
Hierarchical QoS Routing in Delay-Bandwidth Sensitive Networks

King-Shan Lui Klara Nahrstedt
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 6 1801
kinglui @uiuc.edu

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 6 180 1
klara @ cs .uiuc.edu

Shigang Chen
Internet Services Management Group

Cisco Systems
San Jose, CA 95051
sgchen @ cisco.com

Abstract

Large networks are often structured hierarchically by
grouping nodes into different domains in order to deal with
the scaling problem. In such networks, it is infeasible to
maintain the detailed network information at every routel:
Therefore, topology information of domains are summa-
rized before broadcasted. This process is called topol-
ogy aggregation. Hierarchical routing protocols are then
used to find a route among the domains. We study several
basic problems associated with hierarchical QoS routing,
including (1) how to make QoS-aware topology aggrega-
tion, (2) how to represent the aggregated network state,
and (3) how to find an end-to-end route based on aggre-
gated information. The novelty in this research is our new
network QoS representation which is line segments on the
delay-bandwidth plane. We also present a distributed rout-
ing mechanism that works with our representation. Our
theoretical and simulation results show that the protocol
achieves scalability and improved routing performance. '

1. Introduction

Nowadays, internetworks are global and consist of enor-
mous number of routers and networks. In order to do rout-
ing more efficiently, the Internet is partitioned into different
autonomous systems [14]. Each autonomous system (AS)

'The first two authors were supported by the Airforce grant under con-
tract number F30602-97-2-0121. the National Science Foundation Career
grant under contract number NSF CCR 96-23867. and the National Sci-
ence Foundation PACI grant under contract number PACI EIE QLTY SVC
1-1-13006.

is a domain that consists of routers, networks, and hosts.
The router, that connects to an outside AS, is called a gate-
way. Computers or hosts are identified by IP addresses that
consist of two parts: the first part identifies the AS and the
second part identifies the host inside the particular AS. This
kind of addressing is called hierarchical addressing and the
corresponding routing algorithm is called hierarchical rout-
ing. The routing algorithm first finds how to reach the gate-
way of the AS where the destination resides (inter-domain
routing). Then, a path is found from that gateway to the tar-
get node (intra-domain routing). As the QoS traffic (voice
and video) grows exponentially, there is a need to extend
this hierarchical structure to support QoS routing, which
means to find a network path that has sufficient resources to
meet the throughputheal-time requirement of a traffic flow
between two end hosts.
QoS routing has been studied separately at the inter-domain
level and the intra-domain level. At the inter-domain level,
topology aggregation is introduced to reduce the amount of
information a router needs to maintain so that the scalability
can be achieved. The idea is to aggregate each domain into
a simple topology, e.g. a star, which captures the cost of
going from one end of the domain to another [12], [8]. This
simplified topology is broadcasted and is used in finding
an inter-domain path. At the intra-domain level, many QoS
routing protocols have been proposed recently, and they can
be grouped into two major classes: source routing and dis-
tributed routing [3]. In source routing, each node maintains
the complete global network state, based on which a routing
path is computed locally at the source node. In distributed
routing, a path is determined in a distributed manner. Rout-
ing messages are exchanged among the nodes so that the
network state information maintained at different nodes can

579
0-7695-0912-6/00 $10.00 0 2000 IEEE

mailto:uiuc.edu
http://uiuc.edu
http://cisco.com

be collectively utilized.
In this paper, we study (1) how to make QoS-aware topol-
ogy/state aggregation, (2) how to represent the aggregated
network state, and (3) how to find an end-to-end route based
on such aggregated information. We introduce a new frame-
work for hierarchical QoS routing in delay-bandwidth sen-
sitive networks. In this framework, we use a new repre-
sentation of link information and discuss the correspond-
ing topology aggregation algorithm and routing algorithm.
Theoretical and simulation results show that our algorithm
has satisfiable performance in terms of storage, running
time and success ratio.
The rest of the paper is organized as follows: Section 2 dis-
cusses the related work, Section 3 presents our model, Sec-
tion 4 describes the topology aggregation algorithm for do-
mains, Section 5 describes the routing algorithm (both inter-
domain and intra-domain) that works with our framework,
Section 6 presents the performance analysis, and finally, we
draw conclusions in Section 7.

2. Related Work

Topology aggregation and QoS routing, have been dis-
cussed, mostly independently, by various studies.

A topology aggregation algorithm, that achieves
bounded distortion in domains with only one parameter, is
studied in [I]. However, the theoretical bound of distor-
tion of networks having two or more parameters is still un-
known. There are not many studies addressing topology
aggregation of multiple parameters. Some studies can be
found in [9], [lo], and [ll]. Traditional approaches usually
represent each logical link as a delay-bandwidth QoS pair
using numerical values representing the parameter of the
"best" path. However, this approach is obviously not suf-
ficient since if there are several paths between the source
and the target, it is difficult to pick the best QoS pair.
Moreover, no matter which single pair is picked, parame-
ters of some path are not reflected [IO]. In [IO], the au-
thors describe some existing approaches in picking the best
pair and also suggest instead of having only the numeri-
cal values of bandwidth and delay, each logical link keeps
an extra parameter which implicitly defines a curve pass-
ing through a particular bandwidth-delay pair on a delay-
bandwidth plane. A drawback of the curve proposed in [IO]
is that the curve may be very far away from other parame-
ters.

