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Abstract 

Large networks are often structured hierarchically by 
grouping nodes into different domains in order to deal with 
the scaling problem. In such networks, it is infeasible to 
maintain the detailed network information at every routel: 
Therefore, topology information of domains are summa- 
rized before broadcasted. This process is called topol- 
ogy aggregation. Hierarchical routing protocols are then 
used to find a route among the domains. We study several 
basic problems associated with hierarchical QoS routing, 
including (1) how to make QoS-aware topology aggrega- 
tion, (2) how to represent the aggregated network state, 
and (3) how to find an end-to-end route based on aggre- 
gated information. The novelty in this research is our new 
network QoS representation which is line segments on the 
delay-bandwidth plane. We also present a distributed rout- 
ing mechanism that works with our representation. Our 
theoretical and simulation results show that the protocol 
achieves scalability and improved routing performance. ' 

1. Introduction 

Nowadays, internetworks are global and consist of enor- 
mous number of routers and networks. In order to do rout- 
ing more efficiently, the Internet is partitioned into different 
autonomous systems [14]. Each autonomous system (AS) 

'The first two authors were supported by the Airforce grant under con- 
tract number F30602-97-2-0121. the National Science Foundation Career 
grant under contract number NSF CCR 96-23867. and the National Sci- 
ence Foundation PACI grant under contract number PACI EIE QLTY SVC 
1-1-13006. 

is a domain that consists of routers, networks, and hosts. 
The router, that connects to an outside AS, is called a gate- 
way. Computers or hosts are identified by IP addresses that 
consist of two parts: the first part identifies the AS and the 
second part identifies the host inside the particular AS. This 
kind of addressing is called hierarchical addressing and the 
corresponding routing algorithm is called hierarchical rout- 
ing. The routing algorithm first finds how to reach the gate- 
way of the AS where the destination resides (inter-domain 
routing). Then, a path is found from that gateway to the tar- 
get node (intra-domain routing). As the QoS traffic (voice 
and video) grows exponentially, there is a need to extend 
this hierarchical structure to support QoS routing, which 
means to find a network path that has sufficient resources to 
meet the throughputheal-time requirement of a traffic flow 
between two end hosts. 
QoS routing has been studied separately at the inter-domain 
level and the intra-domain level. At the inter-domain level, 
topology aggregation is introduced to reduce the amount of 
information a router needs to maintain so that the scalability 
can be achieved. The idea is to aggregate each domain into 
a simple topology, e.g. a star, which captures the cost of 
going from one end of the domain to another [12], [8]. This 
simplified topology is broadcasted and is used in finding 
an inter-domain path. At the intra-domain level, many QoS 
routing protocols have been proposed recently, and they can 
be grouped into two major classes: source routing and dis- 
tributed routing [3]. In source routing, each node maintains 
the complete global network state, based on which a routing 
path is computed locally at the source node. In distributed 
routing, a path is determined in a distributed manner. Rout- 
ing messages are exchanged among the nodes so that the 
network state information maintained at different nodes can 
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be collectively utilized. 
In this paper, we study (1) how to make QoS-aware topol- 
ogy/state aggregation, (2) how to represent the aggregated 
network state, and (3) how to find an end-to-end route based 
on such aggregated information. We introduce a new frame- 
work for hierarchical QoS routing in delay-bandwidth sen- 
sitive networks. In this framework, we use a new repre- 
sentation of link information and discuss the correspond- 
ing topology aggregation algorithm and routing algorithm. 
Theoretical and simulation results show that our algorithm 
has satisfiable performance in terms of storage, running 
time and success ratio. 
The rest of the paper is organized as follows: Section 2 dis- 
cusses the related work, Section 3 presents our model, Sec- 
tion 4 describes the topology aggregation algorithm for do- 
mains, Section 5 describes the routing algorithm (both inter- 
domain and intra-domain) that works with our framework, 
Section 6 presents the performance analysis, and finally, we 
draw conclusions in Section 7. 

2. Related Work 

Topology aggregation and QoS routing, have been dis- 
cussed, mostly independently, by various studies. 

A topology aggregation algorithm, that achieves 
bounded distortion in domains with only one parameter, is 
studied in [I]. However, the theoretical bound of distor- 
tion of networks having two or more parameters is still un- 
known. There are not many studies addressing topology 
aggregation of multiple parameters. Some studies can be 
found in [9], [lo], and [ll]. Traditional approaches usually 
represent each logical link as a delay-bandwidth QoS pair 
using numerical values representing the parameter of the 
"best" path. However, this approach is obviously not suf- 
ficient since if there are several paths between the source 
and the target, it is difficult to pick the best QoS pair. 
Moreover, no matter which single pair is picked, parame- 
ters of some path are not reflected [IO]. In [IO], the au- 
thors describe some existing approaches in picking the best 
pair and also suggest instead of having only the numeri- 
cal values of bandwidth and delay, each logical link keeps 
an extra parameter which implicitly defines a curve pass- 
ing through a particular bandwidth-delay pair on a delay- 
bandwidth plane. A drawback of the curve proposed in [ IO] 
is that the curve may be very far away from other parame- 
ters. 

