each hour. The reader picks a sampling probability ,
which is , or a value between them. It then downloads
to all tags and synchronizes their clocks. For the rest of the

LUO et al.: MISSING-TAG DETECTION AND ENERGY–TIME TRADEOFF IN LARGE-SCALE RFID SYSTEMS WITH UNRELIABLE CHANNELS 1087

Fig. 6. Energy–time tradeoff curves of EMD and MSMD under different
values, when , and %.

hour, the reader does not have to transmit the sampling proba-
bility again.

G. Constrained Least-Time (or Least-Energy) Problem

The energy-constrained least-time problem is to minimize the
protocol’s execution time, subject to a detection requirement
specified by and and an energy constraint specified by an
upper bound on the expected number of tags that participate in
each protocol execution. To minimize execution time, we need
to reduce the frame size as much as possible. Our previous anal-
ysis has already given the solution to this problem, which is
simply , where is the maximum sampling probability
that we can use under the energy constraint.
The time-constrained least-energy problem is to minimize the

number of tags that participate in protocol execution, subject to
a detection requirement specified by and and an execution
time constraint specified by an upper bound on the frame
size. A solution can be designed by following a similar process
as we derive in Section IV-C: Starting from (4), if we
fix becomes a function of . We can use
bisection search to find that meets .

H. Impact of

We study how the number of hash seeds will affect the pro-
tocol’s performance. Fig. 6 compares the energy–time tradeoff
curves of EMD and MSMD with , respectively. Re-
call that EMD is a special case of MSMD with one hash seed,
and TRP is a special case of EMD with , represented by a
point on the curve of EMD as shown in the figure. For MSMD,
when , each seed selector needs 2 bits; recall that the value
zero is reserved for non-singleton slots. When , each se-
lector needs 3 bits. When , each selector needs 4 bits.3

In Fig. 6, a lower curve indicates better performance because,
for any sampling probability, its frame size is smaller, i.e., its
execution time is smaller. Alternatively, it can be interpreted
as, for any frame size, its sampling probability is smaller, i.e.,
it needs fewer tags to participate in each protocol execution.
Clearly, MSMD significantly outperforms EMD and TRP. As
increases, the performance of MSMD improves. However, the
amount of improvement shrinks rapidly, demonstrated by the
small gap between and .When we further increase
to 31 using 5-bit selectors, the improvement becomes negli-

gible. Increasing the value of does not come for free; larger

3One may ask why we do not use or other values. The reason is that
each selector needs 4 bits even when . In that case, we should certainly
choose for better performance.

TABLE II
IMPACT OF CORRUPTED SLOTS

selectors mean more overhead. For one, it takes more time for
the reader to broadcast the seed-selection vector. Therefore, we
believe is a good choice in practice because the perfor-
mance gain beyond that is very limited.

V. MSMD OVER UNRELIABLE CHANNELS

We now consider unreliable channels. The intuition behind
EMD and MSMD is that a slot will be found idle if the tags
transmitting in the slot are all missing. It is true if no error oc-
curs in this slot. In reality though, the communication between a
reader and tags is, to varying degrees, subject to noise/interfer-
ence in the environment, which may corrupt slots, for example,
turning a would-be empty slot to a busy slot. Table II gives dif-
ferent possibilities of corrupted slots and their consequences. In
the first row of this table, we assume that a tag is missing. Then,
the slot that is mapped to should become idle during the pro-
tocol execution. However, this slot may be corrupted and turn
out to be a busy slot. In this case, even if a tag that is supposed
to transmit in a slot is missing, the reader can still sense a re-
sponse induced by channel error, resulting in undetection of a
missing tag. If all slots assigned to missing tags happen to be
corrupted, the reader will fail to detect the missing-tag event.
The second row illustrates the impact of channel error when is
present in the system. Recall that we only distinguish two states
for a slot: idle (no signal detected in the channel) or busy (signal
detected). If is not missing, the original slot should be busy.
Since noise or interference in the environment may change the
signal but is unlikely to cancel the signal out altogether, the slot
should remain a busy slot. In this case, noise/interfere does not
cause harm.
We evaluate the impact of channel error under two different