Although routing of only one parameter can be solved
easily by the Dijkstra algorithm, routing of multiple pa-
rameters is not easy. The problem of finding a path sat-
isfying more than one additive constraint (e.g. delay and
cost) is NP-complete [6], [161. In a bandwidth-delay sen-
sitive network, the problem can be solved by a modified
Dijkstra algorithm proposed in [15] and [16]. Most of the

existing routing algorithms represent parameters using nu-
merical values alone. In our framework, we use a differ-
ent kind of representation, which is a line segment on the
delay-bandwidth plane. According to our knowledge, this
representation has never been studied before and therefore
no existing routing algorithm can be used directly.

3. System Models

The whole network is partitioned into disjoint domains.
A domain is a set of nodes that are connected by communi-
cation links. Some nodes are connected to another domain
and these nodes are called borders or gateways. We model
the network and the domains as directed graphs where links
can be asymmetric in both directions to make it more flexi-
ble. We first discuss the domain model and then the network
model.

3.1. Domain Model

A domain is modeled as a tuple (V, B, E), where V is
the set of nodes, B C V is the set of borders, and E is the
set of directed links among the nodes in V. We call those
links in E physical links. We denote the QoS parameter of
each physical link as (D, W), which means the delay of the
link is D units and the bandwidth is W units.

A physical path from node vo to node V k is denoted as
(710 + v1 + 212 ... + V k - 1 + I&), where the directed
link (v,,vi+l) E E for 0 5 i < IC . Let (D,W)i+j be
the parameter of physical link (U;, vi). Also, let Di+j and
Wi+j be the delay and bandwidth of (vi, vj) respectively.
The delay of the physical path from vo to v k is the sum
of the delays of all physical links along the path which is
Cfzt (Di+i+l). The bandwidth of it is the minimum band-
width among all bandwidths along the physical path which
is minfzt { ~;+.i+l}.

Let k = 3 and the parameters of (710,71l), (vI,v~), and
(212,713) are (3 3 , (5,4), and (6,4). Then, the delay of
v1 + 712 + v3 is 3+5+6 = 14 and the bandwidth is
min{5,4,4}=4.

3.2. Network Model

A network consists of a set of domains and links that
connect them. A network is denoted as (G, L) where G =
{gilgi = (Vi,&, Ei), 1 5 i 5 [GI}. In order to identify
a node in the network unambiguously, we use the notation
gi . wj to refer to the node wj' of domain gi . L is the set of the
links between domains. Each inter-domain link is denoted
in the same way as the physical links in a domain.

580

IWP...

A

D 0

Figure 2. Representa- Figure 3. Areas of dif-
tives from Example 1 ferent admissibility

Figure 1. Topology Aggregation

4. QoS-aware Topology Aggregation

In order to do inter-domain routing more efficiently, each
domain is aggregated into a simpler topology. We adopt the
star with bypasses topology described in PNNI [2]. The
topology consists of two kinds of nodes - border nodes,
those connect to outside domains, and a single virtual nu-
cleus. Each border node connects to the nucleus by a link
called spoke. This is called a star topology. Each link has a
set of parameters associated with it which shows the QoS of
the link. If there are b border nodes, and the spokes are dif-
ferent, the complexity of this representation is O(b) which
is usually a lot smaller than the original domain. To make
the representation more flexible, we add inter-border links
called bypasses into the star. We call the links, both spokes
and bypasses, in the star network logical links since they
are not real physical links. The number of bypasses should
not be too large. In our algorithm we limit the number of
bypasses to be b as suggested in PNNI. Figure 1 presents an
example of aggregation.

Ideally, given a pair of border nodes bl and b2, the QoS
parameter of going from bl to b2 in the aggregation should
be the same as the QoS parameter of the best path in the
original domain. Even for a single metric, it is difficult to
achieve [11. There is another issue for networks with multi-
ple metrics: how to pick the best parameter. One path may
be the best in terms of delay but the other may be the best if
bandwidth is considered. For example, a delay-bandwidth
QoS pair (5 , 8) is better than another pair (10,lO) in terms
of delay but worse than the same pair if bandwidth is con-
sidered. Fortunately, partial order does exist among the
QoS parameters. (7,9) is better than (10,8) in both de-
lay and bandwidth. In order to solve this problem, we use
a line segment on the delay-bandwidth plane instead of a
single delay-bandwidth pair to represent each logical link
in the aggregation. There are two phases in our aggregation
scheme: (1) find the mesh (complete graph) of the border
nodes, (2) find the star with bypasses representation from
the mesh. Most existing aggregation mechanisms adopt the
same steps. We first discuss an algorithm for finding the

mesh and then we describe an algorithm that aggregates the
mesh into a star network with bypasses.

4.1. Mesh Formation

The mesh is a complete graph of the border nodes. The
parameter of each logical link should ideally be the best pa-
rameter among all physical paths going between the two
nodes. As mentioned above, there is no absolute order for
parameters having two metrics. But, a partial order can be
developed.

