
Origin-Destination Flow Measurement in High-Speed

Networks

Tao Li Shigang Chen Yan Qiao

Department of Computer & Information Science & Engineering

University of Florida, Gainesville, FL, USA

Abstract—An origin-destination (OD) flow between two routers
is the set of packets that pass both routers in a network. Measuring
the sizes of OD flows is important to many network management
applications such as capacity planning, traffic engineering, anomaly
detection, and network reliability analysis. Measurement efficiency
and accuracy are two main technical challenges. In terms of
efficiency, we want to minimize per-packet processing overhead to
accommodate future routers that have extremely high packet rates.
In terms of accuracy, we want to generate precise measurement
results with small bias and standard deviation. To meet these
challenges, we design a new measurement method that employs
a compact data structure for packet information storage and uses
a novel statistical inference approach for OD-flow size estimation.
We perform simulations to demonstrate the effectiveness of our
method.

I. INTRODUCTION

Traffic measurement in high-speed networks provides critical

information for network management, resource allocation, and

traffic engineering [1], [2], [3]. This paper focuses on the

problem of origin-destination (OD) flow measurement. Consider

two routers r1 and r2. We define the set of packets that first pass

r1 and then pass r2 or first pass r2 and then pass r1 as an origin-

destination (OD) flow of the two routers. The cardinality of the

packet set is called the OD flow size. Our goal is to design an

efficient method to measure the number of packets that traverse

between two routers during a measurement period. It generally

consists of two phases: One for online packet information storage

and the other for offline OD-flow size computation. In the first

phase, routers record information about arrival packets. In the

second phase, each router reports its stored information to a

centralized server, which performs the measurement of each OD

flow based on the information sent from the origin/destination

router pair.

The OD flow measurement is an important function in many

network management applications such as capacity planning,

traffic engineering, anomaly detection, and network reliability

analysis [4], [5], [6]. For example, Internet service providers

may use the OD-flow information between points of interest as

a reference to align traffic distribution within the network. They

may also study the OD-flow traffic pattern and identify anomalies

that deviate significantly from the normal pattern. In the event of

a DDoS attack, a sudden surge of OD flows from some routers to

a common destination may give clues about where attack traffic

is generated.

Measurement efficiency and accuracy are two main technical

challenges. In terms of efficiency, we want to minimize the per-

packet processing overhead to accommodate future routers that

forward packets at extremely high rates. Increasingly faster line

speed beyond OC-768’s 40Gbps to reach tera bits per second

[7] makes DRAM unsuitable for online traffic measurement

functions due to its low speed. Instead, fast but more expensive

SRAM is preferred. On-die SRAM may be shared by a number

of critical functions for routing, scheduling, security, and traffic

measurement. These functions have to take turns to access the

SRAM. Therefore, it is extremely important to reduce per-packet

processing overhead for any traffic measurement function.

Accuracy is another important design goal. In high-speed

networks, we have to deal with a very large volume of packets.

Yet, the available memory for packet information storage is

limited by the size of SRAM. Therefore, it is unrealistic to store

all packet-level information in order to achieve 100% accuracy.

To solve this problem, some past research [8], [9], [10] uses

widely available data such as link load, network routing, and

configuration data to indirectly measure the OD flows. Cao, Chen

and Bu [11] propose a quasi-likelihood approach based on a

continuous variant of the Flajolet-Martin sketches [12]. However,

none of them is able to achieve both efficiency and accuracy at

the same time.

To meet these challenges, we design a new OD flow measure-

ment method, which uses a compact bitmap data structure for

packet information storage. At the end of a measurement period,

bitmaps from all routers are sent to a centralized server, which

examines the bitmaps of each origin/destination router pair and

uses a statistical inference approach to estimate the OD flow size.

The proposed method has three properties. First, its processing

overhead is small and constant, only one hash operation and one

memory access per packet. Second, it is able to achieve excellent

measurement results, which will be demonstrated by simulations.

Finally, its data storage is very compact. The memory allocation

is less than 1 bit for each packet on average.

II. PROBLEM STATEMENT AND PERFORMANCE METRICS

A. Problem Statement

Let S be a subset of routers of interest in a network. The

problem is to measure traffic volume between any pair of routers

in S. We model an origin-destination (OD) flow as the set of

packets traverse between two routers (the undirectional case) or

traverse from one router to the other (the directional case). Our

goal is to measure the size of each OD flow in terms of number

of packets.