models: random error model and burst error model. The former
can be characterized by a parameter , which denotes the
probability for each slot to incur error. However, it may happen
that channel introduces error in bursts for consecutive slots
rather than at random. For example, communications between a
reader and tags may be interfered by electromagnetic emission
from nearby devices that share the same frequency band. When
those devices are transmitting (e.g., sending a packet), their
signals keep the channel busy for a small period of time until
they stop. As the interfering transmissions are turned on and
off, it causes bursts of error to the RFID system, which is
characterized by the burst error model.
We stress that the error models are applied only to the

tag-to-reader link in order to simplify the analysis. Error on
the reader-to-tag link is addressed separately as follows: The
transmission from the reader carries a CRC checksum. For
example, the 96-bit seed-selection segment may contain a
16-bit CRC checksum and use the remaining 80 bits to encode
seed selectors. When a tag receives the transmission from the
reader, it computes a CRC based on the received information
and then compares the result to the received CRC. If they
are the same, the tag performs the operation according to the
protocol. Otherwise, the tag will not participate further in the

1088 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

protocol execution, and instead it will transmit its ID to the
reader to announce its presence after the protocol execution.
This adds additional execution time and energy cost. However,
if the error ratio is small, the additional overhead will be small.

A. MSMD Under Random Error Model

In the random error model, the impact of channel error is
characterized by a parameter , which is the probability for
a slot to incur error. For example, if %, a would-be idle
slot has a chance of 5% to become busy.
MSMD under this model is called MSMD-re. From

Section IV-B, we know that each of the missing tags
has a probability of to be detected in MSMD. Then, the
probability for a missing tag to be detected under the random
error model is . Therefore, the detection prob-
ability of MSMD-re, denoted as , is

(8)

Clearly, MSMD is a special case of MSMD-re with .
For MSMD-re, the computation of , and
is similar to that of MSMD except that (5) is replaced with
(8). MSMD-re uses the same offline computation process as de-
scribed in Section IV-F and follows the same protocol, only with
modified parameters that consider the impact of channel error.

B. MSMD Under Burst Error Model

We now consider the burst error model. According to [24], the
number of bursts can be approximated as Poisson distribution.
We give a brief description here, and readers are referred to [24]
for details. The probability density function for the number of
bursts is given by

(9)

where is the average number of bursts, and is the Dirac
Delta Function [25].
According to convolutional codes and trellis code modula-

tions, the probability density function for the number of errors
in a burst can be derived by Erlang density of second order. The
Erlang distribution of second order is

(10)

where is the rate parameter. Because the random variable for
the number of errors in a burst assumes only discrete values [24],
the probability density function can be obtained by discretizing
the Erlang distribution

(11)

with

(12)

Here, is the continuous Erlang distributed random variable
and represents the probability of having errors in a
burst. Then, the mean value of the distribution given in (11) is

(13)

The probability of having errors in bits, , depends
on the number of bursts in the interval, , and on the
number of errors in bursts, . Therefore, we have

for

for
(14)

Here, is the probability to have errors in bursts in
the interval of bits

for
for

(15)

and represents the probability of having bursts in an
interval

(16)

From (12) and (14)–(16), we know that the computation of
relies on the values of and . Now we should find a

way to obtain the values of these two parameters.
We denote the mean value of errors in bits (i.e., the value

of when there are bits) as . If we know , we
can compute the value of from (13). According to [24], the
value of depends on the probability that a burst occurs and
causes errors in the interval of bits. It is given by

(17)

where is a parameter called Bit Error Rate. Finally, the value
of is evaluated as follows:

(18)

where is the probability of having at least one error in the
considered bits when a burst occurs, and is given by

(19)

Here, is the mean value for number of errors per burst and
is the mean value of burst error length.
From (13), (17), and (18), we can see that the computation of
and depends on the values of , and , which are

input system parameters. After computing the values of and
, we can obtain the value of . For example, if

, and , the values of
and are respectively 0.52 and . Then, can be
calculated by (14).
From Section III, we know that each slot only carries bi-

nary information of either “1” or “0.” The information in the
time frame therefore represents a bit array of length . As the
time frame is divided into subframes, each containing slots,