Definition 1 A point (2, y) is more representative than a
point (x’, y’) ifthey are not the same and x 5 x’ and y 2
Y‘.
Definition2 Given a set (S) of points in the delay-
bandwidth plane, (x, y) is a representative of S if(., y) E
S and there does not exist other point (x’, y’) 6 S
which is more representative than (2, y), which means that,
V(x’, y’) E S, x 5 x’ or y 2 y’.

Example 1 Let S be a set of the delay-bandwidth QoS
pairs and S = ((4, 5), (7, 9), (10, B), (9, 5), (2, 3), (7, 7)).
(2,3) is a representative of S since its delay is less than all
other points in S. Another representatives are (4,5) and
(799).

If we plot all these ordered pairs on a bandwidth vs. de-
lay Cartesian plane, it is easy to find out all representatives.
Interested readers can refer to [13] for the detailed algo-
rithm. Note that the number of representatives are bounded
by IEl in the domain (V, B , E) because each path must
be constrained by a certain link and there are at most (El
links. On the other hand, the number of representatives
is also bounded by the number of different bandwidth val-
ues. Therefore, if we divide the bandwidth requirements
into several groups, the number of representatives can be
further reduced.

In Figure 2, the shaded area defines the region of ac-
ceptable services. The dotted line is a staircase rising from

581

left to right. The representatives are points on the convex
corners of the steps. There may be many points on the stair-
case. Due to storage limitation on the routers, it is favorable
to keep only a constant number of points. We suggest using
line segments to approximate the staircase.

4.1.1 Partitioning of Delay-Bandwidth Plane

When a QoS request arrives, the routing algorithm must
be able to identify whether it can be supported or not. In
the case where parameters are numerical values, it can be
done by simply comparing the requested parameter with
the ”best” parameter. However, in a network with multiple
metrics, no matter which path parameter is picked to be the
best, some supported requests will be rejected. In our rep-
resentation, in order to identify unsupported and supported
requests quickly, we partition the whole delay-bandwidth
plane into three areas using two line segments and each log-
ical link in the mesh is represented by these two lines. These
three areas reflect the difference in admissibility of the QoS
requests:

1 . admissible region - the region of QoS parameters that
are guaranteed to be served

2. inadmissible region - the region of QoS parameters
that cannot be served for sure

3. uncertain region - the region where it is not certain
whether QoS parameter can be served or not

Figure 3 shows the division of the delay-bandwidth plane
into three non-overlapping areas using two line segments
L1 and L2 of the same staircase as in Figure 2. The lower
lighter shaded region is the admissible region. It is a subset
of the shaded staircase region in Figure 2 which means that
any QoS parameter that falls in this region can be served by
a particular path. The darker shaded region is the inadmis-
sible region. It does not intersect with the staircase and so
none of the QoS requirements in that region can be fulfilled
by any path. Finally, the white area between the admissible
and the inadmissible regions is the uncertain region. This
region contains the staircase together with the areas that are
inside the staircase and outside the staircase. As a result,
some of the QoS pairs can be accepted while some others
are not. It implies that given a QoS parameter that lies in
this region, without knowing the staircase, we are not cer-
tain whether it can be served or not.

In the following discussion, we call L1, which defines
the inadmissible region, the inadmissible line, and L2 the
admissible line. Furthermore, we call the highest horizon-
tal line in the staircase upper line and the vertical line with
the smallest delay lefmost line. The staircase can be used
to find L1 and L2. The main difference between the two
lines is that the admissible line is below the staircase while

the inadmissible line is above the staircase. Many different
line segments can represent admissible lines and inadmissi-
ble lines. For example, line L can be an admissible line too.
However, since we want to minimize the size of the uncer-
tain region, we would like to find the lines that are closest to
the staircase. Therefore, for both L1 and L2, the bandwidth
of the upper endpoint should have the same bandwidth as
the upper line. On the other hand, the delay of the lower
endpoint should not be smaller than the delay of the left-
most line. In our simulations, we used linear regression to
find the slopes of the lines. It takes O(m) time to find each
line, where m is the number of points on the staircase.

If there is only one representative, the line becomes a
single point. Since each line segment can be defined un-
ambiguously by two endpoints, we denote a line segment
as [lower endpoint, upper endpoint] where the endpoints
are denoted using traditional Cartesian coordinates. A sin-
gle point is denoted as a line where both endpoints are the
same.

4.2. Star Formation

For a domain having b border nodes, there are b * (b -
l) , which is O(b2), logical links in the mesh. This is too
expensive to be broadcasted. Our next step is to aggregate
the mesh into a star network with at most b bypasses so that
the total number of links is O(b).

Let i and j be two border nodes in the star representation.
If there is no bypass between i and j , the only path going
from i to j is i -+ n -+ j in the star, where n is nucleus.
Our goal in aggregation is to find out the parameters of links
i + n and n + j such that the delay and bandwidth of i +
n + j in the star is the same as the delay and bandwidth of
i -+ j in the mesh. Basically, we have to “split” a logical
link i + j in the mesh into two logical links i + n and
n + j, which are spokes in the star.