Although routing of only one parameter can be solved 
easily by the Dijkstra algorithm, routing of multiple pa- 
rameters is not easy. The problem of finding a path sat- 
isfying more than one additive constraint (e.g. delay and 
cost) is NP-complete [6], [ 161. In a bandwidth-delay sen- 
sitive network, the problem can be solved by a modified 
Dijkstra algorithm proposed in [15] and [16]. Most of the 

existing routing algorithms represent parameters using nu- 
merical values alone. In our framework, we use a differ- 
ent kind of representation, which is a line segment on the 
delay-bandwidth plane. According to our knowledge, this 
representation has never been studied before and therefore 
no existing routing algorithm can be used directly. 

3. System Models 

The whole network is partitioned into disjoint domains. 
A domain is a set of nodes that are connected by communi- 
cation links. Some nodes are connected to another domain 
and these nodes are called borders or gateways. We model 
the network and the domains as directed graphs where links 
can be asymmetric in both directions to make it more flexi- 
ble. We first discuss the domain model and then the network 
model. 

3.1. Domain Model 

A domain is modeled as a tuple (V, B,  E), where V is 
the set of nodes, B C V is the set of borders, and E is the 
set of directed links among the nodes in V. We call those 
links in E physical links. We denote the QoS parameter of 
each physical link as (D, W), which means the delay of the 
link is D units and the bandwidth is W units. 

A physical path from node vo to node V k  is denoted as 
(710 + v1 + 212 ... + V k - 1  + I&), where the directed 
link (v,,vi+l) E E for 0 5 i < IC .  Let (D,W)i+j be 
the parameter of physical link (U;, vi). Also, let Di+j and 
Wi+j be the delay and bandwidth of (vi, vj) respectively. 
The delay of the physical path from vo to v k  is the sum 
of the delays of all physical links along the path which is 
Cfzt (Di+i+l). The bandwidth of it is the minimum band- 
width among all bandwidths along the physical path which 
is minfzt { ~;+.i+l}. 

Let k = 3 and the parameters of (710,71l),  (vI,v~), and 
(212,713) are ( 3 3 ,  (5,4), and (6,4). Then, the delay of 
v1 + 712 + v3 is 3+5+6 = 14 and the bandwidth is 
min{5,4,4}=4. 

3.2. Network Model 

A network consists of a set of domains and links that 
connect them. A network is denoted as (G, L) where G = 
{gilgi = (Vi,&, Ei), 1 5 i 5 [GI}. In order to identify 
a node in the network unambiguously, we use the notation 
gi . wj to refer to the node wj' of domain gi . L is the set of the 
links between domains. Each inter-domain link is denoted 
in the same way as the physical links in a domain. 
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Figure 1. Topology Aggregation 

4. QoS-aware Topology Aggregation 

In order to do inter-domain routing more efficiently, each 
domain is aggregated into a simpler topology. We adopt the 
star with bypasses topology described in PNNI [2]. The 
topology consists of two kinds of nodes - border nodes, 
those connect to outside domains, and a single virtual nu- 
cleus. Each border node connects to the nucleus by a link 
called spoke. This is called a star topology. Each link has a 
set of parameters associated with it which shows the QoS of 
the link. If there are b border nodes, and the spokes are dif- 
ferent, the complexity of this representation is O(b) which 
is usually a lot smaller than the original domain. To make 
the representation more flexible, we add inter-border links 
called bypasses into the star. We call the links, both spokes 
and bypasses, in the star network logical links since they 
are not real physical links. The number of bypasses should 
not be too large. In our algorithm we limit the number of 
bypasses to be b as suggested in PNNI. Figure 1 presents an 
example of aggregation. 

Ideally, given a pair of border nodes bl and b2, the QoS 
parameter of going from bl to b2 in the aggregation should 
be the same as the QoS parameter of the best path in the 
original domain. Even for a single metric, it is difficult to 
achieve [ 11. There is another issue for networks with multi- 
ple metrics: how to pick the best parameter. One path may 
be the best in terms of delay but the other may be the best if 
bandwidth is considered. For example, a delay-bandwidth 
QoS pair ( 5 , 8 )  is better than another pair (10,lO) in terms 
of delay but worse than the same pair if bandwidth is con- 
sidered. Fortunately, partial order does exist among the 
QoS parameters. (7,9) is better than (10,8) in both de- 
lay and bandwidth. In order to solve this problem, we use 
a line segment on the delay-bandwidth plane instead of a 
single delay-bandwidth pair to represent each logical link 
in the aggregation. There are two phases in our aggregation 
scheme: (1) find the mesh (complete graph) of the border 
nodes, (2) find the star with bypasses representation from 
the mesh. Most existing aggregation mechanisms adopt the 
same steps. We first discuss an algorithm for finding the 

mesh and then we describe an algorithm that aggregates the 
mesh into a star network with bypasses. 