LUO et al.: MISSING-TAG DETECTION AND ENERGY–TIME TRADEOFF IN LARGE-SCALE RFID SYSTEMS WITH UNRELIABLE CHANNELS 1089

we also divide the bit array into segments of bits, which al-
lows our protocol to deal with one segment at a time. Consider
the th subframe . Recall from (14) that the probability of
having errors in bits is . Then, the proba-
bility for a missing tag, which is assigned to , to be detected
is . The detection probability of MSMD
under the burst error model can be computed by summing over
all possible values of .
Hence, the detection probability of MSMD under the burst

error model, denoted as , is

(20)

Under this model, we can obtain the values of
, and by following the same procedure as

described in Section IV-F, except that (5) is replaced with (20).

VI. NUMERICAL RESULTS

We have performed extensive simulations to study the per-
formance of the proposed MSMD, MSMD-re, and MSMD-be,
and compared it to EMD [16] and TRP [5]. The design of all
fives protocols ensures that the detection requirement specified
by and is always met. This is indeed what we observe in
our simulations.
The performance comparison is made in terms of energy ef-

ficiency and time efficiency, given a certain detection require-
ment. To measure the protocol execution time, we set the trans-
mission parameters based on the typical setting of the EPC-
global Gen-2 standard [26]. Any two consecutive transmissions
(from the reader to tags or vice versa) are separated by a waiting
time of 266.4 s. The transmission rate from the reader to tags
is 40.97 kb/s; it takes 24.41 s for the reader to transmit one bit.
A 96-bit slot that carries a seed-selection segment is 2609.76 s
long, which includes a waiting time before the transmission. The
transmission rate from a tag to the reader is also 40.97 kb/s, so
that a single-bit slot for a tag to respond (i.e., make the
channel busy) is 290.81 s, also including a waiting time.
For each set of system parameters, including , and
, TRP will compute its optimal frame size. Once the frame
size is determined, the execution time is known, which is

plus the time for broadcasting a detection request.
MSMD, MSMD-re, MSMD-be and EMD will choose a sam-
pling probability , and compute the optimal frame size
under that sampling probability. EMD does not give a way
to compute its optimal frame size. However, since EMD is a
special case of MSMD, we use our analytical framework in the
previous section to compute it. For EMD, its execution time is

, plus the time for a request. For MSMD, MSMD-re,
and MSMD-be, we need to add the time for transmitting the
selection vector.
We cannot find a well-accepted energy model for RFID tags

or detailed parameters of energy expenditure for an RFID stan-
dard. However, as we have explained in Section IV-A, the en-
ergy cost can be indirectly measured by the number of par-
ticipating tags because the former is proportional to the latter.
We use this measurement to study the energy–time tradeoff in
relative terms and make performance comparison. As part of
our future work, we will investigate the exact energy cost (in

Fig. 7. Protocol execution time with respect to sampling probability, when
% , and .

mJ) of tags when an appropriate energy model for RFID tags
becomes available. Although the exact energy consumption of
a tag can be simulated at this time (which depends on phys-
ical-layer implementation), we point out that each participating
tag only needs to receive a small amount of data from the reader
and transmits one-bit information.

A. Energy–Time Tradeoff

Let %, and . For MSMD-be,
the required input parameter setting is similar to that in [25]:

, and . Fig. 7 shows the en-
ergy–time tradeoff curves produced by simulations. Recall that
the energy cost of MSMD or EMD is proportional to . The
point at on the EMD curve represents TPR. Clearly,
MSMD significantly outperforms EMD. MSMD with
uses three-bit elements in the selection vector, while MSMD
with uses two-bit elements. Even though it incurs more
overhead in the selection vector, MSMD with slightly
outperforms MSMD with . Further increasing cannot
bring performance gain due to overly large overhead for the se-
lection vector. Furthermore, it is also shown in Fig. 7 that when
we take the impact of channel error into consideration, the per-
formance of MSMD with degrades slightly, which can
be illustrated by the curves of MSMD-re and MSMD-be. For
MSMD-re, increasing will cause more execution time and
energy cost because of large probability for a slot to incur error.
Even though channel errors cause more overhead in missing-tag
detection (which should be an expected consequence), a key
finding is that the general energy–time tradeoff relation stays
the same. In Fig. 8, we zoom in for a detailed look at the curve
segment in the sampling probability range of [0, 0.2]. When