Before describing the algorithm for splitting a logical
link, we first describe how we find the line segments of
i + n + j, given i + n and n + j. The problem is
well-defined for numerical parameters like the ones we used
in Section 3.1 (D, W), but not obvious for a line segment
parameter representation. The join operation is denoted as
”+” and defined as:

Definition 3 [(a , b) , (c, d)] + [(a‘, b‘), (c’, d‘)] = [(a +
a‘, min(b, b‘)), (c + c‘, min(d, d‘))]

We now proceed to discuss the process of finding the
spokes and bypasses. The process consists of three steps:
(1) Find the spokes from border node i to nucleus (Section
4.2.1); (2) Find the spokes from nucleus to i (Section 4.2.2);
(3) Find the bypasses between border nodes (Section 4.2.3).

582

4.2.1 Finding the spokes incoming to the nucleus

As we discussed in the previous section, we have to "break"
line segments to form spokes. Since the join operation
adds up the delays and takes the minimum of the band-
widths, each spoke in the star should have a smaller delay
and maybe a higher bandwidth than the line segment in the
mesh. Our algorithm of finding spokes from border node i
to n is based on these observations. Denote "1;; to be the
admissible line segment from i to j in the mesh m and '1;;
to be the admissible spoke from i to the nucleus.

Algorithm 1: Admissible spoke from i to n

(1) Given Mad = ("l$ I i , j E B and i # j } , find the set
Mad i = {"l;; I j E B and i # j} where " I f is the
admissible line segment from i to j in the mesh.

(2) For the line segments in Mad i ,

find out the smallest delay (minld) of the lower
endpoints

find out the smallest delay (min-ud) of the higher
endpoints

find out the highest bandwidth (max-lw) of the
lower endpoints

find out the highest bandwidth (max-uw) of the
higher endpoints

(3) "1;; = [(min-ld, max-lw), (min-ud, max-uw)]

The algorithm for finding inadmissible spokes is similar
except we use the set of inadmissible lines. O(b) time is
needed to find one spoke and it takes O(b2) time to find all
spokes incoming to the nucleus.

Example 2 (Illustration of Algorithm 1) Let b = 3 and
the admissible line segments from node 0 to border nodes
I and 2 are [(9, 4), (19, 6)] and [(6, 4), (6, 4)](Figure 4).
The endpoints of the line segmentfrom node 0 to node 2
are the same. It means that there is only one representative
among all paths that goes from node 0 to node 2. m i n l d
= min-ud = 6, and m a x l w = 4 and max-uw = 6. There-
fore, the admissible line segment from 0 to nucleus is [(6,
4). (6, 6)l.

4.2.2 Finding the spokes outgoing from the nucleus

We now proceed to find the spokes from the nucleus to the
borders. For admissible lines, we know Mad as well as
"t;, and we want to find "1;; such that the result of join-
ing '1;; and '1:; is exactly "lgd. We now define a disjoint
("-") function such that " I d - "li",d would be the desirable
"1;;. (The same holds for inadmissible lines too.)

Definition 4 [(a , b) , (c, d)] - [(a', b'), (d , d')] = [(a -
a',min(b,b')),(c - c',min(d,d'))]

If we apply the formula to different j for the same i, we
may have several different "1:;. How we pick "1:; depends
on whether it is an admissible spoke or an inadmissible one.
We first look at the situation for admissible lines. After the
aggregation, we want "1;; + "1;; to be an admissible line
too. Since "1;; + "1;; may not be " l f , we have to find an
alternative line 1 such as "1:; + "1;; = 1 and 1 is defining a
correct admissible region for the paths from i to j. Lemma
1 gives the properties of 1. Let 1.up and 1 . 1 ~ be the upper
endpoint and lower endpoint of 1 respectively. Denote the
delay and bandwidth of a point p as p.d and p.w. Thus, the
delay of the upper endpoint of a line 1 is denoted as 1 .up.d.

Lemma 1 Let lad be an admissible line defining an admis-
sible region R on the delay-bandwidth plane. Any line 1
such that 1.lp.d 2 lad.lp.d, l.up.d 2 lad.up.d, 1.lp.w 5
lad.lp.w, and l.up.w 5 lad.up.w defines an admissible re-
gion R' where R' g R (Figure 5).

Due to space limitation, the proof of Lemma 1 is skipped.
The following algorithm shows how to find the admissible
spokes from the nucleus to the border nodes. It is devised
from Lemma 1. The total time for finding all spokes outgo-
ing from n is also O(b2) due to the same reason as Algo-
rithm l.

Algorithm 2: Admissible snoke from n to i

(1) Given Mad and ("1;: I j E B and i # j}, find the set
= ("1;: - "1;: I j E B and i # j}. Mad

(2) For the line segments in Mad i ,
find out the largest delay (max-ld) of the lower
endpoints

find out the largest delay (max-ud) of the upper
endpoints

find out the smallest bandwidth (m i n l w) of the
lower endpoints

find out the smallest bandwidth (min-uw) of the
higher endpoints

(3) "1;; = [(max-ld, m i n l w) , (max-ud, min-uw)].