4.1. Mesh Formation 

The mesh is a complete graph of the border nodes. The 
parameter of each logical link should ideally be the best pa- 
rameter among all physical paths going between the two 
nodes. As mentioned above, there is no absolute order for 
parameters having two metrics. But, a partial order can be 
developed. 

Definition 1 A point (2, y) is more representative than a 
point (x’, y’) ifthey are not the same and x 5 x’ and y 2 
Y‘. 
Definition2 Given a set ( S )  of points in the delay- 
bandwidth plane, (x, y) is a representative of S if(., y) E 
S and there does not exist other point (x’, y’) 6 S 
which is more representative than (2, y), which means that, 
V(x’, y’) E S, x 5 x’ or y 2 y’. 

Example 1 Let S be a set of the delay-bandwidth QoS 
pairs and S = ((4, 5), (7, 9), (10, B), (9, 5), (2, 3), (7, 7)). 
(2,3) is a representative of S since its delay is less than all 
other points in S. Another representatives are (4,5) and 
(799). 

If we plot all these ordered pairs on a bandwidth vs. de- 
lay Cartesian plane, it is easy to find out all representatives. 
Interested readers can refer to [13] for the detailed algo- 
rithm. Note that the number of representatives are bounded 
by IEl in the domain (V, B ,  E )  because each path must 
be constrained by a certain link and there are at most (El 
links. On the other hand, the number of representatives 
is also bounded by the number of different bandwidth val- 
ues. Therefore, if we divide the bandwidth requirements 
into several groups, the number of representatives can be 
further reduced. 

In Figure 2, the shaded area defines the region of ac- 
ceptable services. The dotted line is a staircase rising from 
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left to right. The representatives are points on the convex 
corners of the steps. There may be many points on the stair- 
case. Due to storage limitation on the routers, it is favorable 
to keep only a constant number of points. We suggest using 
line segments to approximate the staircase. 

4.1.1 Partitioning of Delay-Bandwidth Plane 

When a QoS request arrives, the routing algorithm must 
be able to identify whether it can be supported or not. In 
the case where parameters are numerical values, it can be 
done by simply comparing the requested parameter with 
the ”best” parameter. However, in a network with multiple 
metrics, no matter which path parameter is picked to be the 
best, some supported requests will be rejected. In our rep- 
resentation, in order to identify unsupported and supported 
requests quickly, we partition the whole delay-bandwidth 
plane into three areas using two line segments and each log- 
ical link in the mesh is represented by these two lines. These 
three areas reflect the difference in admissibility of the QoS 
requests: 

1 .  admissible region - the region of QoS parameters that 
are guaranteed to be served 

2. inadmissible region - the region of QoS parameters 
that cannot be served for sure 

3. uncertain region - the region where it is not certain 
whether QoS parameter can be served or not 

Figure 3 shows the division of the delay-bandwidth plane 
into three non-overlapping areas using two line segments 
L1 and L2 of the same staircase as in Figure 2. The lower 
lighter shaded region is the admissible region. It is a subset 
of the shaded staircase region in Figure 2 which means that 
any QoS parameter that falls in this region can be served by 
a particular path. The darker shaded region is the inadmis- 
sible region. It does not intersect with the staircase and so 
none of the QoS requirements in that region can be fulfilled 
by any path. Finally, the white area between the admissible 
and the inadmissible regions is the uncertain region. This 
region contains the staircase together with the areas that are 
inside the staircase and outside the staircase. As a result, 
some of the QoS pairs can be accepted while some others 
are not. It implies that given a QoS parameter that lies in 
this region, without knowing the staircase, we are not cer- 
tain whether it can be served or not. 

In the following discussion, we call L1, which defines 
the inadmissible region, the inadmissible line, and L2 the 
admissible line. Furthermore, we call the highest horizon- 
tal line in the staircase upper line and the vertical line with 
the smallest delay lefmost line. The staircase can be used 
to find L1 and L2. The main difference between the two 
lines is that the admissible line is below the staircase while 

the inadmissible line is above the staircase. Many different 
line segments can represent admissible lines and inadmissi- 
ble lines. For example, line L can be an admissible line too. 
However, since we want to minimize the size of the uncer- 
tain region, we would like to find the lines that are closest to 
the staircase. Therefore, for both L1 and L2, the bandwidth 
of the upper endpoint should have the same bandwidth as 
the upper line. On the other hand, the delay of the lower 
endpoint should not be smaller than the delay of the left- 
most line. In our simulations, we used linear regression to 
find the slopes of the lines. It takes O(m) time to find each 
line, where m is the number of points on the staircase. 

If there is only one representative, the line becomes a 
single point. Since each line segment can be defined un- 
ambiguously by two endpoints, we denote a line segment 
as [lower endpoint, upper endpoint] where the endpoints 
are denoted using traditional Cartesian coordinates. A sin- 
gle point is denoted as a line where both endpoints are the 
same. 