, the execution time of MSMD with is 11.2%
of the time taken by EMD. When we fix the execution time at
5 s, the number of participating tags in MSMD with
is 46.7% of the number in EMD. We do not directly compare
MSMD-re and MSMD-de to EMD because the latter does not
consider channel error. We vary the values of and . Sim-
ilar conclusions can be drawn from the simulation results.
The tradeoff curves in Fig. 8 agree with our analytical results

in Fig. 6 in principle. We want to stress that our simulations
do not simply reproduce the analytical results. Simulations con-
sider system details by using a real RFID specification. Such
details are not captured by analysis. In addition, simulations
consider the exact impact of selection vector on execution time
(measured in seconds), instead of characterizing time in an in-
direct way using the frame size.

1090 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

Fig. 8. Zoom-in view of energy–time tradeoff in Fig. 7 in the sampling proba-
bility range of [0, 0.2].

TABLE III
RELATIVE ENERGY COST AND EXECUTION TIME OF MSMD UNDER

AND , WHEN % AND

In Table III, we show the relative performance of MSMD
with respect to TRP, where %, and

, or 200. MSMD is operated under sampling prob-
ability and . For example, when and

. The numbers in the table are ratios of MSMD’s
energy cost (or execution time) to TRP’s energy cost (or exe-
cution time). For example, when , the energy cost of
MSMD with is 2.1% of what TRP consumes, and its exe-
cution time is 4.09% of the time TRP takes. Again, we do not
directly compare MSMD-re and MSMD-de with TRP because
the latter does not consider channel error.

B. Performance Comparison

Next, we compare the performance of MSMD ,
MSMD-re (% and), MSMD-be ,
EMD, and TRP under different values of , and . MSMD,
MSMD-re, MSMD-be, and EMD are operated with their op-
timal sampling probabilities . In Figs. 9–11, we keep
and vary the value of . In Fig. 9, we let %, meaning
that each protocol execution should detect any missing-tag
event with probability 99.9%. The left plot compares the
energy cost of five protocols with respect to , and the right
plot compares their execution times. MSMD has a smaller
energy cost than EMD, which in turn has a much smaller
energy cost than TRP. Taking the impact of channel error into
consideration, the energy costs by MSMD-be and MSMD-re
increase modestly over MSMD. In the meanwhile, MSMD
also has a much smaller execution time than EMD and TRP.
Taking channel error into consideration, the execution times
of MSMD-be and MSMD-re increase modestly over MSMD.
Similar results can be drawn from Fig. 10, where %,
and Fig. 11, where %. In the latter case, the execution
time of MSMD is less than a second.
In Figs. 12 and 13, we keep % and vary the value of
. In Fig. 12, . In Fig. 13, . The performance

of MSMD remains the best among all five.

Fig. 9. (left) Number of participating tags with respect to the number of tags,
when and %. (right) Protocol execution time with respect to
the number of tags, when and %.

Fig. 10. Same as the caption of Fig. 9, except for %.

Fig. 11. Same as the caption of Fig. 9, except for %.

Fig. 12. (left) Number of participating tags with respect to the number of tags,
when and %. (right) Protocol execution time with respect to
the number of tags, when and %.

Fig. 13. Same as the caption of Fig. 12, except for .

VII. CONCLUSION

This paper proposes a new protocol design that integrates
energy efficiency and time efficiency for missing-tag detection.
It uses multiple hash seeds to provide multiple degrees of

LUO et al.: MISSING-TAG DETECTION AND ENERGY–TIME TRADEOFF IN LARGE-SCALE RFID SYSTEMS WITH UNRELIABLE CHANNELS 1091

freedom for the RFID reader to assign tags to singleton slots,
during which the tags announce their presence in the process of
missing-tag detection. We first present this new protocol with
reliable channels. The result is a multifold cut in both energy
cost and execution time. Such performance improvement is crit-
ical for a protocol that needs to be executed frequently. Then,
we extend the protocol to consider two categories of channel
errors induced by noise/interference in the environment. The
involving of channel errors will make the energy/time gains
slightly reduced, but remain significant compared to EMD and
TRP. We also reveal a fundamental energy–time tradeoff in the
protocol design. This tradeoff gives flexibility in performance
tuning when the protocol is applied in practical environment.