Example 3 (Illustration of Algorithm 2) Refer to the line
segments in Example 2, "1:; - "1:; = [(O, 4), (0, 4)]. Sup-
pose "1;; - '1;: = [(O, 5), (3, 7)l. maxdd = 0, max-ud
= 3, m i n l w = 4, and min-uw = 4. Therefore, the admis-
sible line segmentfrom nucleus to 2 is [(0, 4), (3, 4)]. The
admissible line segments from nucleus to 0 is [(I , 4), (0, 6)]
and nucleus to I is [(3, 4), (13, 6)J

583

0

Figure 4. Example 2

For the inadmissible spokes, instead of finding largest
delays and smallest bandwidths as in Algorithm 2, smallest
delays and largest bandwidths are used to form the spokes
according to the following lemma.

Lemma 2 Let linad be an inadmissible line defining an in-
admissible region R on the delay-bandwidth plane. Any
line 1 such that 1.lp.d 5 linad.lp.d, 1.up.d 5 linad.up.d,
1.lp.w 2 linad.lp.w, and 1.up.w 2 linad.up.w defines an
inadmissible region R' where RI E R.

4.2.3 Finding Bypasses

Obviously, due to the aggregation, "1:; + may be differ-
ent from "16. In order to make the aggregation more pre-
cise, bypasses are introduced. Intuitively, bypasses should
be put in the border nodes where "1;; + "l$ deviates a lot
from "1:;. Therefore, we need a quantitative measure of
deviations. The actual deviation of "1:; + "l$ from "1:; is
the difference in the areas covered by the two line segments.
However, since the delay-bandwidth plane is unbounded,
we cannot find the actual areas. Since the distance between
endpoints is directly related to the area bounded by line seg-
ments, and is easy to compute, we use this as the mean of
measurement. After finding the deviation of each border
pair, the algorithm puts bypasses between those border pairs
that have b largest deviations. A more detailed explanation
can be found in [131.

5. Routing

IP networks are represented by a two-level hierarchical
structure. Therefore, there are two levels of routing: inter-
domain routing and intra-domain routing as mentioned in
Section 1. For examp!e, a connection request from node
A . l (node 1 of domain A) to 0 . 2 (node 2 of domain D)
requires an inter-domain path from A to D and an intra-
domain path from the border node of D to node 2. There
may be some other domains which lie in the inter-domain
path. In passing a domain, we go from one border node to
another. This is also an intra-domain path. In the following,
we first describe the general idea of our hierarchical routing

D

Figure 5. Lemma 1

algorithm and then discuss how to find the inter- and intra-
domain paths.

5.1. Overview

The hierarchical algorithm is based on the ticket-based
probing in [4]. It is a distributed routing process. Different
from many existing routing algorithms for multiple metrics,
users do not have to specify precedence in QoS parame-
ters. A ticket represents the permission of searching one
path. Only the source node can issue tickets based on its
own state information and more tickets are generated for re-
quests of tighter requirements. Probes carrying one or more
tickets are sent from the source towards the destination to
search for a feasible path. When an intermediate node re-
ceives a probe, it decides how to forward the tickets in the
probe received to its own neighbors. Since each probe car-
ries at least one ticket, number of probes sent to neighbors
is restricted by the number of tickets. Finally, if a probe
successfully arrives at the destination, then a path is found.

5.2. State Information

Most distributed routing algorithms require each node in
the network to keep a distance table showing the least cost
or least delay from that node to every destination. In our
algorithm, the entry of the distance table is a pair of admis-
sible line and inadmissible line to that destination. There
are two tables: intra-domain table and inter-domain table.
As the names imply, the intra-domain table stores the line
segments to every node within the same domain and inter-
domain table keeps the line segments to each outside do-
main.

The intra-domain table can be obtained by applying the
distance-vector or link-state protocols. In these protocols,
comparisons of two parameters are necessary. As our pa-
rameters are line segments, not numerical values, we need
another mechanism in comparing. Figure 6 illustrates the
idea. In (a), suppose l lad and 12ad are the admissible lines
of two different paths. The shaded area is the "combined"
admissible region which is the union of the two regions de-
fined by llad and 12ad. Line Lad that falls in the union

584

W

(a) Admissible Line (b) Inadmissible Line

Figure 6. Illustration of line picking

region can be used to be the admissible line. The situation
of inadmissible lines is shown in Figure 6(b). The shaded
area is the intersection of the inadmissible regions defined
by llinad and 12innad in the figure and Linad can be used
to represent the region. Both lines should be able to be
obtained in O(1) time since there are at most 4 points to
consider. Therefore, the total running time of obtaining the
line segments should be the same as when only one metric
is considered.

Unlike the intra-domain table, the computation of inter-
domain table is not straight-forward. Since the star aggre-
gations are broadcasted to border nodes only, an internal
node alone does not have enough information to compute
the line segments to an outside domain. On the contrary,
as the border nodes collect the star aggregations of all out-
side domains, they can fill out their own inter-domain tables
easily. The inter-domain tables of border nodes are then
broadcasted to the nodes inside the same domain. Let the
admissible line from an internal node g . s to a border node
g.bd be $r',,,.bd. Also, let the admissible line from g.bd
to an outside domain g' be liflbd,,,. The admissible line
of the path going from g.s to g1 through g.bd is lir',,,.bd +

By comparing and evaluating the formula for each
border bd, g.s can fill out the entry of the inter-domain table
for domain g l .