4.2. Star Formation 

For a domain having b border nodes, there are b * (b - 
l ) ,  which is O(b2),  logical links in the mesh. This is too 
expensive to be broadcasted. Our next step is to aggregate 
the mesh into a star network with at most b bypasses so that 
the total number of links is O(b). 

Let i and j be two border nodes in the star representation. 
If there is no bypass between i and j ,  the only path going 
from i to j is i -+ n -+ j in the star, where n is nucleus. 
Our goal in aggregation is to find out the parameters of links 
i + n and n + j such that the delay and bandwidth of i + 
n + j in the star is the same as the delay and bandwidth of 
i -+ j in the mesh. Basically, we have to “split” a logical 
link i + j in the mesh into two logical links i + n and 
n + j, which are spokes in the star. 

Before describing the algorithm for splitting a logical 
link, we first describe how we find the line segments of 
i + n + j, given i + n and n + j. The problem is 
well-defined for numerical parameters like the ones we used 
in Section 3.1 (D, W), but not obvious for a line segment 
parameter representation. The join operation is denoted as 
”+” and defined as: 

Definition 3 [ (a ,  b) ,  (c, d)] + [(a‘, b‘), (c’, d‘)] = [(a + 
a‘, min(b, b‘)), (c + c‘, min(d, d‘) ) ]  

We now proceed to discuss the process of finding the 
spokes and bypasses. The process consists of three steps: 
(1) Find the spokes from border node i to nucleus (Section 
4.2.1); (2) Find the spokes from nucleus to i (Section 4.2.2); 
(3) Find the bypasses between border nodes (Section 4.2.3). 
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4.2.1 Finding the spokes incoming to the nucleus 

As we discussed in the previous section, we have to "break" 
line segments to form spokes. Since the join operation 
adds up the delays and takes the minimum of the band- 
widths, each spoke in the star should have a smaller delay 
and maybe a higher bandwidth than the line segment in the 
mesh. Our algorithm of finding spokes from border node i 
to n is based on these observations. Denote "1;; to be the 
admissible line segment from i to j in the mesh m and '1;; 
to be the admissible spoke from i to the nucleus. 

Algorithm 1: Admissible spoke from i to n 

(1) Given Mad = ("l$ I i , j  E B and i # j } ,  find the set 
Mad i = {"l;; I j E B and i # j} where " I f  is the 
admissible line segment from i to j in the mesh. 

(2) For the line segments in Mad i ,  

find out the smallest delay (minld) of the lower 
endpoints 

find out the smallest delay (min-ud) of the higher 
endpoints 

find out the highest bandwidth (max-lw) of the 
lower endpoints 

find out the highest bandwidth (max-uw) of the 
higher endpoints 

(3) "1;; = [(min-ld, max-lw), (min-ud, max-uw)] 

The algorithm for finding inadmissible spokes is similar 
except we use the set of inadmissible lines. O(b) time is 
needed to find one spoke and it takes O(b2) time to find all 
spokes incoming to the nucleus. 

Example 2 (Illustration of Algorithm 1) Let b = 3 and 
the admissible line segments from node 0 to border nodes 
I and 2 are [(9, 4), (19, 6)] and [(6, 4), (6, 4)](Figure 4).  
The endpoints of the line segmentfrom node 0 to node 2 
are the same. It means that there is only one representative 
among all paths that goes from node 0 to node 2. m i n l d  
= min-ud = 6, and m a x l w  = 4 and max-uw = 6. There- 
fore, the admissible line segment from 0 to nucleus is [(6, 
4). (6, 6)l. 

4.2.2 Finding the spokes outgoing from the nucleus 

We now proceed to find the spokes from the nucleus to the 
borders. For admissible lines, we know Mad as well as 
"t;, and we want to find "1;; such that the result of join- 
ing '1;; and '1:; is exactly "lgd. We now define a disjoint 
("-") function such that " I d  - "li",d would be the desirable 
"1;;. (The same holds for inadmissible lines too.) 

Definition 4 [ (a ,  b ) ,  (c, d)] - [(a', b'), ( d ,  d')] = [(a - 
a',min(b,b')),(c - c',min(d,d'))] 

If we apply the formula to different j for the same i, we 
may have several different "1:;. How we pick "1:; depends 
on whether it is an admissible spoke or an inadmissible one. 
We first look at the situation for admissible lines. After the 
aggregation, we want "1;; + "1;; to be an admissible line 
too. Since "1;; + "1;; may not be " l f ,  we have to find an 
alternative line 1 such as "1:; + "1;; = 1 and 1 is defining a 
correct admissible region for the paths from i to j. Lemma 
1 gives the properties of 1. Let 1.up and 1 . 1 ~  be the upper 
endpoint and lower endpoint of 1 respectively. Denote the 
delay and bandwidth of a point p as p.d and p.w. Thus, the 
delay of the upper endpoint of a line 1 is denoted as 1 .up.d. 