The 31st Annual IEEE International Conference on Computer Communications: Mini-Conference

978-1-4673-0775-8/12/$31.00 ©2012 IEEE 2526

Consider the set of access routers on the perimeter of an ISP

network. If each access router stores information about ingress

packets (that enter the ISP network) and egress packets (that

leave the ISP network) in separate data structures, we can figure

out the size of an directional OD flow by comparing the infor-

mation in the ingress data structure of the origin router and the

information in the egress data structure of the destination router.

On the other hand, if each access router stores information of all

arrival packets in the same data structure, we can figure out the

size of an undirectional OD flow by comparing the information

in the data structures of both routers. The measurement method

proposed in this paper can be applied to both cases even though

our description uses the undirectional case for simplicity.

We consider two performance metrics, per-packet processing

overhead and measurement accuracy, which are discussed below.

B. Per-packet Processing Overhead

The maximum packet throughput that an online measurement

function can achieve is determined by the per-packet processing

overhead of the function. In order to keep up with today’s high-

speed network, it is desirable to make the per-packet processing

overhead as small as possible, especially when the SRAM and

processing circuits are shared by other critical functions.

The per-packet processing overhead is mainly determined

by the computational complexity and the number of memory

accesses for each packet. When a router receives a packet, it

needs to perform certain computation to determine the proper

location for the information storage and at least one memory

access for the storing operation. We will show that our OD flow

measurement function is able to achieve extremely small per-

packet processing overhead.

C. Measurement Accuracy

Let nc be the OD flow size of an origin/destination router pair

and n̂c be the corresponding measurement result. The event for

nc to fall into the interval [n̂c·(1−β), n̂c·(1+β)] with probability

at least α specifies the measurement accuracy of our function,

where α and β are pre-determined accuracy parameters, e.g.,

when α = 95% and β = 5%, it means the measurement result is

constrained in the range [0.95nc, 1.05nc] with probability 95%.

A smaller value of β means better measurement results.

If the memory requirement and the processing speed for each

packet are unlimited, we can achieve 100% measurement results.

Otherwise, we have to compromise the measurement accuracy

if the memory resource is not enough or the processing speed

requirement is relatively stringent.

III. ORIGIN-DESTINATION FLOW MEASUREMENT

We first describe a straightforward approach and discuss its

limitations. We then motivate the bitmap idea that we use

in this study. Finally we present our origin-destination flow

measurement method (ODFM) in details.

A. A Straightforward Approach

A straightforward approach is for each router to store the

information of all packets that pass it. In this way, when we want

to measure the OD flow size of two routers, we only need to

compare the two sets of packet information and count how many

packets the two sets have in common, i.e., the cardinality of the

intersection of the two sets. Clearly, storing information of all

packets is unrealistic since the number of packets passing a router

is huge in high-speed networks and it imposes an extremely large

memory requirement on the router.

In order to reduce the memory requirement, we can store the

signatures of packets instead. The signature of a packet is a hash

value of the packet with a fixed length. When the length of the

signature is long enough, e.g., 160 bits if using SHA-1 [13], the

chance of two packets having the same signatures is negligibly

small. Therefore, we can count the number of identical signatures

that stored in the two routers to obtain the OD flow size. This

enhancement can reduce the memory requirement to some extent.

However, it is still not memory efficient. Suppose there are 1M
packets that pass a router during a measurement period. When

the length of the signature is 160 bits long, a router needs 20MB
(1M×160/8) memory to store the information of all signatures,

which is still too much in practise. Using smaller signatures

cannot solve the problem, either. For example, if we reduce the

signature length to just 16 bits, the memory requirement is still

2MB, far higher than the goal of this paper, less than 1 bit per

packet.

B. ODFM: Motivation and Overview

We design a bitmap based OD flow measurement method that

is able to solve the problems of the above approach. Instead

of storing the signatures of packets, each router maintains a bit

array with a fixed length and initially all bits in the array are set

to zero. When the router receives a packet, it pseudo-randomly

maps the packet to one bit of the array by a hash operation and

sets the bit to one. At the end of the measurement period, we

measure the OD flow size of two routers by comparing their bit

arrays. Since a packet always uses the same hash function to

choose a bit in the arrays for all routers and the size of each

bit array is fixed within a measurement period, it will map to

the same location in the bit arrays of any routers it has passed.

