
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019 159

Efficient Information Sampling in
Multi-Category RFID Systems

Jia Liu , Member, IEEE, ACM, Shigang Chen , Fellow, IEEE, Qingjun Xiao, Member, IEEE, ACM,

Min Chen , Member, IEEE, Bin Xiao , Senior Member, IEEE, and Lijun Chen

Abstract— In RFID-enabled applications, when a tag is put
into use and associated with a specific object, the category-related
information (e.g., the brands of clothes) about this object might
be preloaded into the tag’s memory for the purpose of live query.
Since such information reflects category attributes, all tags in the
same category carry identical category information. To collect
this information, we do not need to repeatedly interrogate each
tag; one tag’s response in a category is sufficient. In this paper,
we investigate the problem of category information collection in a
multi-category RFID system, which is referred to as information
sampling. We propose two time-efficiency protocols. The first is
a two-phase sampling protocol (TPS) that works in the case
of knowing tag IDs. By quickly zooming into a category and
isolating a tag from this category, TPS is able to sample a
category with small overhead. The second protocol, called back-
and-forth sampling protocol (BFS), relaxes a key assumption in
TPS and performs the sampling task efficiently without knowing
any tag IDs or category IDs. By carrying out a step-forward
frame and using the step-backward scheme, BFS is able to
interrogate only 1.45 tags (close to the lower bound of one
tag) on average for each category. We theoretically analyze
the protocol performance of TPS and BFS and discuss the
optimal parameter settings that minimize the overall execu-
tion time. Extensive simulations show that both the protocols
outperform the benchmark, greatly improving the sampling
performance.

Index Terms— RFID, category information, sampling, polling,
time efficiency.

Manuscript received December 7, 2017; revised July 7, 2018; accepted
November 14, 2018; approved by IEEE/ACM TRANSACTIONS ON NET-
WORKING Editor M. Li. Date of publication December 10, 2018; date of
current version February 14, 2019. This work was supported in part by the
National Natural Science Foundation of China under Grant 61702257 and
Grant 61771236; in part by the Natural Science Foundation of Jiangsu
Province under Grant BK20170648; in part by the Jiangsu Key R&D Plan
(Industry Foresight and Common Key Technology) under Grant BE2017154;
in part by the Project funded by China Postdoctoral Science Foundation;
in part by the National Science Foundation under Grant CNS-1718708; in part
by the Fundamental Research Funds for the Central Universities; and in part
by the Collaborative Innovation Center of Novel Software Technology and
Industrialization. (Corresponding authors: Jia Liu, Lijun Chen.)

J. Liu and L. Chen are with the State Key Laboratory for Novel
Software Technology, Nanjing University, Nanjing 210023, China (e-mail:
jialiu@nju.edu.cn; chenlj@nju.edu.cn).

S. Chen is with the Department of Computer and Information Science
and Engineering, University of Florida, Gainesville, FL 32611 USA (e-mail:
sgchen@cise.ufl.edu).

Q. Xiao is with the School of Computer Science and Engineering, Southeast
University, Nanjing 211189, China (e-mail: csqjxiao@seu.edu.cn).

M. Chen is with Google Inc., Mountain View, CA 94043 USA (e-mail:
minchen@google.com).

B. Xiao is with the Department of Computing, The Hong Kong Polytechnic
University, Hong Kong (e-mail: csbxiao@comp.polyu.edu.hk).

Digital Object Identifier 10.1109/TNET.2018.2883508

I. INTRODUCTION

RADIO frequency identification (RFID) is becoming ubiq-
uitously available in a variety of applications, including

library inventory [1]–[3], warehouse control [4]–[17], sup-
ply chain management [18]–[20], object tracking [21]–[30],
etc. Among these applications, RFID tags are usually attached
to objects that belong to different categories, e.g., sub-
jects of books in a library, types of medicine in a phar-
macy, or brands of clothes in a clothing outlet. When a
tag is associated with a specific object, the category-related
information about this object1 can be preloaded into the
tag’s memory for the purpose of off-line query by RFID
readers. Since this information reflects the category attributes,
each tag in the same category carries identical category-level
information.

To collect such category information in a multi-category
RFID system, we do not need to repeatedly interrogate each
tag. One tag’s response in a category will suffice. For example,
to know the manufacturer of Horizon Organic milk stocked in
a warehouse, we just need to query one milk box instead of
all of them as they are produced by the same manufacturer.
In another example, consider a chilled food storage chamber,
where each food is affixed with a sensor-augmented RFID
tag (e.g., WISP [31]) equipped with a thermal sensor. The
reader periodically samples temperature readings from tags to
check whether any area goes beyond the normal temperature.
Since tagged objects of the same category (i.e., tags with the
same category IDs) are typically packed together or placed
closely, the temperature reports from these nearby tags lead
to high data redundancy. Hence, it is a waste to collect sensor
information from all tags in this case.

In this paper, we study the problem of category information
collection in a multi-category RFID system, which is referred
to as information sampling. The existing data collection pro-
tocols [32]–[34] either collect all tags’ information or take
the entire tag set into account each time when isolating an
interested tag from others, which is time-consuming. These
solutions are not suitable for the problem of information
sampling, which has two unique features: (i) Since tags in
the same category carry identical category-related information,
we do not need to query each individual tag; one tag’s response
from each category is sufficient to report the information.

1In the previous examples, the category-related information is the subject
of a book, the type of a medicine, or the brand of clothes.

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7559-2280
https://orcid.org/0000-0001-7867-7765
https://orcid.org/0000-0003-2866-6165
https://orcid.org/0000-0003-4223-8220

160 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

(ii) We do not care which tag in a category responds to the
reader; anyone in the category can be a candidate for reporting.

By considering the above two features, we propose a two-
phase sampling protocol (TPS) that works under the case
of knowing tag IDs. In the first phase, the reader isolates
one category from others, which helps us quickly zoom into
a category from the entire tag set. In the second phase,
the reader selects a single tag from the isolated category by
using geometrically distributed tag indices. When efficiently
done, these two phases make TPS far superior to the existing
solutions. We then relax a key assumption with a new back-
and-forth sampling protocol (BFS) that achieves the sampling
task without any prior knowledge of tag IDs or category IDs.
By carrying out a step-forward frame and using the step-
backward scheme, BFS is able to interrogate only a few tags
in each category and silence others to save communication
overhead. With this protocol, only 1.45 tags (close to the
lower bound of one tag) for each category are interrogated.
We analyze the performance of TPS and BFS, and provide the
optimal parameter settings that minimize the overall execution
time. Extensive simulations demonstrate that both of the
proposed protocols outperform the existing solutions, greatly
improving the sampling efficiency.

The rest of the paper is organized as follows. Section II
formulates the sampling problem. Section III proposes a two-
phase sampling protocol. Section IV presents a back-and-forth
sampling protocol. Section V evaluates the performance of
the proposed protocols. Section VI discusses the related work.
Finally, Section VII concludes this paper.

II. PROBLEM STATEMENT

A. System Model

We consider an RFID system that consists of a reader
and a number of tags. Each tag has a unique ID that is
used to identify the object the tag is attached to. The tag
ID contains two components: category ID indicating which
category the tag belongs to, and member ID identifying a
specific member in this category. Tags with the same category
ID share common information, which may be static category-
related information (such as the brand of the tagged products)
that is preloaded for live query by a reader after the tag is put
into use, or dynamic information (such as sensor data) that is
written to or measured by the tags. We refer to this information
as category information. Besides, we assert that the collection
of dynamic information is built on the assumption that tags
from the same category are packed together or placed close,
for example, in a warehouse. In this case, if we need a real-
time check on their conditions such as temperature, reporting
one from each tag becomes unnecessary because they share
similar condition due to proximity. Instead, any one tag from
a nearby tag set (the same category) is sufficient to return the
information.

B. Problem Definition

Let N be the tag set in the RFID system, where n = |N |.
According to category IDs, N is partitioned into a family of
disjoint sets C = {C1, C2, ..., Cm}, such that

⋃m
i=1Ci = N .

TABLE I

KEY NOTATIONS

For convenience, we use Ci to represent the category ID as
well as the set of tags in this category. There are m = |C|
categories in total; each tag in N belongs to one of them. The
problem of information sampling in a multi-category RFID
system is to select (or sample) one or a subset of tags from each
category to report their data with the objective of minimizing
the overall time for collecting category-level information from
all categories. Since the category-level information carried by
all tags in each category is identical, it is not necessary to
ask all tags to report their data. Ideally, the reader should
single out one tag from each category to report information.
The selection process is however tricky in an RFID system,
particularly when the reader does not even know which cate-
gories are currently in the system and which tags are in each
category.