Lemma 1 Let lad be an admissible line defining an admis- 
sible region R on the delay-bandwidth plane. Any line 1 
such that 1.lp.d 2 lad.lp.d, l.up.d 2 lad.up.d, 1.lp.w 5 
lad.lp.w, and l.up.w 5 lad.up.w defines an admissible re- 
gion R' where R' g R (Figure 5). 

Due to space limitation, the proof of Lemma 1 is skipped. 
The following algorithm shows how to find the admissible 
spokes from the nucleus to the border nodes. It is devised 
from Lemma 1. The total time for finding all spokes outgo- 
ing from n is also O(b2) due to the same reason as Algo- 
rithm l. 

Algorithm 2: Admissible snoke from n to i 

(1) Given Mad and ("1;: I j E B and i # j}, find the set 
= ("1;: - "1;: I j E B and i # j}. Mad 

(2) For the line segments in Mad i ,  
find out the largest delay (max-ld) of the lower 
endpoints 

find out the largest delay (max-ud) of the upper 
endpoints 

find out the smallest bandwidth ( m i n l w )  of the 
lower endpoints 

find out the smallest bandwidth (min-uw) of the 
higher endpoints 

(3) "1;; = [(max-ld, m i n l w ) ,  (max-ud, min-uw)]. 

Example 3 (Illustration of Algorithm 2) Refer to the line 
segments in Example 2, "1:; - "1:; = [(O, 4), (0, 4)]. Sup- 
pose "1;; - '1;: = [(O, 5), (3, 7)l. maxdd = 0, max-ud 
= 3, m i n l w  = 4, and min-uw = 4. Therefore, the admis- 
sible line segmentfrom nucleus to 2 is [(0, 4), (3, 4)]. The 
admissible line segments from nucleus to 0 is [ ( I ,  4), (0, 6 ) ]  
and nucleus to I is [(3, 4), (13, 6)J 
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Figure 4. Example 2 

For the inadmissible spokes, instead of finding largest 
delays and smallest bandwidths as in Algorithm 2, smallest 
delays and largest bandwidths are used to form the spokes 
according to the following lemma. 

Lemma 2 Let linad be an inadmissible line defining an in- 
admissible region R on the delay-bandwidth plane. Any 
line 1 such that 1.lp.d 5 linad.lp.d, 1.up.d 5 linad.up.d, 
1.lp.w 2 linad.lp.w, and 1.up.w 2 linad.up.w defines an 
inadmissible region R' where RI E R. 

4.2.3 Finding Bypasses 

Obviously, due to the aggregation, "1:; + may be differ- 
ent from "16. In order to make the aggregation more pre- 
cise, bypasses are introduced. Intuitively, bypasses should 
be put in the border nodes where "1;; + "l$ deviates a lot 
from "1:;. Therefore, we need a quantitative measure of 
deviations. The actual deviation of "1:; + "l$ from "1:; is 
the difference in the areas covered by the two line segments. 
However, since the delay-bandwidth plane is unbounded, 
we cannot find the actual areas. Since the distance between 
endpoints is directly related to the area bounded by line seg- 
ments, and is easy to compute, we use this as the mean of 
measurement. After finding the deviation of each border 
pair, the algorithm puts bypasses between those border pairs 
that have b largest deviations. A more detailed explanation 
can be found in [ 131. 

5. Routing 

IP networks are represented by a two-level hierarchical 
structure. Therefore, there are two levels of routing: inter- 
domain routing and intra-domain routing as mentioned in 
Section 1. For examp!e, a connection request from node 
A . l  (node 1 of domain A) to 0 . 2  (node 2 of domain D) 
requires an inter-domain path from A to D and an intra- 
domain path from the border node of D to node 2. There 
may be some other domains which lie in the inter-domain 
path. In passing a domain, we go from one border node to 
another. This is also an intra-domain path. In the following, 
we first describe the general idea of our hierarchical routing 

D 

Figure 5. Lemma 1 

algorithm and then discuss how to find the inter- and intra- 
domain paths. 

5.1. Overview 

The hierarchical algorithm is based on the ticket-based 
probing in [4]. It is a distributed routing process. Different 
from many existing routing algorithms for multiple metrics, 
users do not have to specify precedence in QoS parame- 
ters. A ticket represents the permission of searching one 
path. Only the source node can issue tickets based on its 
own state information and more tickets are generated for re- 
quests of tighter requirements. Probes carrying one or more 
tickets are sent from the source towards the destination to 
search for a feasible path. When an intermediate node re- 
ceives a probe, it decides how to forward the tickets in the 
probe received to its own neighbors. Since each probe car- 
ries at least one ticket, number of probes sent to neighbors 
is restricted by the number of tickets. Finally, if a probe 
successfully arrives at the destination, then a path is found. 

5.2. State Information 

Most distributed routing algorithms require each node in 
the network to keep a distance table showing the least cost 
or least delay from that node to every destination. In our 
algorithm, the entry of the distance table is a pair of admis- 
sible line and inadmissible line to that destination. There 
are two tables: intra-domain table and inter-domain table. 
As the names imply, the intra-domain table stores the line 
segments to every node within the same domain and inter- 
domain table keeps the line segments to each outside do- 
main. 