REFERENCES

[1] Y. Liu, L. Chen, J. Pei, Q. Chen, and Y. Zhao, “Mining frequent trajec-
tory patterns for activity monitoring using radio frequency tag arrays,”
in Proc. IEEE PerCom, 2007, pp. 37–46.

[2] L. M. Ni, Y. Liu, Y. C. Lau, and A. Patil, “LANDMARC: Indoor lo-
cation sensing using active RFID,” Wireless Netw., vol. 10, no. 6, pp.
701–710, Nov. 2004.

[3] Y. Li and X. Ding, “Protecting RFID communications in supply
chains,” in Proc. ASIACCS, 2007, pp. 234–241.

[4] B. Sheng, C. Tan, Q. Li, and W. Mao, “Finding popular categories for
RFID tags,” in Proc. ACM MobiHoc, 2008, pp. 159–168.

[5] C. Tan, B. Sheng, and Q. Li, “How to monitor for missing RFID tags,”
in Proc. IEEE ICDCS, 2008, pp. 295–302.

[6] A. Nemmaluri, M. Corner, and P. Shenoy, “Sherlock: Automatically
locating objects for humans,” in Proc. ACM MobiSys, 2008, pp.
187–198.

[7] Y. Zheng and M. Li, “Fast tag searching protocol for large-scale RFID
systems,” in Proc. IEEE ICNP, Oct. 2011, pp. 363–372.

[8] Y. Zheng, M. Li, and C. Qian, “PET: Probabilistic estimating tree for
large-scale RFID estimation,” in Proc. IEEE ICDCS, Jun. 2011, pp.
37–46.

[9] L. Ravindranath, V. Padmanabhan, and P. Agrawal, “SixthSense:
RFID-based enterprise intelligence,” in Proc. ACM MobiSys, 2008,
pp. 253–266.

[10] T. Li, S. Wu, S. Chen, and M. Yang, “Energy efficient algorithms for
the RFID estimation problem,” in Proc. IEEE INFOCOM, Mar. 2010,
pp. 1–9.

[11] S. Chen, M. Zhang, and B. Xiao, “Efficient information collection
protocols for sensor-augmented RFID networks,” in Proc. IEEE
INFOCOM, Apr. 2011, pp. 3101–3109.

[12] Y. Qiao, S. Chen, T. Li, and S. Chen, “Energy-efficient polling proto-
cols in RFID systems,” in Proc. ACM MobiHoc, May 2011, Art. no.
25.

[13] T. Li, S. Chen, and Y. Ling, “Identifying the missing tags in a large
RFID system,” in Proc. ACM MobiHoc, 2010, pp. 1–10.

[14] B. Sheng, Q. Li, and W. Mao, “Efficient continuous scanning in RFID
systems,” in Proc. IEEE INFOCOM, 2010, pp. 1–9.

[15] R. Zhang, Y. Liu, Y. Zhang, and J. Sun, “Fast identification of the
missing tags in a large RFID system,” in Proc. 8th Annu. IEEE
Commun. Soc. Conf. Sensor, Mesh Ad Hoc Commun. Netw., 2011, pp.
278–286.

[16] W. Luo, S. Chen, T. Li, and S. Chen, “Efficient missing tag detection
in RFID systems,” in Proc. IEEE INFOCOM, Mini-Conf., 2011, pp.
356–360.

[17] B. Firner, P. Jadhav, Y. Zhang, R. Howard, W. Trappe, and E. Fenson,
“Towards continuous asset tracking: Low-power communication and
fail-safe presence assurance,” in Proc. 6th Annu. IEEE Commun. Soc.
Conf. Sensor, Mesh Ad Hoc Commun. Netw., 2009, pp. 1–9.

[18] P. Popovski, K. F. Nielsen, R. M. Jacobsen, and T. Larsen, “Robust
statistical methods for detection of missing RFID tags,” IEEE Wireless
Commun., vol. 18, no. 4, pp. 74–80, Aug. 2011.