This paper considers two cases when designing its solutions
for the category-level information sampling problem. The first
case is that the tag set N is known a priori. Consider an
RFID system deployed in a storage facility, where a reader is
installed at the entrance (or exit) to keep track of the IDs of the
tags (thus the associated objects) that are moved in and out.
This setting allows the back-end server (to which the reader
is connected) to maintain an updated list of all tag IDs in the
storage. In the second case, we remove the above assumption
and address the sampling problem without any pre-knowledge
of tag IDs or category IDs. This is also common in practice.
For example, consider an RFID system where products are
packed (say, in boxes) when they are moved into the storage.
The reader at the entrance may not be able to penetrate the
whole packs and therefore may miss some tag IDs. Therefore,
we may have some unknown tag IDs in the storage after the
products are moved in and possibly unpacked and rearranged.
The key notations are given below.

III. TWO-PHASE SAMPLING PROTOCOL

In this section, we consider information sampling with a
known set N of tags. We first explain two possible solutions
to this problem and then detail our design of a two-phase
sampling protocol.

LIU et al.: EFFICIENT INFORMATION SAMPLING IN MULTI-CATEGORY RFID SYSTEMS 161

Fig. 1. An illustration of wave interference. (a) Two waves in phase. (b) Two
waves out of phase.

A. Possible Solutions
1) Basic Polling and ETOP: One solution is to randomly

select m tags (denoted by M), one from each category,
and have the reader poll these tags for their category-level
information. The basic polling protocol transmits the tag IDs
one after another while all tags listen for their IDs and a
tag will transmit its information right after its ID is heard.
It can be inefficient in a low-rate RFID channel to transmit a
large number of IDs (96 bits each) [34]. A more sophisticated
polling protocol is ETOP [34], in which the reader broadcasts
a partitioned Bloom filter to solicit tag responses in a time
efficient way. However, this approach will not work if the
reader does not know the categories or their tags in the systems
(the case we will consider in the next section). Even if the
reader knows all tags, the design of ETOP requires the reader
to transmit a segmented/partitioned Bloom filter to filter out
tags that are not selected for reporting, which can be costly:
When there are a large number of tags in the system, in order
to filter out most non-selected tags, we need to drive down
the filter’s false positive ratio, which means larger filter size.
Moreover, tags that cause false positives must be handled
through a separate polling process. Our simulations show that
a protocol that is specifically designed for the category-level
information sampling problem will greatly outperform ETOP.

2) Wave Superpose: Because tags in the same category will
report the same information, one idea is to let them transmit
simultaneously, one category at a time, allowing the same
signals from these tags to superpose. If the RF waves emitted
from tags in the same category are superposed with positive
interference, the RFID reader may be able to decode the
category-level data correctly. Unfortunately, this idea does not
work for two reasons. First, two wave superpose is likely to
form a resultant wave of greater, lower, or the same amplitude,
which cannot guarantee a positive interference all the time.
Fig. 1(a) shows perfectly positive interference when the phase
difference between two waves is an even multiple of π.
However, perfectly negative interference will occur when the
phase difference is an odd multiple of π, as shown in Fig. 1(b),
making it impossible to decode data. In general, when the
phases of numerous tags are not aligned well, the resulting
superposed signals can take arbitrary form, making decoding
unpredictable.

The other reason is clock difference. Due to clock rate
differences, the tags’ clocks will differ after some amount of
time due to clock drift. This clock skew may result in the
misalignment of data in bit level. To verify this conclusion,
we conduct an experiment with wireless identification sens-
ing platform (WISP) and universal software radio peripheral

Fig. 2. Signal superpose of three WISP tags with clock difference.

(USRP), where on-off keying modulation at the physical layer
is adopted. Fig. 2 shows the signal level results from one set
of experiments. The fourth plot is the mixed signals from
three WISP tags that transmit the same 20-bit data ‘1001
0100 1010 1100 1100’ to the reader at 40 kbps (which refers
to the reader’s clock). For comparison, we also show their
individual signals in the first three plots. As we can see, it is
hard to decode the mixed signals due to the clock drift caused
by different tags. Taking the negative interference and clock
difference into account, we stress that the scheme of wave
superpose is not a good solution to the sampling problem.

In this section, we take a deeper look at the two features
of the information sampling problem and propose a two-
phase solution: 1) separating a category from others, and
2) singling out one tag from each category to report. The
first step helps us quickly zoom into a single category from
the entire tag set. The second step uses only a 4-bit index
to select a single tag from each category to transmit, free of
collision. In combination, these two steps allow our protocol
to significantly outperform the sophisticated polling protocol
ETOP.

B. Protocol Description

TPS is performed in a number of sampling rounds, each
consisting of two phases: an ordering phase and a polling
phase. The expected number of rounds is about 3.5, as we will
analyze later. In each round, the reader collects information
from a subset of categories, and tags in those categories are
removed from the subsequent rounds. The protocol terminates
after information from all categories is collected.

Our idea is for the reader to use a virtual time frame in
each round to select a subset of categories for information
reporting. The use of a virtual frame (which is not actually
carried out in reader-tag communication) greatly reduces the
overhead for the reader to inform the selected tags of when
to transmit, and also inform other tags to stay silent. This is
achieved in two phases: The order phase will silence all tags
from the categories that are not selected in this round, while
the polling phase will work with one selected category at a
time and the reader transmits an index value to select a single
tag from that category to report information.

More specifically, during the ordering phase, the reader
plays out a frame of time slots virtually by randomly assigning
the categories to the slots and identifying the slots that have

162 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

Fig. 3. Three kinds of slots in the virtual frame.

only one category assigned to — such a category is called
a homogeneous category. For each homogeneous category,
the reader assigns an index value from a geometric distribution
to every tag in the category, and checks whether there exists a
singleton index value that is assigned to one and only one tag;
if so, this tag will be selected to transmit the category-level
information, and the corresponding category will be active in
the polling phase. At the end of the ordering phase, the reader
will inform (by broadcasting an ordering vector to all tags)
about which categories will be active in the polling phase and
in which order they will report their information.

In the polling phase, only the slots in the frame with active
categories will be actually played out. In each of these slots,
only tags in the category assigned to the slot will participate.
The reader starts a slot by transmitting the singleton index
of the category that it finds in the ordering phase. This index
selects one and only one tag from the category to transmit, free
of collision. All other tags in the category will stay silent. The
active categories in the current round, with their information
being reported to the reader, will stay idle in all subsequent
rounds. Below we describe the details of the protocol.

1) Ordering Phase: The reader chooses two parameters,
the number f of time slots in the virtual frame and a random
seed r. We will discuss how to choose the optimal value
of f later. The reader then assigns every category cid that
has not reported its information in the previous rounds to a
slot through hashing H(cid, r) mod f , where H(·) is a hash
function shared by all tags.

Slots with a single assigned category are called homoge-
neous slots, slots chosen by multiple categories are called
heterogeneous slots, and slots chosen by no category are called
empty slots. Fig. 3 shows an example where there are three
categories and tags in the same category will always hash
to the same slot. The second slot and the seventh slot are
homogeneous because each of them has a single category, C1

to the second slot and C3 to the seventh slot. In contrast,
the fourth slot is heterogeneous because two categories, C2

and C4, are assigned to the slot. The remaining slots are empty.
We are interested in the number of homogeneous slots, which
is affected by the value of f and the number of categories,
not by the number of tags since all tags of each category are
assigned to the same slot.

The categories hashed to homogeneous slots are called
homogeneous categories and their tags are called homoge-
neous tags. The reader knows all category IDs and tag IDs.
It performs the hash to find all homogeneous slots and the
corresponding categories. For each homogeneous category Ci,
the reader further selects a single tag as follows: To each
tag in Ci, it performs another hash to assign an index value,
R(H(id, r) mod 2K), where id is the tag’s ID, r is the hash

TABLE II

AN ILLUSTRATION OF RESOLVABLE CATEGORIES

seed introduced previously, K is the length of the value in
number of bits, and R(·) is a function that returns the index
of the right-most bit of 1 in the binary representation of
the input. For example, R(8110) = R(010100012) = 1 and
R(10410) = R(011010002) = 4. Clearly, H(id, r) mod 2K

is a K-bit binary number, and the range of the index value is
[1, K]. The index value follows a geometrical distribution: The
probability for its value to be 1 is 50% because the chance for
the rightmost bit in H(id, r) mod 2K to be 1 is 50%. The
probability for the index value to be 2 is 25% because the
chance for the rightmost two bits in H(id, r) mod 2K to be
10 is 25%. In general, the probability for the index value to
be j is 1

2j . The number of tags having a certain index value
decreases exponentially as the index value increases.