The intra-domain table can be obtained by applying the 
distance-vector or link-state protocols. In these protocols, 
comparisons of two parameters are necessary. As our pa- 
rameters are line segments, not numerical values, we need 
another mechanism in comparing. Figure 6 illustrates the 
idea. In (a), suppose l lad  and 12ad are the admissible lines 
of two different paths. The shaded area is the "combined" 
admissible region which is the union of the two regions de- 
fined by llad and 12ad. Line Lad that falls in the union 
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(a) Admissible Line (b) Inadmissible Line 

Figure 6. Illustration of line picking 

region can be used to be the admissible line. The situation 
of inadmissible lines is shown in Figure 6(b). The shaded 
area is the intersection of the inadmissible regions defined 
by llinad and 12innad in the figure and Linad can be used 
to represent the region. Both lines should be able to be 
obtained in O(1) time since there are at most 4 points to 
consider. Therefore, the total running time of obtaining the 
line segments should be the same as when only one metric 
is considered. 

Unlike the intra-domain table, the computation of inter- 
domain table is not straight-forward. Since the star aggre- 
gations are broadcasted to border nodes only, an internal 
node alone does not have enough information to compute 
the line segments to an outside domain. On the contrary, 
as the border nodes collect the star aggregations of all out- 
side domains, they can fill out their own inter-domain tables 
easily. The inter-domain tables of border nodes are then 
broadcasted to the nodes inside the same domain. Let the 
admissible line from an internal node g . s  to a border node 
g.bd be $r',,,.bd. Also, let the admissible line from g.bd 
to an outside domain g' be liflbd,,,. The admissible line 
of the path going from g.s to g1 through g.bd is lir',,,.bd + 

By comparing and evaluating the formula for each 
border bd, g.s can fill out the entry of the inter-domain table 
for domain g l .  

5.3. Ticket-based Probing 

We now describe the idea of our routing algorithm. We 
will explain how to find the inter- and intra- domain routes 
in the next section. Suppose there is a QoS request of pa- 
rameter (Dreq, Wreq) going from source node s to target 
node t. Let the admissible line and the inadmissible line 
from s to t be l : l t  and 12; respectively. 

5.3.1 Ticket Generation 

A ticket represents the permission of searching one path. 
Tickets can be generated by the source node only. Since 
tickets can never be created in the process of forwarding, if 
a node receives more tickets, it can forward them to more 
neighbors, and more paths are searched. Let the number 

Figure 7. Delay Distance 

of tickets at source s be NO. NO can be determined by 
(Dreq, Wreq),  l:$t and l:yf in O(1) time. 

If (Dreq ,  W r e q )  falls in the inadmissible region defined 
by lzf, the request should be rejected since no path 
can support the QoS service. NO = 0 then. 

If (Dreq, Wreq) falls in the admissible region defined 
by 1 : l t ,  there should be a feasible path and one ticket 
is sufficient. Therefore, NO = 1. 

If (Dreq, W,,,) falls in the uncertain region, NO de- 
pends on the distance between (Dreq, Wreq) and the 
lines. Intuitively, the closer the point is to the ad- 
missible line, the easier it is to find a path and so 
less tickets are needed. On the contrary, if the point 
lies very close to the inadmissible line, we need more 
tickets so that more paths are searched. We use the 
delay distance, as shown in Figure 7 as the mean of 
measurement. Let dad be the delay distance between 
(Dreq, Wreq) and lz5t, and dinad be the delay dis- 
tance between (Dreq, Wreq) and ltyf. Let 9 be the 
maximum allowable number of tickets in the system. 
Then No = rdad+Znad x al. NO is larger when 
( D ~ ~ ~ ,  wreq) is closer to 12f. 

5.3.2 Ticket Forwarding Protocol 

If NO > 0, s generates one or more probes. These probes 
will carry tickets and will be sent to t. To each neighbor, 
a node can send at most one probe. Each probe stores the 
delay and the bandwidth of the path that it has gone through. 
Each probepcarries the information (D,, W,), where Dp is 
the sum of the delays of all links it traverses so far and W, is 
the minimum bandwidth. When a node receives a probe p, 
it uses (D,, W,), the admissible and the inadmissible lines 
of its neighbor to determine how to forward the tickets to its 
neighbor. There are two issues: which neighbors to forward 
and how many tickets to forward. 