[19] R. M. Jacobsen, K. F. Nielsen, P. Popovski, and T. Larsen, “Reli-
able identification of RFID tags using multiple independent reader ses-
sions,” in Proc. IEEE RFID, 2009, pp. 64–71.

[20] J. Myung and W. Lee, “Adaptive splitting protocols for RFID tag col-
lision arbitration,” in Proc. ACM MobiHoc, May 2006, pp. 202–213.

[21] N. Bhandari, A. Sahoo, and S. Iyer, “Intelligent query tree (IQT) pro-
tocol to improve RFID tag read efficiency,” in Proc. IEEE Int. Conf.
Inf. Technol., Dec. 2006, pp. 46–51.

[22] V. Sarangan, M. R. Devarapalli, and S. Radhakrishnan, “A framework
for fast RFID tag reading in static and mobile environments,” Int. J.
Comput. Telecommun. Netw., vol. 52, no. 5, pp. 1058–1073, 2008.

[23] B. Zhen, M. Kobayashi, and M. Shimizu, “Framed ALOHA for mul-
tiple RFID object identification,” IEICE Trans. Commun., vol. 88-B,
no. 3, pp. 991–999, Mar. 2005.

[24] B. Cornaglia and M. Spini, “Letter: New statistical model for burst
error distribution,”Eur. Trans. Telecommun., vol. 7, no. 3, pp. 267–272,
May 1996.

[25] “Dirac delta function,” 2013 [Online]. Available: http://en.wikipedia.
org/wiki/Dirac_delta_function

[26] EPCglobal, “EPC radio-frequency identity protocols
Class-1 Generation-2 UHF RFID protocol for communi-
cations at 860 MHz–960 MHz,” ver. 1.0.9, 2005 [Online].
Available: http://www.epcglobalinc.org/standards/uhfc1g2/
uhfc1g2_1_0_9-standard-20050126.pdf

Wen Luo received the B.S. degree in computer sci-
ence and technology from the University of Science
and Technology of China, Hefei, China, in 2008, and
is currently pursuing the Ph.D. degree in computer
and information science and engineering at the Uni-
versity of Florida, Gainesville, FL. USA.
His advisor is Dr. Shigang Chen, and his research

interests include RFID technologies and Internet
traffic measurement.

Shigang Chen (M’04–SM’12) received the B.S.
degree from the University of Science and Tech-
nology of China, Hefei, China, in 1993, and the M.S.
and Ph.D. degrees from the University of Illinois at
Urbana–Champaign, Urbana, IL, USA, in 1996 and
1999, respectively, all in computer science.
After graduation, he worked with Cisco Systems,

San Jose, CA, USA, for three years before joining
the University of Florida, Gainesville, FL, USA, in
2002, where he is currently an Associate Professor
with the Department of Computer and Information

Science and Engineering. He served on the technical advisory board for Pro-
tego Networks from 2002 to 2003. He holds 11 US patents. He published more
than 100 peer-reviewed journal/conference papers. His research interests in-
clude computer networks, Internet security, wireless communications, and dis-
tributed computing.
Dr. Chen is an Associate Editor for the IEEE/ACM TRANSACTIONS

ON NETWORKING, Computer Networks, and the IEEE TRANSACTIONS ON

VEHICULAR TECHNOLOGY. He served in the steering committee of IEEE
IWQoS from 2010 to 2013. He received the IEEE Communications Society
Best Tutorial Paper Award in 1999 and the NSF CAREER Award in 2007.

Yan Qiao received the B.S. degree in computer
science and technology from Shanghai Jiao Tong
University, Shanghai, China, in 2009, and is cur-
rently pursuing the Ph.D. degree in computer and
information science and engineering at the Univer-
sity of Florida, Gainesville, FL, USA.
Her advisor is Dr. Shigang Cheng. Her research

interests include network measurement, algorithms,
and RFID protocols.

Tao Li received the B.S. degree in computer science
from the University of Science and Technology of
China, Hefei, China, in 2007, and the Ph.D. degree
in computer and information science and engineering
from the University of Florida, Gainesville, FL, USA,
in 2012.
He has since worked with Google, Mountain

View, CA, USA. His research interests include net-
work traffic measurement and RFID technologies.