We call an index value that is assigned to exactly one
tag as a singleton index. Intuitively, the index value around
log2(|Ci|) has a high probability to be a singleton, where |Ci|
is the number of tags in Ci. After assigning indices to the tags
in Ci, if the reader finds that there exists a singleton index,
it will select the corresponding tag to report the category-
level information — in this case, we call Ci a resolvable
category, which will be active in the polling phase. In Table II,
we illustrate how to determine which categories are resolvable,
where K is set to 2. For C1, the indices of tags t1, t2 and
t3 are 2, 1, 1, respectively. Hence, 2 is a singleton index and
C1 is resolvable. Similarly, C2 and C4 are also resolvable.
In contrast, category C3 is not resolvable and thus will not be
active in the polling phase because its only two tags t5 and t6
have the same index 2.

A slot in the virtual frame is useful if and only if it is
a homogeneous slot and the assigned category is resolvable;
otherwise, it is called a useless slot. In above example, since
C1 is resolvable and homogeneous, the 2nd slot is useful.
In contrast, the 7th slot is useless as C3 is irresolvable.

How will a tag know whether it is selected to transmit in
a useful slot? The reader broadcasts the parameters �f ,r, K�
to all tags so that each tag can compute H(cid, r) mod f
for which slot its category is assigned to, and it can also
compute R(H(id, r) mod 2K) for its assigned index. But it
does not know whether this is a singleton index. The reader
does, and it must inform tags of which slots are useful and
which tags should transmit in these slots. The useless slots
will be removed from execution. For this purpose, following
�f ,r�, the reader broadcasts an f -bit ordering vector V .

LIU et al.: EFFICIENT INFORMATION SAMPLING IN MULTI-CATEGORY RFID SYSTEMS 163

Each bit in V corresponds to a slot in the virtual frame:
‘0’ indicates useless and ‘1’ indicates useful. In the example
of Fig. 3 and Table II, the ordering vector V is ‘01000000’.
If V is too long, the reader can split it into multiple smaller
segments and transmit one after another, allowing each tag to
keep only the segment containing the bit that corresponds to
the slot it is assigned to.

2) Polling Phase: Consider an arbitrary tag in an arbitrary
category Ci. The ordering vector V carries two pieces of
information: (1) The tag can learn whether its category is
active or not by examining the (H(cid, r) mod f)th bit in
V . If the bit is one, the tag will compute the assigned index
R(H(id, r) mod 2K) and participate in the polling phase.
(2) V also tells the order of a useful slot in the actual frame
to be carried out. If a tag finds that there are i ones in V
preceding its bit (which is also 1), the tag knows that it should
participate in the (i + 1)th slot.

In the polling phase, the reader plays out an actual frame
comprised of only useful slots. Consider an arbitrary slot.
Without loss of generality, suppose category Ci is assigned
to this slot and all its tags participate in the slot by listening
to the reader, which begins the slot by transmitting the K-bit
singleton index that it identifies for this category previously
in the order phase. All tags in category Ci will compare
the received index with their assigned indice R(H(id, r)
mod 2K), and only one tag will find a match. This tag
transmits the category-level information to the reader in the
same slot, while other tags in the category keep silent.

Note that a category assigned to a useful slot may have more
than one singleton index. In this case, the reader can randomly
choose one to transmit in the slot; any singleton index will
select a unique tag to respond. Each slot collects information
from one category. Tags in these categories will not participate
further in the protocol execution. The categories that are
assigned to useless slots will participate in the subsequent
rounds until all categories’s information is collected by the
reader. The reader chooses a different random seed in each
round. Hence, the categories that are not resolvable in one
round will become resolvable in other rounds. The overall
workflow of TPS is shown in Fig. 4.

C. Performance Analysis

We derive the expected execution time of the TPS protocol.
Consider an arbitrary sampling round comprised of the order-
ing phase and the polling phase. The execution time t of this
round is:

t =
f

96
×tid + f×p×(tpoll + tinf), (1)

where f is the length of the ordering vector V , p is the
probability that a slot is useful, tpoll is the time for the reader
to broadcast a log2 K-bit singleton index, and tinf is the length
of a time slot for a tag to transmit the required information.
Note that, the control message transmission for launching each
round is ignored here as this overhead covers only a couple
of bits, which are negligible compared with the following
frame transmission and index broadcasting by the reader. We
define the sampling efficiency, denoted as λ, as the ratio of

Fig. 4. The overall workflow of TPS.

the number of sampled categories to the execution time of
this round. Since a useful slot corresponds to a category to
be sampled, the number of successfully sampled categories in
this round is equal to that of useful slots, i.e., f×p. We then
get the sampling efficiency:

λ =
f×p

t
=

p
tid

96 + p×(tpoll + tinf)
. (2)

Clearly, the bigger the value of λ is, the more categories will
be sampled in each unit of execution time. We thus need
to find the optimal p that maximizes λ. According to (2),
λ monotonically increases as p increases; the objective is
reduced to maximizing p. As aforementioned, a useful slot is
both homogenous and resolvable, which are two independent
events, we have:

p = ph×pr, (3)

where ph is the probability that a slot is homogenous and pr is
the probability that the assigned category in this slot is resolv-
able. To maximize p, the goal further turns to maximizing both
ph and pr, respectively. Consider the probability ph. Since
category ID is taken as the input for hash, the tags belonging
to the same category must reside in the same slot. Hence,
we can treat one category as ‘one tag’ and the homogenous
slots are actually those slots picked by exactly ‘one tag’.
We have:

ph =
(

m�

1

)

(
1
f

)(1 − 1
f

)m�−1≈m�

f
×e−

m�−1
f , (4)

where e is the natural constant and m� is the number of
unsampled categories before this round. Letting dλ(f)

df = 0,
we derive the maximal ph:

p∗h = e−1 when f = m�. (5)

164 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

Fig. 5. Relationship between the probability pr of a resolvable slot and the number of tags in a category Ci. (a) K = 8. (b) K = 16. (c) K = 32.

For the probability pr, let us consider an arbitrary category
Ci in a useful slot. After the R(·) operation, each tag in Ci

picks the index j with the probability of 1
2j . Let qj be the

probability that the index j is a non-singleton index (j is
picked by none or multiple tags). We have:

qj = 1 −
(|Ci|

1

)

× 1
2j

×(1 − 1
2j

)|Ci|−1, (6)

where |Ci| is the cardinality of Ci, i.e., the number of tags in
Ci. Let q∗j be the probability that the maximal singleton index
is j. We have:

q∗j =

{
1 − qK , if j = K

qj+1,K − qj,K , if j ≤ K,
(7)

where K is the last index and qj,K is the probability that all
indices from j to K are non-singleton.

According to (6) and (7), we have the probability pr[K, |Ci|]
that the assigned category Ci in this slot is resolvable:

pr[K, |Ci|] =
K∑

j=1

q∗j

=
K−1∑

j=1

(qj+1,K − qj,K) + (1 − qK) (8)

= 1 − q1,K

≈ 1 −
K∏

j=1

(1 − |Ci|
2j

×e−
|Ci|
2j).

Fig. 5 plots the relationship between pr and the number
|Ci| of tags in Ci. When K = 8, the probability pr decreases
as |Ci| increases. For example, pr ≈ 0.8 when |Ci| = 20,
whereas pr ≈ 0 when |Ci| = 10, 000. That is because, with
the increase of |Ci|, the case of K = 8 hardly provides tags
with sufficient indices to pick, leading to most collisions and
lowering the probability pr of a singleton index. In contrast,
when K = 16, pr sees only a slight decrease from 0.82 to
0.78 when |Ci| varies from 10 to 10,000. The case of K = 32
almost remains stable at 0.81 regardless of |Ci|. The main
reason is that the values of K in these two cases are big enough
such that few tags in Ci can reach up to the last indices. We
have the maximal probability p∗ of a useful slot:

p∗ = p∗h×pr[K, |Ci|] = e−1×(1 −
K∏

j=1

(1 − |Ci|
2j

×e−
|Ci|
2j)).

(9)

TABLE III

OPTIMAL K

When this happens, the category Ci will be sampled in a useful
slot and keep silent in the following rounds. In the ordering
phase, the average number of bits for generating a useful slot
is 1

p∗ . In the polling phase, the reader broadcasts log2 K-bit
singleton index to interrogate a tag. Adding the both overhead,
we get the total overhead O(Ci) for singling out a tag in Ci:

O(Ci) =
1
p∗

+ log2 K. (10)

The value of K plays an important role in the overall commu-
nication overhead. Table III depicts the setting of the optimal
K under different |Ci|. As we can see, K = 16 covers the
interval [207, 52892], which can meet most of applications in
practice. In this case, the polling vector is only log2 K = 4 bits
long. Assume |Ci| = 10, 000, we have the maximum of O(Ci)
by letting pr[K, |Ci|] = 0.78, which is equal to e

0.78 +4 ≈ 7.5
bits. Compared with transmitting 96-bit tag ID in basic polling,
it is a great performance boost.