Therefore, if a packet enters router r1 and exits from r2 or the

other way around, its corresponding bit in these two bit arrays

must be both set to one. Based on this observation, we can take

a bitwise AND operation of the two bit arrays and count the

number of ones in the combined bit array to measure the OD

flow.

Note that this approach may introduce the overestimation

problem, which could lead to an inaccurate measurement result.

Suppose two packets, called p1 and p2, map to the same location

j by the hash function, while p1 passes one router and p2 passes

the other. In this case, the jth bit of both bit arrays of the

two routers will be set to one. When we compare the two bit

arrays, we will falsely treat p1 and p2 as the same packet and

overestimate the OD flow size. However, there is a nice property

of this scheme: Because the bit for each packet is randomly

picked in the bit array, the event for any two packets to choose

the same bit in the array has an equal probability to happen.

When the number of packets and the size of the bit array are

2527

large enough, this event occurs in the bit array uniformly at

random and the overestimation problem can be solved through

statistical analysis. This property enables us to design a compact

yet accurate measurement method. Moreover, in our scheme, a

router only needs to perform one hash operation and one memory

accesses per packet, which is very efficient and feasible for high-

speed networks.

C. ODFM: Storing the Packet Information

ODFM consists of two components: one for storing the packet

information into routers, the other for measuring the OD flow

of any two routers. This subsection presents the first component

and the second one will be described in the next subsection.

At the beginning of the measurement period, each router

maintains a bit array B with a fixed length m. Initially each

bit in B is set to zero. The ith bit in the array is denoted as

B[i]. When a router receives a packet p, it pseudo-randomly

picks one bit in B by performing a hash operation H(p) and set

the bit to one, where H(..) is a hash function whose output range

is [0..m − 1]. More specifically, to store the packet p, ODFM

performs the following assignment:

B[H(p)] := 1. (1)

Actually a router does not have to perform the hash operation

on all the content of a packet. In the network layer, a packet can

be uniquely identified by its IP header, which stores the packet la-

bel information, i.e., source IP address and destination IP address

and so on. For two packets that are fragments of some original,

larger packet, although they share the same source/destination

IP addresses and identification number, their fragmentation offset

values are different. Therefore, a router only needs to perform the

hash operation (H(p)) on the IP header of a packet, which can

further reduce the hash computational complexity and improve

the processing speed. This enhancement can be also applied to

the straightforward approach in Section III-A.

It is worth noting that a router only needs to perform one hash

operation and sets one bit in its bit array per packet, which is

very simple, efficient, and can be easily implemented in high-

speed routers.

D. ODFM: Measuring the Size of Each OD Flow

At the end of the measurement period, all routers will report

its bit array to a centralized server, e.g., the network management

center, which performs the offline measurement. ODFM employs

the maximum likelihood estimation (MLE) [14] to measure the

OD flow of any two routers based on their bit arrays. Let S1

and S2 be the set of packets that pass the two routers r1 and r2.

Let n1 and n2 be the cardinalities of S1 and S2, respectively,

i.e., n1 = |S1|, n2 = |S2|, nc be the number of common packets

that r1 and r2 share, i.e., the OD flow size of the two routers,

which is the value that we want to measure in this study. Figure 1

illustrates the relationship of n1, n2, and nc. Obviously, we have

nc = |S1 ∩ S2|. Let B1 and B2 be the two bit arrays of r1 and

r2, U1 and U2 be the number of ‘0’s in B1 and B2, respectively,

V1 and V2 be the percentage of bits in B1 and B2 whose values

are zero. Clearly, V1 = U1

m
and V2 = U2

m
.

S1 S2

n n n
1 c 2

Fig. 1. The relation between two routers r1 and r2

The measurement consists of two steps. In the first step, we

compute the cardinality of S1 (i.e., n1) and the cardinality of S2

(i.e., n2) based on B1 and B2, respectively. In the second step,

we take a bitwise AND operation of B1 and B2 to generate a

new bit array, denoted as Bc, to compute the OD flow size nc.

Let Uc be the number of ‘0’s in Bc, Vc be the percentage of bits

in Bc whose values are zero. Clearly, Vc =
Uc

m
. We compute nc

based on Bc and the results obtained in previous step, i.e., the

values of n1 and n2.