5.3. Ticket-based Probing

We now describe the idea of our routing algorithm. We
will explain how to find the inter- and intra- domain routes
in the next section. Suppose there is a QoS request of pa-
rameter (Dreq, Wreq) going from source node s to target
node t. Let the admissible line and the inadmissible line
from s to t be l : l t and 12; respectively.

5.3.1 Ticket Generation

A ticket represents the permission of searching one path.
Tickets can be generated by the source node only. Since
tickets can never be created in the process of forwarding, if
a node receives more tickets, it can forward them to more
neighbors, and more paths are searched. Let the number

Figure 7. Delay Distance

of tickets at source s be NO. NO can be determined by
(Dreq, Wreq), l:$t and l:yf in O(1) time.

If (Dreq , W r e q) falls in the inadmissible region defined
by lzf, the request should be rejected since no path
can support the QoS service. NO = 0 then.

If (Dreq, Wreq) falls in the admissible region defined
by 1 : l t , there should be a feasible path and one ticket
is sufficient. Therefore, NO = 1.

If (Dreq, W,,,) falls in the uncertain region, NO de-
pends on the distance between (Dreq, Wreq) and the
lines. Intuitively, the closer the point is to the ad-
missible line, the easier it is to find a path and so
less tickets are needed. On the contrary, if the point
lies very close to the inadmissible line, we need more
tickets so that more paths are searched. We use the
delay distance, as shown in Figure 7 as the mean of
measurement. Let dad be the delay distance between
(Dreq, Wreq) and lz5t, and dinad be the delay dis-
tance between (Dreq, Wreq) and ltyf. Let 9 be the
maximum allowable number of tickets in the system.
Then No = rdad+Znad x al. NO is larger when
(D ~ ~ ~ , wreq) is closer to 12f.

5.3.2 Ticket Forwarding Protocol

If NO > 0, s generates one or more probes. These probes
will carry tickets and will be sent to t. To each neighbor,
a node can send at most one probe. Each probe stores the
delay and the bandwidth of the path that it has gone through.
Each probepcarries the information (D,, W,), where Dp is
the sum of the delays of all links it traverses so far and W, is
the minimum bandwidth. When a node receives a probe p,
it uses (D,, W,), the admissible and the inadmissible lines
of its neighbor to determine how to forward the tickets to its
neighbor. There are two issues: which neighbors to forward
and how many tickets to forward.

A node i forwards a probe p to a neighbor j only if it
is possible to find a feasible path from j to the destina-
tion. We call such a neighbor candidate neighbor. The
bandwidth of a feasible path must be at least Wreq and

585

the delay of a feasible path should not be greater than
Dreq. The delay of the path from s + i + j + t

implies Dj+t 5 Dre9 - D, - D+j. On the other
hand, the bandwidth of the path is min{ Wp, Wi+j, Wj+t}.

min{W,,Wj+j,Wj+t} 2 Wre9 implies Wi+j 2 Wreq
and Wj+t 2 Wre9. Therefore, a neighbor j is a candidate
neighbor if (1) Wi+j 2 Wreq, and (2) (Dj+t, Wj+) is
better than or the same as (Dreq - Dp - Dj+j, W,,,), i.e.,
the point does not lie in the inadmissible region defined by
J+t *

If there is no candidate neighbor, it means that it is im-
possible to go.to the target from the current node. All the
tickets should be dropped. If some candidate neighbors are

there are two cases: (1) (Dcond, W c o n d) lies in the admissi-
ble region of one of the neighbors, and (2) (Dcond, Wcond)
lies in the uncertain regions of all neighbors. Case (1)
means that a feasible path can be found definitely. There-
fore, one ticket is needed to be forwarded to that neighbor
and all other tickets can be dropped without forwarding to
others. For case (2), in order to increase the probability of
finding a feasible path, the closer (Dcond , W c o n d) to l;!+,,
the more tickets j should receive. Let did and d:nad be the
delay distances from (Dcond, W c o n d) to l;!,, and 12; re-
spectively. Let the number of tickets that i receives be Ni.
The number of tickets that should be forwarded to a node i

is D p + Di+j + Dj+t. D p + Di+j + Dj+t 5 Dreq

linad

found, let (Dre9 - D p - Di+j > Wreq) be (Dcond , W c o n d) ,

tives between two borders
number of representatives
on a staircase
finding the line segments
for a staircase
total time for finding a log-
ical link in the mesh

time for finding all the log-

in candidate neighbor set R is (did+di ' Id id . x Ni.
j t ER (disii ad) I d i d

O(IEi I)

O(lEi1)

O(l&llEi12) +
O(lE l> + O(l&l>
= O(lKIl&l2)
O(IBi(21V,llEi(2)

The function is inversely proportional to d id . The total run-
ning time of calculating tickets is linear to the number of
neighbors.

to g.b' is an intra-domain one and the mechanism described
in Section 5.3.2 can be applied directly.

6. Performance Analysis

In this section, we are going to analyse the storage and
the running time our algorithm needs and present our simu-
lation results. In the following, we assume the network has
n domains. Domain i, gi, is a graph (Vi, Bi, Ei) where V,
is the set of nodes, Bi is the set of borders and Ei is the set
of edges.