Since an arbitrary category Ci is sampled with the prob-
ability of p∗ in a sampling round, the expected number of
sampling rounds that Ci participates is 1

p∗ . According to (9),
when K = 16 and |Ci| = 10, 000, we have p∗ ≈ 0.29. The
expected number of sampling rounds is 3.5.

IV. BACK-AND-FORTH SAMPLING PROTOCOL

In this section, we consider information sampling without
any prior knowledge of tag IDs or category IDs.

A. Protocol Description

In TPS, a virtual frame is used by the reader to select
a tag from each category for information reporting, which
avoids redundant data transmission. However, if the reader
does not know the IDs of tags in the system, how will it
achieve high sampling efficiency when collecting category-
level information? A naive solution is to use one of the
existing identification protocols, e.g., Frame Slotted ALOHA
(FSA) [35], which is designed to collect the IDs of tags and
resolve the collision as tags transmit their IDs. When any tag

LIU et al.: EFFICIENT INFORMATION SAMPLING IN MULTI-CATEGORY RFID SYSTEMS 165

Fig. 6. Two phases of the BFS protocol.

sends its ID to the reader, it will piggybacks the category
information. This approach causes high data redundancy as
the same category information will be sent repetitively by all
tags in the same category. To address this issue, we propose
a back-and-forth sampling protocol (BFS) that selects a few
tags from each category (without any pre-knowledge of their
IDs) to report category-level information, while silencing other
tags in the category. This is achieved in two phases: a step-
forward phase for tag selection and a step-backward phase for
information collection.

In the step-forward phase, the reader carries out a slotted
frame and assigns a slot index from a geometric distribution
to every tag, such that the number of tags assigned to each
subsequent slot will decrease exponentially. The reader finds
out the last busy slot, which has the highest index among
the slots with at least one tag assigned. Then, it moves to
the step-backward phase, where the busy slots are replayed
in the reverse order for information collection. In each slot,
the reader collects information from the tags assigned to that
slot, including each tag’s category ID and its category-level
information. At the end of the slot, the reader will silence all
other tags in the categories whose information has just been
collected, informing them not to participate in the next slots.
Our numerical results show that only a few tags will participate
in each slot and with the optimal parameter settings, only about
1.45 tags from each category are sampled, very close to the
lower bound of one tag. Below we describe the details.

1) Step-Forward Phase: The reader initiates a slotted frame
by broadcasting a request with a random seed r. Upon
receiving this request and r, each tag computes the slot index
that it is assigned to as R(H(id, r)), where id is the tag’s ID,
H(·) is a hash function, and R(·) is a function that returns the
index of the right-most bit of 1 in the binary representation
of the input. After the request, the reader plays out the frame
slot by slot, in ascending order of slot indices. Consider an
arbitrary tag and suppose it is assigned to the jth slot. It will
transmit a short response to the reader in each of the first jth
slots, i.e., the assigned slot and all preceding slots. A slot is
either busy when one or multiple tags transmit or idle when no
tag transmits. This design helps our protocol determine when
to stop in the step-forward phase. The protocol stops when it
observes an idle slot. In this case, all subsequent slots must
be idle (thus no need to continue). The reason is that, had
there be a tag transmitting in a subsequent slot (say the jth
slot), the tag would have transmitted in the current slot (thanks
to the first-j-slots design). The slot right before the idle slot
is the last busy slot, whose index is denoted as L.

Consider an arbitrary category Ci, 1≤i≤m. Its tags are
assigned to the slots with an exponentially decreasing distri-
bution. While all the |Ci| tags will transmit in the first slot,

Fig. 7. The overall workflow of BFS.

the expected number of tags transmitting in the jth slot is
|Ci|
2j−1 , due to the geometric distribution of R(·). Consider the
last slot that any tag in Ci is assigned to. It is likely that this
slot contains only one or a small number of tags from Ci.
We will collect the information of category Ci in this slot,
while silencing all other tags from Ci assigned to other slots.
That is the basic design of the step-backward phase.

2) Step-Backward Phase: This phase replays the busy slots
from the previous phase in the reverse order, from the last
busy slot of index L to the first slot, for a different purpose
— collecting category-level information from tags assigned to
the slots. Consider the jth slot, 1≤j≤L. The reader collects
information from the tags assigned to this slot by using
one of the tag identification protocols, e.g., the widely used
C1G2 protocol [35]. The reader begins the slot by transmitting
the slot index, which informs tags of this assigned index to
participate by executing a tag identification protocol. Since
only category information is needed, the tag will transmit
its category ID together with the category information in the
protocol; when the reader acknowledges the successful receipt
of a tag’s information, it will include the category ID in the
ack, which will be overheard by all other tags — those with
the same category ID will be silenced. The silenced tags
will not participate in the future slots. With this design of
replaying the slots in reverse (with fewest assigned tags first)
and aggressively silencing tags, we ensure that only a small
number of tags will be active in each category for information
collection. Specifically, the information of each category is
collected at the highest-indexed slot to which any tag from that
category is assigned. The overall workflow of BFS is shown
in Fig. 7.

We illustrate BFS with a scale-down RFID system.
As shown in Fig. 8, there are three categories C1 =
{t1, t2, t3}, C2 = {t4, t5, t6}, and C3 = {t7, t8}. In the step-
forward phase, each tag individually picks a slot j and replies
to the reader in the first j slots. For example, the tag t2
will respond in the first three slots. According to Fig. 8(a),
the forth slot is the last busy slot. After that, the reader moves

166 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

Fig. 8. An illustration of the BFS protocol. (a) Step-forward phase.
(b) Step-backward phase.

to the step-backward phase and plays out the frame reversely.
As shown in Fig. 8(b), the reader checks the 4th slot first. The
tag t1 picking this slot replies to the reader and all tags (t1−3)
belonging to C1 keep silent after receiving the category ID of
C1. The reader then moves back to the 3rd slot and the tag t6
is interrogated. The tags t4−6 from C2 are silenced after that.
Similarly, in the 2nd slot, C3 is sampled; no tag responses
in the 1st slot. By the back-and-forth operation, all category
information is successfully collected and only one tag of each
category is interrogated, saving communication overhead.

B. Performance Analysis

The execution time of BFS consists of two parts: the step-
forward phase and the step-backward phase. In the step-
forward phase, the reader needs to play out L busy slots and
one idle slot; the corresponding communication overhead is
(L+1)ts, where ts is the communication delay that a tag gives
a one-bit short response to the reader. In the step-backward
phase, consider an arbitrary category Ci, 1≤i≤m. It will be
sampled in the slot when it appears at the first time. Let vi

be the number of tags belonging to Ci in this slot. To isolate
these vi tags from others, the ALOHA-based approach in the
C1G2 protocol [35] needs to carry out e sub-frames including
e × vi slots in total [36], where e is the natural constant.
Amongst these slots, there are vi singleton slots (exactly one
tag picks) and about vi empty slots (no tag picks); the left
are collision slots (more than one tag pick). The reader in the
first singleton will collect the category ID together with the
category information of Ci from the tag, and later silence Ci

by broadcasting its category ID. The communication overhead
is tcid + tinf + trcid, where tcid and tinf are the delay for the
tag to transmit the category ID and category-level information
respectively, trcid is the delay for the reader to broadcast a
category ID. The other vi − 1 singletons will become empty
slots and there are 2vi − 1 empty slots with the length of ts
now. The left (e − 2)vi would-be collision slots are likely to

become singleton or empty after the reader silences some tags.
For simplicity, we still treat them as collisions and get a upper
bound of the execution time:

t = (L + 1)ts +
m∑

i=1

(
(e − 2)vitc + (2vi − 1)ts + μ

)
+ eLtf ,

(11)

where μ = tcid + tinf + trcid, tc is the delay of a collision
slot, tf is the time interval between neighbor sub-frames in
ALOHA-based protocols [8]. Since e sub-frames are required
for sampling in each slot, the total overhead of inter-frame is
e×L×tf . In (11), all terms are constants except for L and vi.
We derive their expected values with the two lemmas below.