A node i forwards a probe p to a neighbor j only if it 
is possible to find a feasible path from j to the destina- 
tion. We call such a neighbor candidate neighbor. The 
bandwidth of a feasible path must be at least Wreq and 
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the delay of a feasible path should not be greater than 
Dreq. The delay of the path from s + i + j + t 

implies Dj+t 5 Dre9 - D, - D+j. On the other 
hand, the bandwidth of the path is min{ Wp,  Wi+j, Wj+t}.  

min{W,,Wj+j,Wj+t} 2 Wre9 implies Wi+j 2 Wreq 
and Wj+t 2 Wre9. Therefore, a neighbor j is a candidate 
neighbor if (1) Wi+j 2 Wreq, and ( 2 )  (Dj+t,  Wj+) is 
better than or the same as (Dreq - Dp - Dj+j, W,,,), i.e., 
the point does not lie in the inadmissible region defined by 
J+t  * 

If there is no candidate neighbor, it means that it is im- 
possible to go.to the target from the current node. All the 
tickets should be dropped. If some candidate neighbors are 

there are two cases: (1) (Dcond,  W c o n d )  lies in the admissi- 
ble region of one of the neighbors, and (2) (Dcond, Wcond) 
lies in the uncertain regions of all neighbors. Case (1) 
means that a feasible path can be found definitely. There- 
fore, one ticket is needed to be forwarded to that neighbor 
and all other tickets can be dropped without forwarding to 
others. For case (2), in order to increase the probability of 
finding a feasible path, the closer (Dcond ,  W c o n d )  to l;!+,, 
the more tickets j should receive. Let did  and d:nad be the 
delay distances from (Dcond, W c o n d )  to l;!,, and 12; re- 
spectively. Let the number of tickets that i receives be Ni. 
The number of tickets that should be forwarded to a node i 

is D p  + Di+j + Dj+t. D p  + Di+j + Dj+t 5 Dreq 

linad 

found, let (Dre9 - D p  - Di+j > Wreq) be (Dcond ,  W c o n d ) ,  

tives between two borders 
number of representatives 
on a staircase 
finding the line segments 
for a staircase 
total time for finding a log- 
ical link in the mesh 

time for finding all the log- 

in candidate neighbor set R is (did+di ' Id id  . x Ni. 
j t  ER (disii ad ) I d i d  

O(IEi I )  

O(lEi1) 

O(l&llEi12) + 
O( lE l> + O(l&l> 
= O(lKIl&l2) 
O(IBi(21V,llEi(2) 

The function is inversely proportional to d id .  The total run- 
ning time of calculating tickets is linear to the number of 
neighbors. 

to g.b' is an intra-domain one and the mechanism described 
in Section 5.3.2 can be applied directly. 

6. Performance Analysis 

In this section, we are going to analyse the storage and 
the running time our algorithm needs and present our simu- 
lation results. In the following, we assume the network has 
n domains. Domain i, gi, is a graph (Vi, Bi, Ei) where V, 
is the set of nodes, Bi is the set of borders and Ei is the set 
of edges. 

The main information in each node is stored in two ta- 
bles. Number of entries in the intra-domain table is IV, I - l 
and number of entries in the inter-domain table is n - 1. 
The storage for the whole domain gi is O(lKl * (IV,l + 
n)). The total storage needed for the whole network is 
O('& IV,l * (1x1 + n)). If n is in the order of 1x1, it 
is reduced to O(Cy=l lV,I2). If hierarchical structure was 
not used, storage in each node would be O(cy=l IKl) and 
the total storage would be O((cy=l lV,1)2), which is a lot 
more expensive than O(Cy=l lViI2). 

Table 1. Running Time of Aggregation I finding all the representa- I O(lV,llEi12) 

5.4. Inter- and Intra- Domain Routings ical links in the mesh 
time to find all the sDokes I O(lBi121 

An inter-domain route specifies which domains to tra- 
verse in order to go from the source domain to the target 
domain. In other words, an inter-domain route identifies 
which border nodes to go through. When a border node 
b in domain g receives a probe p from other domain, the 
probe must leave g through another border node b' in g if 
the destination of the probe is t # 9. b' can be found by 
applying the technique of finding candidate neighbor in the 
ticket forwarding protocol. The admissible line from g.b to t 
through g.b' is l$,+g.b, + I ;$+.  l $ ,+g ,b l  can be obtained 
from the intra-domain table of g.b  while l,"$l+t can be ob- 
tained from the inter-domain table of g.b' (Section 5.2). By 
checking whether (Dre9 - D,, Wrep) falls in the inadmis- 
sible region defined by l z & b l  + lr;",, we can identify 
whether b' is a candidate border. The number of tickets to 
be forwarded to each candidate border can be evaluated in a 
similar fashion as described in Section 5.3.2. After a candi- 
date neighbor, say b', is found, the routing problem from g . b  

time to find all the bypasses 1 O( 1q3) 
Total Time in Aggregating I O(~Bi~2~V,~~E~~2) + 

Table 1 summarizes the worst case running time of ag- 
gregating domain gi in each step. It is obvious from the 
table that the most expensive step is finding the represen- 
tatives by running the modified Bellman-Ford algorithm. 
Therefore, our aggregation mechanism takes at most the 
same time as the algorithm proposed in [ 101. 