The main information in each node is stored in two ta-
bles. Number of entries in the intra-domain table is IV, I - l
and number of entries in the inter-domain table is n - 1.
The storage for the whole domain gi is O(lKl * (IV,l +
n)). The total storage needed for the whole network is
O('& IV,l * (1x1 + n)). If n is in the order of 1x1, it
is reduced to O(Cy=l lV,I2). If hierarchical structure was
not used, storage in each node would be O(cy=l IKl) and
the total storage would be O((cy=l lV,1)2), which is a lot
more expensive than O(Cy=l lViI2).

Table 1. Running Time of Aggregation I finding all the representa- I O(lV,llEi12)

5.4. Inter- and Intra- Domain Routings ical links in the mesh
time to find all the sDokes I O(lBi121

An inter-domain route specifies which domains to tra-
verse in order to go from the source domain to the target
domain. In other words, an inter-domain route identifies
which border nodes to go through. When a border node
b in domain g receives a probe p from other domain, the
probe must leave g through another border node b' in g if
the destination of the probe is t # 9. b' can be found by
applying the technique of finding candidate neighbor in the
ticket forwarding protocol. The admissible line from g.b to t
through g.b' is l$,+g.b, + I ;$+. l $,+g ,b l can be obtained
from the intra-domain table of g.b while l,"$l+t can be ob-
tained from the inter-domain table of g.b' (Section 5.2). By
checking whether (Dre9 - D,, Wrep) falls in the inadmis-
sible region defined by l z & b l + lr;",, we can identify
whether b' is a candidate border. The number of tickets to
be forwarded to each candidate border can be evaluated in a
similar fashion as described in Section 5.3.2. After a candi-
date neighbor, say b', is found, the routing problem from g . b

time to find all the bypasses 1 O(1q3)
Total Time in Aggregating I O(~Bi~2~V,~~E~~2) +

Table 1 summarizes the worst case running time of ag-
gregating domain gi in each step. It is obvious from the
table that the most expensive step is finding the represen-
tatives by running the modified Bellman-Ford algorithm.
Therefore, our aggregation mechanism takes at most the
same time as the algorithm proposed in [101.

In our simulation, we compare our algorithm (TBP) with
the flooding (FD) and the shortest path (SP) algorithms. In
the following discussion, we call a path that supports a re-
quest a feasible path and a request that can be supported
by a certain path afeasible request. Furthermore, we call a
request accepted request of a certain algorithm if that algo-
rithm is able to find a feasible path for the request. Obvi-
ously, an accepted request is always a feasible request but

586

a feasible request may not be an accepted request since the
algorithm may be unable to find a feasible path for the re-
quest. In the flooding algorithm, every node sends out rout-
ing messages to all neighbors as long as the accumulated
delay is less than the required one and the bandwidth re-
quirement is satisfied. Therefore, the flooding algorithm
always finds a feasible path if one exists. However, it gen-
erates enormous amounts of messages. The shortest path
algorithm, that we use in the simulation, is a centralized
modified Dijkstra algorithm. The source, which has the cen-
tralized topology, first finds out an inter-domain path that
traverses the least number of domains. Then, within each
domain, a path that goes through the least number of physi-
cal nodes is found using the centralized information. If the
parameter of this shortest path can satisfy the request, a fea-
sible path is found. Due to the centralized nature of SP, no
routing message is generated, but, feasible requests may be
rejected. Our algorithm is a compromise between the two: it
generates reasonable number of routing messages and finds
more feasible paths than SP can do.

The simulated network topology testbed consists of 10
domains, each has 10 to 30 nodes, having a total of over
180 nodes. The number of borders varies from 3 to 5. All
the nodes are connected by directed links and each node is
connected to at least 3 other nodes in the same domain. The
domains are connected by 40 inter-domain directed links.
The delay of each link is between 2ms to l h s and the
bandwidth is in the range of 5 kByte/s to 10 kByte/s.
Routing requests are generated randomly and only inter-
domain requests are studied. We measure the sucess ra-
tios and numbers of routing messages generated of the al-
gorithms. We measure the success ratio using the formula
number of acce ted re uests total number zf requ(lests . For routing messages, we
count the messages that each node sends to its neighbors
in order to establish an end-to-end delay-bandwidth con-
strained route. In TBP, each message is a probe that carries
one or more tickets and other information mentioned in Sec-
tion 5 .

Figures 8 and 9 show the success ratios of the three algo-
rithms w.r.t. delay and bandwidth respectively. The curves
of all three algorithms in Figure 8 are rising because a re-
quest is easier to be acceptedfeasible when the required de-
lay is less restricted. It can be seen that TBP performs better
than SP, especially when the delay requirement is tight. In
fact, the success ratios of TBP and FD are the same when
the acceptable delay is very small. Although SP performs
much better when requested delay becomes larger, TBP still
has a higher success ratio than SP. When we consider band-
width as in Figure 9, TBP again performs better than SP.
The performance of TBP in tight bandwidth requirement
seems to be worse than when the delay requirement is tight.
It is because we use delay distance in calculating how many
tickets to generate and forward (Section 5.3.1). Hence, by

0..

g ~, . *
1

0..

0.

Figure 8. Success Ratio w.r.t. delay

-__ ----- -

%. ...
..._.