Lemma 1: The expect value E(L) of L is:

E(L) =
∞∑

j=1

j × (
(1 − 1

2j
)n − (1 − 1

2j−1
)n

)
,

where n is the number of tags in N .
Proof: Consider a tag that picks the slot Q, Q ≥ 1. The

probability that Q is the jth slot is:

p(Q = j) =
1
2j

. (12)

According to (12), the probability that the tag chooses one of
the first j slots is:

p(Q ≤ j) =
j∑

k=1

1
2k

= 1 − 1
2j

. (13)

Given n tags in the tag set N , we have the probability that
all of them pick the first j slots:

pn(Q ≤ j) = (1 − 1
2j

)n. (14)

According to (14), we have the probability that the biggest
slot index L picked by the tag set N is equal to j:

p(L = j) = pn(Q ≤ j) − pn(Q ≤ j − 1)

= (1 − 1
2j

)n − (1 − 1
2j−1

)n. (15)

Hence, the expected value E(L) of L is:

E(L) =
∞∑

j=1

j × p(L = j)

=
∞∑

j=1

j × (
(1 − 1

2j
)n − (1 − 1

2j−1
)n

)
. (16)

Lemma 2: Consider an arbitrary category Ci, 1 ≤ i ≤ m.
The expected value E(vi) of vi is:

E(vi) = |Ci|
∞∑

j=1

(
1
2j

)(1 − 1
2j

)|Ci|−1, (17)

where |Ci| is cardinality of Ci, i.e., the number of tags in Ci.
Proof: Let Ek,j represent the event that k tags in Ci pick

the jth slot and j is the last busy slot for Ci. Hence, we have
the probability of Ek,j :

p(Ek,j) =
(|Ci|

k

)

(
1
2j

)k(1 − 1
2j−1

)|Ci|−k, (18)

LIU et al.: EFFICIENT INFORMATION SAMPLING IN MULTI-CATEGORY RFID SYSTEMS 167

Fig. 9. The expected value of L with respect to the number n of tags.

where the term (1
2j)k denotes the probability that k tags pick

the jth slot, and the term (1 − 1
2j−1)|Ci|−k indicates that the

left (|Ci| − k) tags choose the slots preceding the jth slot.
According to (18), we have the expected value of vi:

E(vi) =
∞∑

j=1

|Ci|∑

k=1

k × p(Ek,j)

=
∞∑

j=1

|Ci|∑

k=1

k

(|Ci|
k

)

(
1
2j

)k(1 − 1
2j−1

)|Ci|−k

=
∞∑

j=1

|Ci|∑

k=0

k

(|Ci|
k

)

(
1
2j

)k(1 − 1
2j−1

)|Ci|−k

=
∞∑

j=1

|Ci| 1
2j

|Ci|−1∑

k=0

(|Ci|−1
k

)

(
1
2j

)k(1− 1
2j−1

)|Ci|−1−k

= |Ci|
∞∑

j=1

(
1
2j

)(1 − 1
2j

)|Ci|−1.

Substituting E(L) and E(vi) for L and vi in (11) respec-
tively, we can derive the overall execution time t of BFS.
According to Lemma 1, we show the expected value of L
with respect to the number n of tags in Fig. 9. In this figure,
the number n of tags ranges from 1 to 100,000. As we can
see, the expected value of L experiences a logarithmic growth
over n. For example, L is equal to 17.9 when the number
of tags is 100,000. That means the reader under this case
needs to carry out only (L+1) ≈ 19 slots in the step-forward
phase for making tags in each category be distributed unevenly.
According to Lemma 2, Fig. 10 shows the expected value of
vi with respect to the number |Ci| of tags in the category Ci.
The results show that no more than 1.45 tags for each category
are sampled by the reader, which is very close to the lower
bound of one tag.

C. Multiple Readers

So far, we have discussed the sampling problem in a single
reader case. In some real scenarios, multiple readers can be
deployed to manage a large number of tags. Our protocols
can be easily generalized to the multi-reader case when the
collision-free transmission schedule (e.g., [37]) among the
readers is established. More specifically, for TPS, we assume
that each reader has the knowledge of the subset of tags
under its coverage. With this information, each reader executes

Fig. 10. The expected value of vi with respect to the number of tags in the
category Ci.

TPS as-is when it is the reader¡¯s turn to run information
sampling according to the scheduling algorithm. Note that,
the reader in this case just needs to hold the information
about the subset of tags in its field-of-view; the global tag
information is unnecessary. For BFS, since it is able to do
sampling without any assumption about the tag information,
no any modifications to BFS are required for running the
information sampling. Therefore, we assert that, our protocols
can be easily generalized to the multi-reader RFID system.

V. EVALUATION

A. Simulation Setting

Our simulation settings follow the specification of the
C1G2 standard [35]. Any two consecutive communications,
from the reader to tags or vice versa, are separated by a time
interval. For one, after the reader transmits a command, all tags
have to wait the transmit-to-receive turn-around time T1 before
replying to the reader. For another, upon receiving the reply
from tags, the reader needs to wait the receive-to-transmit
turn-around time T2 before talking to tags. According to the
specification, T1 is max(RTcal, 20Tpri) and T2 ranges from
3Tpri to 20Tpri, where RTcal is the reader-to-tag calibration
symbol that equals the length of the data-0 symbol plus the
length of the data-1 symbol, and Tpri is the backscatter-
link pulse-repetition interval. In our simulation, we set
T1 = T2 = T = 200 μs that complies with the C1G2 standard.

Depending on the physical implementation and the real
environment, the transmission rates between the reader and
tags are not necessarily symmetric. The tag-to-reader transmis-
sion rate varies with the data coding: 40 kbps to 640 kbps for
FM0 and 5 kbps to 320 kbps for Miller-modulated subcarrier.
We get the intersection set 40 kbps to 320 kbps and adopt
the lower bound 40 kbps as the data rate. In other words,
it takes 25 μs to transmit one bit by the tag. The data rate
from the reader to tags ranges from 26.7 kbps to 128 kbps.
Similarly, we set the data rate to the lower bound 26.7 kbps,
which takes 37.45 μs to transmit one bit by the reader. Besides,
the length of the category ID is set to 32 bits throughout the
simulations. Note that other parameter settings may change the
absolute metric, but the simulation conclusions can be drawn
in a similar way.

According to the above parameter settings, the duration ts of
the 1-bit short response from tags is equal to 25+T = 225 μs;
the duration tcid of transmitting a category ID by a tag is
25 × 12 + T = 500 μs; the duration trcid of broadcasting a

168 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

Fig. 11. Confirmation of theoretical results through simulations for (a) the
execution-time formulas of TPS, (b) the execution-time formulas of BFS.

category ID by the reader is 37.45 × 32 + T = 1398.4 μs;
the duration trid of broadcasting a tag ID by the reader is
37.45× 96 + T = 3795.2 μs; For transmitting w-bit category
information by a tag, the duration tinf is equal to 25w + T
μs. All results are the average outcome of 100 simulation runs
using MATLAB.

B. Verification of Execution Time

In Fig. 11(a) and Fig. 11(b), we conduct simulations to
verify the correctness of the derived execution-time formulas
for TPS and BFS respectively. For TPS, we compare the
theoretical derivations with the simulation results under two
scenarios. In the first scenario, the value of K in the polling
phase is set to 16, the number of categories is 100 and each
category consists of 100 tags. In the second scenario, we keep
the same value of K , but change the number of categories
to 1000 and the number of tags in each category to 50. We
perform 100 independent simulation runs in each scenario and
plot the CDF of relative error. The relative error is computed as
|t1−t2|

t1
, where t1 is the simulation time and t2 is the theoretical

time. In 11(a), we observe that the relative error of TPS is less
than 0.03. Its 90 percentile is about 0.02. With the increase of
the number of categories (scenario2), the relative error further
decreases, which is no more than 0.01. The tightness between
the simulation value and the theoretical one demonstrates that
the derived execution time can well depict the real situation.

For BFS, since the formulas derive a upper bound of the
execution time, we verify the gap between the upper bound
and the real case. In this simulation, we set the number of tag
in each category to 100 and vary the total number of tags from
10,000 to 100,000. As shown in 11(b), the theoretical value
is slightly larger than the simulation one. That is because,
some collision slots are likely to become singleton or empty
after the reader silences some tags and we still treat them as
collisions, which increases the communication overhead. Even
so, we assert that the given upper bound is close to the real
execution time.

C. Evaluation With Tag IDs

In this subsection, we evaluate the execution time of our
sampling protocol TPS in the case of knowing tag IDs. As
aforementioned in Section III, Basic Polling (BP) and ETOP
can be modified for the purpose of information sampling.
To achieve this goal, the reader first randomly picks a tag
from each category and these tags constitute a tag set S.