1) Measure n1 and n2: The number of packets that a router

receives during a measurement period can be easily obtained

by adding a counter whose initial value is set to zero. When it

comes a new packet, the router simply increases the counter by

one. In this way, we can obtain the exact values of n1 and n2,

which we will use to measure nc in the following subsection.

2) Measure nc: After n1 and n2 are obtained, we take a

bitwise AND operation of B1 and B2, denoted as Bc, to measure

nc. More specifically, we have

Bc[i] = B1[i] & B2[i], ∀i ∈ [0..m− 1]. (2)

For an arbitrary bit b in Bc, it is ‘0’ if and only if the following

two conditions are both satisfied. First, it is not chosen by any

packet in S1 ∩ S2. If b is chosen by a packet p ∈ S1 ∩ S2, we

know the corresponding bits in both B1 and B2 will be set to

‘1’. Therefore, b will be ‘1’. Second, it is either not chosen by

any packet in S1 − S2 or not chosen by any packet S2 − S1.

If it is chosen by both a packet p1 ∈ S1 − S2 and a packet

p2 ∈ S2 −S1, the corresponding bits in both B1 and B2 will be

also set to ‘1’. As a result, b will be ‘1’. For the first condition, a

packet in S1∩S2 has probability 1

m
to set b to ‘1’, which means

the probability for b not to be set by this packet is 1 − 1

m
. As

Figure 1 shows, nc = |S1 ∩ S2|. Therefore, the probability for

b not to be set to ‘1’ by any packet in S1 ∩ S2 is (1 − 1

m
)nc .

Similarly, the probability for it not to be chosen by any packet

in S1 − S2 is (1− 1

m
)n1−nc and the probability for it not to be

chosen by any packet in S2 − S1 is (1− 1

m
)n2−nc . As a result,

the probability q(nc) for b to remain ‘0’ in Bc is

q(nc) = (1−
1

m
)nc{1− (1− (1−

1

m
)n1−nc)

× (1− (1−
1

m
)n2−nc)}

= (1−
1

m
)n1 + (1−

1

m
)n2 − (1 −

1

m
)n1+n2−nc (3)

Each bit in Bc has a probability q(nc) to be ‘0’. The observed

number of ‘0’ bits in Bc is Uc. Therefore, the likelihood function

2528

for this observation to occur is given as follows:

L = q(nc)
Uc × (1 − q(nc))

m−Uc (4)

Following the standard process of maximum likelihood estima-

tion, we find an optimal value of nc that can maximize the above

likelihood function. Namely, we want to find

n̂c = arg max{L}

nc

(5)

To find n̂c, we take a logarithm operation to both sides of (4).

lnL = Uc × ln q(nc) + (m− Uc)× ln(1− q(nc)) (6)

We then differentiate the above equation:

dlnL

dnc

= (
Uc

q(nc)
−

m− Uc

1− q(nc)
)× q′(nc)

= (
Uc

q(nc)
−

m− Uc

1− q(nc)
)× ln(1−

1

m
)

× (1−
1

m
)n1+n2−nc , (7)

since according to (3), we have

q′(nc) =
dq(nc)

dnc

= ln(1 −
1

m
)× (1−

1

m
)n1+n2−nc . (8)

In order to compute n̂c, we set the right side of (7) to zero,

i.e.,

(
Uc

q(nc)
−

m− Uc

1− q(nc)
)× ln(1−

1

m
)× (1−

1

m
)n1+n2−nc = 0

(9)

Since neither of ln(1 − 1

m
) and (1 − 1

m
)n1+n2−nc could be 0

when m is positive, we have

Uc

q(nc)
−

m− Uc

1− q(nc)
= 0. (10)

Applying (3) to (10), we have

(1 −
1

m
)n1 + (1−

1

m
)n2 − (1 −

1

m
)n1+n2−nc =

Uc

m
= Vc. (11)

In above equation, m,n1, and n2 are all known values, and Vc

can also be computed when the packets information are recorded.