In our simulation, we compare our algorithm (TBP) with 
the flooding (FD) and the shortest path (SP) algorithms. In 
the following discussion, we call a path that supports a re- 
quest a feasible path and a request that can be supported 
by a certain path afeasible request. Furthermore, we call a 
request accepted request of a certain algorithm if that algo- 
rithm is able to find a feasible path for the request. Obvi- 
ously, an accepted request is always a feasible request but 
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a feasible request may not be an accepted request since the 
algorithm may be unable to find a feasible path for the re- 
quest. In the flooding algorithm, every node sends out rout- 
ing messages to all neighbors as long as the accumulated 
delay is less than the required one and the bandwidth re- 
quirement is satisfied. Therefore, the flooding algorithm 
always finds a feasible path if one exists. However, it gen- 
erates enormous amounts of messages. The shortest path 
algorithm, that we use in the simulation, is a centralized 
modified Dijkstra algorithm. The source, which has the cen- 
tralized topology, first finds out an inter-domain path that 
traverses the least number of domains. Then, within each 
domain, a path that goes through the least number of physi- 
cal nodes is found using the centralized information. If the 
parameter of this shortest path can satisfy the request, a fea- 
sible path is found. Due to the centralized nature of SP, no 
routing message is generated, but, feasible requests may be 
rejected. Our algorithm is a compromise between the two: it 
generates reasonable number of routing messages and finds 
more feasible paths than SP can do. 

The simulated network topology testbed consists of 10 
domains, each has 10 to 30 nodes, having a total of over 
180 nodes. The number of borders varies from 3 to 5. All 
the nodes are connected by directed links and each node is 
connected to at least 3 other nodes in the same domain. The 
domains are connected by 40 inter-domain directed links. 
The delay of each link is between 2ms to l h s  and the 
bandwidth is in the range of 5 kByte/s to 10 kByte/s.  
Routing requests are generated randomly and only inter- 
domain requests are studied. We measure the sucess ra- 
tios and numbers of routing messages generated of the al- 
gorithms. We measure the success ratio using the formula 
number of acce ted re uests total number zf requ(lests . For routing messages, we 
count the messages that each node sends to its neighbors 
in order to establish an end-to-end delay-bandwidth con- 
strained route. In TBP, each message is a probe that carries 
one or more tickets and other information mentioned in Sec- 
tion 5 .  

Figures 8 and 9 show the success ratios of the three algo- 
rithms w.r.t. delay and bandwidth respectively. The curves 
of all three algorithms in Figure 8 are rising because a re- 
quest is easier to be acceptedfeasible when the required de- 
lay is less restricted. It can be seen that TBP performs better 
than SP, especially when the delay requirement is tight. In 
fact, the success ratios of TBP and FD are the same when 
the acceptable delay is very small. Although SP performs 
much better when requested delay becomes larger, TBP still 
has a higher success ratio than SP. When we consider band- 
width as in Figure 9, TBP again performs better than SP. 
The performance of TBP in tight bandwidth requirement 
seems to be worse than when the delay requirement is tight. 
It is because we use delay distance in calculating how many 
tickets to generate and forward (Section 5.3.1). Hence, by 
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Figure 8. Success Ratio w.r.t. delay 
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Figure 9. Success Ratio w.r.t. bandwidth 

using delay distance, TBP becomes more sensitive to delay 
requirement. 

Figures 10 and 11 show the numbers of probes (mes- 
sages) TBP generates for the requests. Intuitively, the 
tighter the requirement, the more probes we need. How- 
ever, when the requests are tighter, a larger portion of them 
become infeasible. Since TBP would reject some of the in- 
feasible requests in Case (1) of ticket generation, no probe 
is generated for those requests. It reduces the average num- 
bers of probes needed then. In fact, the rejection mechanism 
of TBP effectively reduces the number of routing messages. 
In the simulation, at least 60% of infeasible requests are re- 
jected without generating any probe for all values of delay 
and bandwidth. For FD, since there is no rejection mecha- 
nism as in TBP, routing messages are generated for all re- 
quests, no matter it is feasible or not. In our simulation, due 
to the size of our network, FD generates more than 100 mes- 
sages for each routing request while the average number of 
probes TBP needs is only between 2 to 12. 

Overall, our theoretical and simulation results both show 
that our hierarchical QoS routing framework has improved 
performance in terms of storage, running time, and routing 
performance when compared with algorithms such as QoS- 
aware flooding and Dijkstra algorithms. 
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Figure 10. Number of Messages w.r.t. delay 

7. Conclusion 

In this paper, we present a new framework for QoS hier- 
archical routing in delay-bandwidth sensitive network. We 
introduced a new parameter representation that can repre- 
sent parameters with both additive and attributive metrics. 
Based on the new parameter representation, we device a 
new topology aggregation algorithm. We show in detail 
how to obtain the aggregation and present a distributed hi- 
erarchical routing algorithm that works with our represen- 
tation. Both theoretical and simulation results show that 
the new algorithm yields improved performance when com- 
pared with the flooding and the shortest path algorithms. 
Our future direction is to investigate the performance of the 
routing algorithm when imprecision exists and compare the 
performance with other existing algorithms. Furthermore, 
we will explore the possibility of applying the technique to 
the NP-complete routing problem of two additive metrics. 
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