Fig. 12. Execution time with respect to the number n of tags. (a) w = 10.
(b) w = 20.

After that, for BP, the reader in turn broadcasts each tag’s ID
in S and then waits for their replies after each broadcasting.
All tags keep listening and only the exactly matched tag
transmits the required category information to the reader. The
sampling process terminates until all tags in S are interrogated.
For another, ETOP is specifically designed for collecting tag
information from a tag subset in an efficient way. In our
problem, we can treat S as the wanted subset of N and execute
ETOP as-is to collect the category information as required. In
the simulations, we keep the same parameter settings of ETOP
as that in [34], i.e., the frame size is 24× |S|, the segment is
80 bits long, and each segment consists of 4 partitions.

Fig. 12 compares the execution time of BP, ETOP, and TPS
under different numbers of tags. In the simulations, we fix the
number of tags in each category at 10 and vary the number of
tags from 10,000 to 100,000 (the number of categories ranges
from 1000 to 10,000). Two kinds of category information
with different lengths (w = 10, 20) are sampled under varied
parameter settings, as shown in Fig. 12(a) and Fig. 12(b).
Among these figures, we observe that TPS outperforms the
other two protocols as it isolates a tag of each category from
others by broadcasting only about 7.5-bit polling vector on
average. For example, to sample 10-bit category information
from 50,000 tags (shown in Fig. 12(a)), BP takes the longest
time 21.2s as it needs to transmit tedious tag IDs. ETOP
reduces the execution time by 56.1% to 9.3s since it uses
segmented Bloom filters to isolate and order tags belonging to
S, avoiding most ID transmissions. TPS performs the best and
consumes only 3.7s, producing 5.7× and 2.5× performance
gains, compared with BP and ETOP respectively. The similar
conclusion can also be drawn on other parameter settings in the
other figure: TPS is the best, ETOP follows, and BP performs
the worst.

In Fig. 13, we compare the execution time of BP, ETOP,
and TPS under different numbers of tags in each category.
In the simulation, we fix the number of tags at 100,000 and
vary the number of tags in each category from 5 to 50. Once
given the length w of the category information, we observe
that the execution time of these three protocols decreases as
the number of tags in each category increases. That is because
the number of categories decreases with the increase of the
number of tags in each category, thereby reducing the number
of samples and saving the communication overhead. Similar
to Fig. 12, the same conclusion can also be drawn here: TPS
is the most time-efficient, ETOP is worse, and BP is the most
time-consuming. For instance, when the length of category

LIU et al.: EFFICIENT INFORMATION SAMPLING IN MULTI-CATEGORY RFID SYSTEMS 169

Fig. 13. Execution time with respect to the category size. (a) w = 10.
(b) w = 20.

information is 20 bits long and each category has 25 tags (as
shown in Fig. 13(b)), the execution time of BP is 17.0s, which
is the longest amongst the three protocols. By contrast, TPS
spends the minimal execution time. It takes less than 3.0s to
achieve the same sampling task, producing an about 6× per-
formance gain. Although ETOP is far superior to BP, it takes
longer time than TPS, i.e., 7.4s. Note that, the execution time
of the three protocols increases as w increases. This is intuitive
as the tag needs to transmit more category-related data when w
is bigger. Based on above simulation results, we conclude that,
by transmitting a few bits to pick a tag in each category, TPS
outperforms BP and ETOP when tag IDs are known a priori,
greatly improving sampling efficiency.

In Fig. 14, we study the variances of the execution time
of TPS. The number of tags and the category size are set to
50,000 and 10, respectively. Two kinds of category information
are collected, with different lengths (w = 10, w = 20). Each
CDF curve in the figure is the results of 100 simulation runs
for a fixed length of information. When w = 10, the mean
of the execution time is 3.6s, and each deviation between the
result of a run and the mean value is computed. As we can see,
the 95th percentile of the execution-time deviations is bounded
within 0.03s, which is less than 1% of the mean execution time
by TPS. Similarly, when w = 20, the mean execution time is
4.9s and the 95th percentile of the deviations is also less than
0.03s, which is about 0.6% of the mean.

D. Evaluation Without Tag IDs or Category IDs
In the following simulations, we relax the assumption in

TPS and evaluate the sampling performance of BFS without
any knowledge of tag IDs or category IDs. Before the eval-
uation, we first give two modified solutions to the sampling
problem that serve as the baseline protocols for comparison.
The first solution is built on the widely used ID collection
protocol: Framed Slotted ALOHA (FSA) [36]. Unlike basic
FSA, this FSA-based sampling (FSAS) solution just collects
each tag’s category ID instead of the long tag ID to save
communication overhead. More specifically, FSAS consists of
multiple execution rounds. In each round, the reader carries
out a slotted frame and each tag in N randomly picks one slot
in the frame. Once a slot is picked by only one tag, the tag
reports its category ID together with the category information
to reader. In this way, the reader achieves the sampling task of
this category and then broadcasts the category ID to silence
left tags belonging to the category. The protocol terminates
until all categories are sampled.

Fig. 14. Variances of the execution time of TPS.

Although we make some efforts in FSAS to avoid the
waste of querying multiple tags in a category, the number
of slots played by the reader is proportioned to the number
n of tags, which is time-consuming when n � m, e.g.,
m = 0.01n, where m is the number of categories. The main
reason is that, when a category is sampled in the previous slot,
the following slots picked by only the tags (which are silent)
belonging to this category become empty (no tag replies) and
the reader still needs to spend time to check each of them. To
avoid this waste, we come up with the second solution called
enhanced FSAS (EFSAS). EFSAS generally consists of about
m execution rounds, where m is the number of categories.
Unlike FSAS, in each round, the reader in EFSAS samples
only one category using FSAS. Specifically, after collecting
the category information from a tag and silencing others in
the category, the reader terminates the current frame, instead
of advancing to the next slot in the frame. Another category
will be sampled in the next frame in the same way. By this
means the reader does not need to take extra time to check
empty slots picked by silenced tags, greatly reducing the delay.

Notice that, in the simulation of EFSAS, we are supposed to
consider the inter-frame duration as EFSAS needs to execute
many sampling rounds when m is large. The inter-frame
duration is the time interval between two neighbor frames,
which includes the duration of powering down the reader and
the duration of transmitting carrier waves to power tags before
communication [8]. We refer to the inter-frame duration as tf ,
which is usually larger than tid, as shown in the experimental
results in [8]. Let tf = λtid. In the simulation, we set λ = 2.
Besides, since the reader detects a collision via RN16 in the
C1G2 standard, we get the duration tc of collision slots (picked
by more than one tag): 25 × 16 + T = 600 μs. For fairness,
we also count the inter-frame duration when executing the
protocols FSAS and BFS.

In Fig. 15 and Fig. 16, we study the execution time of
FSAS, EFSAS, and BFS when sampling two different lengths
of category information, i.e., w = 10, and w = 20. Fig. 15
compares the execution time of the three protocols under
different numbers of tags. In each simulation, we fix the
number of tags in each category at 100 and vary the number
n of tags from 10,000 to 100,000 (the number of categories
ranges from 100 to 1000, which differs from the setting of
TPS). Among the two subfigures, we observe that BFS is faster
than the other two protocols. That is because, by carrying out
the back-and-forth frame, BFS is able to query only 1.45 tags
on average for each category, close to the lower bound. FSAS
performs the worst as it has to check a great number of slots

170 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

Fig. 15. Execution time with respect to the number n of tags. (a) w = 10.
(b) w = 20.

Fig. 16. Execution time with respect to the category size. (a) w = 10.
(b) w = 20.

which is proportional to n instead of m. EFSAS is better
than FSAS since it avoids the waste of checking most empty
slots. However, it is still worse than BFS. We examine the
performance gap under an arbitrary parameter setting, such as
w = 10 and n = 105. As shown in Fig. 15(a), FSAS spends
the longest sampling time 25.3s. EFSAS reduces the execution
time to 11.2s, 44.3% of FSAS. TPS further decreases the
execution time to 4.1s, just 16.3% of FSAS.

In Fig. 16, we also study the relationship between the
execution time of the three protocols and the number of tags
in each category. In the simulations, we fix the number of
tags at 100,000 and vary the number of tags in each category
from 20 to 200. Clearly, under various settings, TPS always
performs the most efficiently. The performance comparison of
FSAS and EFSAS depends on the number of tags in each
category. If this number is smaller than 40 in our simulations,
FSAS is better than EFSAS. Otherwise, EFSAS is better. The
main reason is that, although EFSAS is able to avoid the waste
of empty slots and make the sampling duration proportional
to the number m of category (rather than n in FSAS), EFSAS
needs to issue about m frames and the inter-frame overhead
tf between neighbor frames is much bigger than duration ts
of empty slots (tf ≈ 38 ts). Hence, when each category has a
small number of tags, it is not worthwhile frequently issuing
new frames for sampling each category.