As a result, we can measure nc in the following formula:

nc =n1 + n2 −
ln((1− 1

m
)n1 + (1− 1

m
)n2 − Vc)

ln(1− 1

m
)

. (12)

TABLE I
NUMBER OF MEMORY ACCESSES AND NUMBER OF HASH OPERATIONS PER

PACKET WITH n1 = 6, 000, 000 AND n2 = 6, 000, 000

memory hash constant?
accesses operations

ODFM 1 1 Yes

QMLE 1.50 2 No

TABLE II
NUMBER OF MEMORY ACCESSES AND NUMBER OF HASH OPERATIONS PER

PACKET WITH n1 = 6, 000, 000 AND n2 = 300, 000

memory hash constant?
accesses operations

ODFM 1 1 Yes

QMLE 1.56 2 No

TABLE III
NUMBER OF MEMORY ACCESSES AND NUMBER OF HASH OPERATIONS PER

PACKET WITH THE VALUES OF n1 AND n2 ARE RANDOMLY ASSIGNED

BETWEEN 100,000 AND 10,000,000

memory hash constant?
accesses operations

ODFM 1 1 Yes

QMLE 1.22 2 No

IV. SIMULATIONS

We evaluate the performance of our method ODFM by simula-

tions in this section. We compare ODFM with the most related

work, QMLE [11]. For fair comparison, we assign the same

amount of memory to ODFM and QMLE. We compare them in

terms of online processing overhead and measurement accuracy.

Simulations are performed under system parameters, n1, n2,

and nc. For an origin-destination router pair, n1 is the number of

packets that one router receives during the measurement period,

and n2 is the number of packets that the other router receives.

Parameter nc is the actual OD flow size. The amount of memory

used is set to be 1 MB.

In the first set of simulations, we let n1 = 6, 000, 000, n2 =
6, 000, 000 or 300, 000. We vary nc from 100 to 50,000. We

use ODFM and QMLE to measure the flow size, and compare

it with nc to see how accurate the measurement is.

In the second set of simulations, we model a more realistic

scenario, where n1, n2, and nc are randomly chosen. The

values of n1 and n2 are randomly selected from the range of

[100, 000, 10, 000, 000], and the value of nc is randomly selected

from [100, 50, 000] in each simulation run.

A. Processing Overhead

Per-packet processing overhead of a measurement method is

mainly determined by the number of memory accesses and the

number of hash operations for each packet. Table I shows the

averaged results when n1 = 6, 000, 000, n2 = 6, 000, 000,

and nc varies from 100 to 50, 000. ODFM requires only 1

hash operation and 1 memory access (memory write) for each

packet, which is the optimal. QMLE requires more per-packet

processing overhead. It incurs 1.50 memory accesses and 2

hash operations on average. Furthermore, per-packet processing

overhead of ODFM is constant, while QMLE requires variable

per-packet processing overhead, which is undesirable in practice.

Table II presents similar results with n2 = 300, 000. Table III

2529

 0

 10000

 20000

 30000

 40000

 50000

 0 10000 20000 30000 40000 50000

E
st

im
at

ed
 v

al
u
e

OD flow size

ODFM

 0

 10000

 20000

 30000

 40000

 50000

 0 10000 20000 30000 40000 50000

E
st

im
at

ed
 v

al
u
e

OD flow size

QMLE

Fig. 2. • Left Plot: estimation results by ODFM when n1 = 6, 000, 000

and n2 = 6, 000, 000. • Right Plot: estimation results by QMLE when n1 =

6, 000, 000 and n2 = 6, 000, 000.

 0

 10000

 20000

 30000

 40000

 50000

 0 10000 20000 30000 40000 50000

E
st

im
at

ed
 v

al
u
e

OD flow size

ODFM

 0

 10000

 20000

 30000

 40000

 50000

 0 10000 20000 30000 40000 50000

E
st

im
at

ed
 v

al
u
e

OD flow size

QMLE

Fig. 3. • Left Plot: estimation results by ODFM when n1 = 6, 000, 000

and n2 = 300, 000. • Right Plot: estimation results by QMLE when n1 =

6, 000, 000 and n2 = 300, 000.

 0

 10000

 20000

 30000

 40000

 50000

 0 10000 20000 30000 40000 50000

E
st

im
at

ed
 v

al
u
e

OD flow size

ODFM

 0

 10000

 20000

 30000

 40000

 50000

 0 10000 20000 30000 40000 50000

E
st

im
at

ed
 v

al
u
e

OD flow size

QMLE

Fig. 4. • Left Plot: estimation results by ODFM when the values of n1 and n2

are randomly assigned between 100,000 and 10,000,000. • Right Plot: estimation
results by QMLE when the values of n1 and n2 are randomly assigned between
100,000 and 10,000,000.

shows the results when the values of n1 and n2 are randomly

chosen in the range [100, 000, 10, 000, 000] and the value of nc

is randomly chosen in the range of [100, 50, 000].