\. -._.

................... "

-

-

a s 7

Figure 9. Success Ratio w.r.t. bandwidth

using delay distance, TBP becomes more sensitive to delay
requirement.

Figures 10 and 11 show the numbers of probes (mes-
sages) TBP generates for the requests. Intuitively, the
tighter the requirement, the more probes we need. How-
ever, when the requests are tighter, a larger portion of them
become infeasible. Since TBP would reject some of the in-
feasible requests in Case (1) of ticket generation, no probe
is generated for those requests. It reduces the average num-
bers of probes needed then. In fact, the rejection mechanism
of TBP effectively reduces the number of routing messages.
In the simulation, at least 60% of infeasible requests are re-
jected without generating any probe for all values of delay
and bandwidth. For FD, since there is no rejection mecha-
nism as in TBP, routing messages are generated for all re-
quests, no matter it is feasible or not. In our simulation, due
to the size of our network, FD generates more than 100 mes-
sages for each routing request while the average number of
probes TBP needs is only between 2 to 12.

Overall, our theoretical and simulation results both show
that our hierarchical QoS routing framework has improved
performance in terms of storage, running time, and routing
performance when compared with algorithms such as QoS-
aware flooding and Dijkstra algorithms.

587

I ’ ’ . ’ . .---

Figure 10. Number of Messages w.r.t. delay

7. Conclusion

In this paper, we present a new framework for QoS hier-
archical routing in delay-bandwidth sensitive network. We
introduced a new parameter representation that can repre-
sent parameters with both additive and attributive metrics.
Based on the new parameter representation, we device a
new topology aggregation algorithm. We show in detail
how to obtain the aggregation and present a distributed hi-
erarchical routing algorithm that works with our represen-
tation. Both theoretical and simulation results show that
the new algorithm yields improved performance when com-
pared with the flooding and the shortest path algorithms.
Our future direction is to investigate the performance of the
routing algorithm when imprecision exists and compare the
performance with other existing algorithms. Furthermore,
we will explore the possibility of applying the technique to
the NP-complete routing problem of two additive metrics.

References

[l] B. Awerbuch and Y. Shavitt. Topology aggregation for di-
rected graphs. Technical Report 98-14, DIMACS, Feb. 1998.
Also, in In IEEE Proceedings of the ISCC’ 98, p. 47-52,
1998.

[2] The ATM Forum. Private network-to-network interface
specification version 1.0 (pnni l.O), March 1996. f-pnni-
0055.000.

[3] S. Chen and K. Nahrstedt. An Overview of Quality-of-
Service Routing for the Next Generation High-speed Net-
works: Problems and Solutions. In IEEE Network Maga-
zine, Special Issue on Transmission and Distributed of Digi-
tal video, 1998.

141 S . Chen and K. Nahrstedt. Distributed QoS Routing with
Imprecise State Information. Intemutional Conference of on
Computel; Communications and Networks, ICCCN’98, Oct.
1998.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to
Algorithms, the MIT Press.

Figure 11. Number of Messages w.r.t. bandwidth

[6] M. R. Garey and D.S. Johnson. Computers and Intractability,
A Guide to the Theory of NP-completeness, W.H. Freeman
and Co., San Francisco, CA, 1979.

[7] L. Guo and I. Matta. On state aggregation for scalable QoS
routing. In IEEE Proceedings of the ATM Workshop’98, p.
306-314, May 1998.

[8] Fang Hao, Ellen Zegura. On Scalable QoS Routing: Perfor-
mance Evaluation of Topology Aggregation. In IEEE Pro-
ceedings of the INFOCOM’OO, Mar. 2000.

[9] A. Iwata, H. Suzuki, R. Izmailow, and B. Sengupta. QoS
Aggregation Algorithms in Hierarchical ATM Networks. In
IEEE Proceedings of the ICC’98, p.243-148, 1998.

101 T. Korkmaz and M. Krunz. Source-oriented topology aggre-
gation with multiple QoS parameters in hierarchical ATM
networks. In IEEE Proceedings of the lWQoS’99, p. 137-
146, 1999.

111 W. C. Lee. Spanning tree method for link state aggregation
in large communication networks. In IEEE Proceedings of
the INFOCOM’9S, p. 297-302, 1995.

121 W. C. Lee. Topology aggregation for hierarchical routing in
ATM networks. In ACM SIGCOMM’9, Computer Commu-
nications Review, p. 82-92, 1995.

[13] K. Lui and K. Nahrstedt. Topology aggregation of
Bandwidth-Delay sensitive Networks. Technical Report, De-
partment of Computer Science, UIUC, Sept. 1999.

[14] E.Rosen. Exterior gateway protocol (EGP). RFC 896, Net-
work Information Center, SRI Int., Menlo Park CA, Oct.
1982.

151 Z. Wang and J. Crowcroft. Bandwidth-Delay Based Routing
Algorithms. In IEEE Proceedings of GLOBECOM’95, vol.

161 Z. Wang and J. Crowcroft. Quality-of-service routing for
supporting multimedia applications. In IEEE Journal on Se-
lected Areas in Communications , vol.14, no.7, Sept. 1996.

3, p.2129-33, 1995.

588