In Fig. 17, we study the variances of the execution time of
BFS. The number of categories and the category size are set to
1000 and 100, respectively. Two kinds of category information
are collected, with different lengths (w = 10, w = 20). Each
CDF curve in the figure is the results of 100 simulation runs
for a fixed length of information. When w = 10, the mean
of the execution time is 4.1s, and each deviation between the
result of a run and the mean value is computed. As we can see,
the 90th percentile of the execution-time deviations is bounded
within 0.2s, which is less than 5% of the mean. Similarly,
when w = 20, the mean execution time is 4.4s and the 95th

Fig. 17. Variances of the execution time of BFS.

percentile of the deviations is also less than 0.2s, which well
indicates the good stability of our protocol.

According to above simulation results, we say that, by car-
rying out the back-and-forth frame, the proposed protocol
BFS is superior to the baseline protocols FSAS and EFSAS,
greatly improving the sampling efficiency under the case of
unknowing tag IDs or category IDs.

VI. RELATED WORK

A great number of research has been conducted on various
issues in RFID systems. Much prior work focuses on the
fundamental ID-collection problems. The key ideas are to
avoid tag-to-tag collisions in the open wireless channel, which
generally fall into two categories: the ALOHA-based [35],
[36], [38] and the tree-based [11], [14], [39]. The former
collects a tag’s ID by carrying out a slotted frame and isolating
the tag in a singleton slot (picked by exactly one tag) in the
frame. The tree-based solutions iteratively split a tag set into
smaller ones by dynamically adjusting and broadcasting an
ID prefix. This process repeats until only one tag is left and
queried by the reader. In recent years, the research interests in
RFID systems have been shifted to some application-oriented
functions. For example, cardinality estimation [6], [13], [40]
is to count the number of tags; missing tag identification
[9], [10] is to identify whether and which tags are absent;
searching problems [7], [41] try to find a group of interested
tags from the existing tag set.

Information collection [32]–[34], [42], as another branch
of these new functional research, has attracted wide attentions
due to its practical importance. Chen et al. [32] first formulate
this problem and propose a time-efficient multihash informa-
tion collection protocol (MIC) to collect sensor information
from all tags. By using multiple hash functions, MIC is able
to resolve most hash collisions in a slotted frame, greatly
improving the protocol performance. In the follow-up work,
Yue et al. [33] propose a Bloom filter based Information
Collection protocol (BIC) that is tailored to the information
collection under the case of multiple RFID readers. By dis-
tributively constructing and transmitting a Bloom filter, each
reader can quickly identify which tags are under its coverage,
speeding up the overall information collection. Liu et al. [42]
propose a tree-based polling protocol (TPP) that improves the
time efficiency of information collection by shortening the
length of the polling vector. Qiao et al. [34] design an efficient
polling-based protocol that collects tag information from only
a wanted tag subset. Although these work achieve high per-
formance, they need to collect all tags’ information or take

LIU et al.: EFFICIENT INFORMATION SAMPLING IN MULTI-CATEGORY RFID SYSTEMS 171

the entire tag set into account each time, which is time-
consuming for the task of category information collection in
multi-category RFID systems.

VII. CONCLUSION

In this paper, we study the problem of category information
collection in a multi-category RFID system. We propose two
time-efficient sampling protocols, two-phase sampling (TPS)
and back-and-forth sampling (BFS), that solve the sampling
problem under two different cases. In the first case of knowing
tag IDs, TPS shortens the length of the polling vector to only
7.5 bits for each category with two-phase hash technology.
In the second case of unknowing any tag information, by car-
rying out the step-forward frame and using the step-backward
scheme, BFS just needs to query about 1.45 tags for sampling
each category. Extensive results show that our protocols TPS
and BFS outperform the baseline protocols, greatly improving
the sampling efficiency.

REFERENCES

[1] L. Shangguan and K. Jamieson, “The design and implementation of
a mobile RFID tag sorting robot,” in Proc. ACM MobiSys, 2016,
pp. 31–42.

[2] L. Shangguan, Z. Yang, A. X. Liu, Z. Zhou, and Y. Liu, “Relative
localization of RFID tags using spatial-temporal phase profiling,” in
Proc. USENIX NSDI, 2015, pp. 251–263.

[3] J. Liu et al., “RF-scanner: Shelf scanning with robot-assisted RFID
systems,” in Proc. IEEE INFOCOM, May 2017, pp. 1–9.

[4] X. Liu et al., “Top-k queries for categorized RFID systems,” IEEE/ACM
Trans. Netw., vol. 25, no. 5, pp. 2587–2600, Oct. 2017.

[5] X. Liu et al., “RFID estimation with blocker tags,” IEEE/ACM Trans.
Netw., vol. 25, no. 1, pp. 224–237, Feb. 2017.

[6] Y. Zheng and M. Li, “Towards more efficient cardinality estimation
for large-scale RFID systems,” IEEE/ACM Trans. Netw., vol. 22, no. 6,
pp. 1886–1896, Dec. 2014.

[7] Y. Zheng and M. Li, “Fast tag searching protocol for large-scale
RFID systems,” IEEE/ACM Trans. Netw., vol. 21, no. 3, pp. 924–934,
Jun. 2013.

[8] L. Xie, H. Han, Q. Li, J. Wu, and S. Lu, “Efficient protocols for
collecting histograms in large-scale RFID systems,” IEEE Trans. Parallel
Distrib. Syst., vol. 26, no. 9, pp. 2421–2433, Sep. 2015.

[9] M. Shahzad and A. X. Liu, “Fast and reliable detection and identification
of missing RFID tags in the wild,” IEEE/ACM Trans. Netw., vol. 24,
no. 6, pp. 3770–3784, Dec. 2016.

[10] T. Li, S. Chen, and Y. Ling, “Identifying the missing tags in a large
RFID system,” in Proc. ACM MobiHoc, 2010, pp. 1–10.

[11] M. Shahzad and A. X. Liu, “Probabilistic optimal tree hopping for rfid
identification,” IEEE/ACM Trans. Netw., vol. 23, no. 3, pp. 796–809,
Jun. 2015.

[12] X. Liu, S. Zhang, B. Xiao, and K. Bu, “Flexible and time-efficient tag
scanning with handheld readers,” IEEE Trans. Mobile Comput., vol. 15,
no. 4, pp. 840–852, Apr. 2016.

[13] C. Qian, H. Ngan, Y. Liu, and L. M. Ni, “Cardinality estimation for
large-scale RFID systems,” IEEE Trans. Parallel Distrib. Syst., vol. 22,
no. 9, pp. 1441–1454, Sep. 2011.

[14] C. Qian, Y. Liu, R. H. Ngan, and L. Ni, “ASAP: Scalable collision
arbitration for large RFID systems,” IEEE Trans. Parallel Distrib. Syst.,
vol. 24, no. 7, pp. 1277–1288, Jul. 2013.

[15] Q. Xiao, S. Chen, and M. Chen, “Joint property estimation for multiple
RFID tag sets using snapshots of variable lengths,” in Proc. ACM
MobiHoc, 2016, pp. 151–160.

[16] Q. Xiao, M. Chen, S. Chen, and Y. Zhou, “Temporally or spatially
dispersed joint RFID estimation using snapshots of variable lengths,” in
Proc. ACM MobiHoc, 2015, pp. 247–256.

[17] M. Chen, J. Liu, S. Chen, Y. Qiao, and Y. Zheng, “DBF: A general
framework for anomaly detection in RFID systems,” in Proc. IEEE
INFOCOM, May 2017, pp. 1–9.

[18] S. Qi, Y. Zheng, M. Li, Y. Liu, and J. Qiu, “Scalable industry data
access control in RFID-enabled supply chain,” IEEE/ACM Trans. Netw.,
vol. 24, no. 6, pp. 3551–3564, Dec. 2016.

[19] C.-H. Lee and C.-W. Chung, “RFID data processing in supply chain
management using a path encoding scheme,” IEEE Trans. Knowl. Data
Eng., vol. 23, no. 5, pp. 742–758, May 2011.

[20] A. Sarac, N. Absi, and S. Dauzère-Peres, “A literature review on the
impact of RFID technologies on supply chain management,” Int. J. Prod.
Econ., vol. 128, no. 1, pp. 77–95, 2010.

[21] G. Wang et al., “HMRL: Relative localization of RFID tags with static
devices,” in Proc. IEEE SECON, Jun. 2017, pp. 1–9.

[22] J. Han et al., “Twins: Device-free object tracking using passive tags,”
IEEE/ACM Trans. Netw., vol. 24, no. 3, pp. 1605–1617, Jun. 2016.

[23] J. Han et al., “Cbid: A customer behavior identification system using
passive tags,” IEEE/ACM Trans. Netw., vol. 24, no. 5, pp. 2885–2898,
Oct. 2016.

[24] L. Yang et al., “Tagoram: Real-time tracking of mobile RFID tags to
high precision using COTS devices,” in Proc. ACM MobiCom, 2014,
pp. 237–248.

[25] L. Yang, Q. Lin, X. Li, T. Liu, and Y. Liu, “See through walls with
COTS RFID system!” in Proc. ACM MobiCom, 2015, pp. 487–499.

[26] J. Wang, J. Xiong, H. Jiang, X. Chen, and D. Fang, “D-Watch:
Embracing ‘Bad’ multipaths for device-free localization with COTS
RFID devices,” IEEE/ACM Trans. Netw., vol. 25, no. 6, pp. 3559–3572,
Dec. 2017.

[27] L. Xie, C. Wang, A. X. Liu, J. Sun, and S. Lu, “Multi-touch in the air:
Concurrent micromovement recognition using RF signals,” IEEE/ACM
Trans. Netw., vol. 26, no. 1, pp. 231–244, Feb. 2018.

[28] C. Wang et al., “RF-kinect: A wearable RFID-based approach towards
3D body movement tracking,” in Proc. ACM UbiComp, vol. 2, no. 1,
2018, pp. 41:1–41:28.

[29] X. Liu et al., “Range-based localization for sparse 3D sen-
sor networks,” IEEE Internet Things J., to be published, doi:
10.1109/JIOT.2018.2856267.

[30] J. Liu, M. Chen, S. Chen, Q. Pan, and L. Chen, “Tag-compass:
Determining the spatial direction of an object with small dimensions,”
in Proc. IEEE INFOCOM, May 2017, pp. 1–9.

[31] J. R. Smith, Wirelessly Powered Sensor Networks and Computational
RFID. New York, NY, USA: Springer-Verlag, 2013.

[32] S. Chen, M. Zhang, and B. Xiao, “Efficient information collection proto-
cols for sensor-augmented RFID networks,” in Proc. IEEE INFOCOM,
Apr. 2011, pp. 3101–3109.

[33] H. Yue, C. Zhang, M. Pan, Y. Fang, and S. Chen, “A time-efficient
information collection protocol for large-scale RFID systems,” in Proc.
IEEE INFOCOM, Mar. 2012, pp. 2158–2166.

[34] Y. Qiao, S. Chen, T. Li, and S. Chen, “Energy-efficient polling protocols
in RFID systems,” in Proc. ACM MobiHoc, 2011, p. 25:1–25:9.

[35] EPC Radio-Frequency Identity Protocols Generation-2 UHF RFID Stan-
dard, Standard ISO/IEC 18000-63, GS1, Jul. 2018. [Online]. Available:
https://www.gs1.org/standards/epc-rfid/uhf-air-interface-protocol

[36] S.-R. Lee, S.-D. Joo, and C.-W. Lee, “An enhanced dynamic framed
slotted ALOHA algorithm for RFID tag identification,” in Proc. MobiQ-
uitous, Jul. 2005, pp. 166–172.

[37] J. Waldrop, D. W. Engels, and S. E. Sarma, “Colorwave: A MAC
for RFID reader networks,” in Proc. IEEE Wireless Commun. Netw.
Conf. (WCNC), vol. 3. Mar. 2003, pp. 1701–1704.

[38] H. Vogt, “Efficient object identification with passive RFID tags,” in Proc.
IEEE PerCom, Aug. 2002, pp. 98–113.

[39] L. Pan and H. Wu, “Smart trend-traversal: A low delay and energy tag
arbitration protocol for large RFID systems,” in Proc. IEEE INFOCOM,
Apr. 2009, pp. 2571–2575.

[40] Q. Xiao, B. Xiao, and S. Chen, “Differential estimation in dynamic
RFID systems,” in Proc. IEEE INFOCOM, Apr. 2013, pp. 295–299.

[41] M. Chen, W. Luo, Z. Mo, S. Chen, and Y. Fang, “An efficient tag search
protocol in large-scale RFID systems with noisy channel,” IEEE/ACM
Trans. Netw., vol. 24, no. 2, pp. 703–716, Apr. 2016.

[42] J. Liu, B. Xiao, X. Liu, and L. Chen, “Fast RFID polling protocols,” in
Proc. ICPP, Aug. 2016, pp. 304–313.

Jia Liu (M’13) received the B.E. degree in software
engineering from Xidian University, Xi’an, China,
in 2010, and the Ph.D. degree in computer science
and technology from Nanjing University, Nanjing,
China, in 2016. He is currently a Research Assistant
Professor with the Department of Computer Science
and Technology, Nanjing University, Nanjing, China.
His research mainly focuses on RFID systems. He
is a member of the IEEE and ACM.

http://dx.doi.org/10.1109/JIOT.2018.2856267

172 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

Shigang Chen (F’16) received the B.S. degree
from the University of Science and Technology of
China in 1993 and the M.S. and Ph.D. degrees
from the University of Illinois at Urbana–Champaign
in 1996 and 1999, respectively, all in computer
science. He was with Cisco Systems for three years
before joining the University of Florida in 2002.
He served on the Technical Advisory Board for
Protego Networks Inc. from 2002 to 2003 and as
the CTO for Chance Media Inc. from 2012 to 2014.
He is currently a Professor with the Department of

Computer and Information Science and Engineering, University of Florida.
He has published more than 140 peer-reviewed journal/conference papers.
He holds 12 U.S. patents. His research interests include computer networks,
Internet security, wireless communications, and distributed computing. He is
a fellow of the IEEE. He received the IEEE Communications Society Best
Tutorial Paper Award and the NSF CAREER Award. He served in various
chair positions or as committee members for numerous conferences. He is an
Associate Editor for the IEEE/ACM TRANSACTIONS ON NETWORKING. He
served as an Editor for a number of other journals.

Qingjun Xiao (M’12) received the B.Sc. degree
from the Computer Science Department, Nanjing
University of Posts and Telecommunications, China,
in 2003, the M.Sc. degree from the Computer Sci-
ence Department, Shanghai Jiao Tong University,
China, in 2007, and the Ph.D. degree from the Com-
puter Science Department, The Hong Kong Poly-
technic University, in 2011. He held a post-doctoral
position with the Computer Science Department,
Georgia State University, and the Computer Science
Department, University of Florida, for three years

combined. He is currently an Assistant Professor with Southeast University,
China. He has published 16 papers as the first author on high-quality
conferences or journals. His research interests include protocol and algorithm
design in wireless sensor networks, RFID systems, or for network traffic
measurement. He is a member of the IEEE, ACM, and China Computer
Federation.

Min Chen received the B.E. degree in information
security from the University of Science and Technol-
ogy of China in 2011 and the M.S. and Ph.D. degrees
in computer science from the University of Florida
in 2015 and 2016, respectively. He is currently a
Software Engineer with Google Inc. His advisor is
Dr. S. Chen. His research interests include Internet
of Things, big network data, next-generation RFID
systems, and network security.

Bin Xiao (SM’11) received the B.Sc. and M.Sc.
degrees in electronics engineering from Fudan Uni-
versity, China, and the Ph.D. degree in computer
science from The University of Texas at Dallas,
USA. He joined the Department of Computing, The
Hong Kong Polytechnic University, as an Assistant
Professor, where he is currently an Associate Profes-
sor and the Director of the Mobile Cloud Computing
Laboratory. He is the Editor of three books and
has published more than 100 technical papers in
international journals and conferences. His research

is mainly on mobile cloud computing, smart phone technology, network
security, and wireless networks. He is the IEEE Senior member. He is currently
the Associate Editor of the International Journal of Parallel, Emergent and
Distributed Systems.

Lijun Chen received the B.S. degree in electrical
engineering from the Xi’an University of Science
and Technology, China, in 1982, and the M.S.
and Ph.D. degrees in automatic control from the
China University of Mining and Technology, China,
in 1993 and 1998, respectively. He was a Post-
Doctoral Fellow at Nanjing University, China, from
1998 to 2000, and Michigan State University, USA,
from 2001 to 2002, and a Visiting Scholar at The
Hong Kong Polytechnic University in 2007. His cur-
rent research interests include distributed computing
and ubiquitous network.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