B. Measurement Accuracy

Figures 2-3 present the measurement results of ODFM and

QMLE. Each figure consists of two plots. Each point in the

left plot (ODFM) or the right plot (QMLE) represents an OD

flow. The x-axis is the actual flow size nc, and the y-axis is

the estimated value n̂c. We also show the equality line, y = x,

for reference. Clearly, the closer a point is to the equality line,

the better the estimation result is. The two figures present the

following results.

As shown in the left plot of Figure 2, when the values of n1

and n2 are the same, ODFM has a small bias in its measurement,

which is understandable because it is well known that the

maximum likelihood estimation may produce small bias under

certain parameter settings. The right plot shows that QMLE

performs better and produces almost perfect results. However,

this is only part of the story. When the values of n1 and n2

are different, as shown in Figure 3 where n1 = 6, 000, 000 and

n2 = 300, 000, ODFM performs nearly perfectly, while QMLE

produces large bias. As the difference between n1 and n2 widens,

the bias of QMLE becomes larger, whereas the performance of

ODFM is actually improved. Now the question is which case is

closer to the reality, n1 and n2 having close values or diverse

values? It is the latter, as we will show in the next section.

Figure 4 compares the performance of ODFM and QDFM

when n1 and n2 are randomly picked in the range

[100, 000, 10, 000, 000]. Clearly, ODFM outperforms QMLE by

a wide margin. The reason is that randomly-selected values of

n1 and n2 tend to be very different than being close to each

other.

V. CONCLUSIONS

This paper proposes a new method for OD flow measurement

which employs the bitmap data structure for packet information

storage and uses statistical inference approach to recover packet

information. Our method not only requires smaller per-packet

processing overhead but also achieves much more accurate re-

sults, when comparing with the existing approach. We implement

simulations to demonstrate the superior performance of our

method.

VI. ACKNOWLEDGEMENTS

This work was supported in part by the US National Science

Foundation under grant CNS-1115548. We would also like to

thank the anonymous reviewers for their constructive comments.

REFERENCES

[1] J. Cao, Y. Jin, A. Chen, T. Bu, and Z. Zhang, “Identifying High Cardinality
Internet Hosts,” Proc. of IEEE INFOCOM, 2009.

[2] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter Braids: A Novel Counter Architecture for Per-Flow Measure-
ment,” Proc. of ACM SIGMETRICS, 2008.

[3] X. Dimitropoulos, P. Hurley, and A. Kind, “Probabilistic Lossy Counting:
An Efficient Algorithm for Finding Heavy Hitters,” ACM SIGCOMM
Computer Communication Review, 2008.

[4] M. Thorup M. Roughan and Y. Zhang, “Traffic engineering with estimated
traffic matrices,” Proc. of Internet Measurement Conference (IMC), 2003.

[5] H. Ringberg, A. Soule, J. Rexford, and C. Diot, “Sensitivity of PCA for
traffic anomaly detection,” Proc. of ACM SIGMETRICS, 2007.

[6] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot, “Traffic
matrix estimation: Existing techniques and new directions,” Proc. of ACM
SIGCOMM, 2002.

[7] W. David Gardner, “Researchers Transmit Optical Data At 16.4 Tbps,”
InformationWeek, February 2008.

[8] Y. Zhang, M. Roughan, C. Lund, and D. Donoho, “An informationtheoretic
approach to traffic matrix estimation,” Proc. of ACM SIGCOMM, 2003.

[9] Y. Zhang, M. Roughan, C. Lund, and D. Donoho, “Estimating Point-to-
Point and Point-to-Multipoint Traffic Matrices: An Information-Theoretic
Approach,” IEEE/ACM Transactions on Networking, vol. 10, no. 10, 2005.

[10] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg, “Fast accurate
computation of large-scale ip traffic matrices from link loads,” Proc. of
ACM SIGMETRICS, 2003.

[11] J. Cao, A. Chen, and T. Bu, “A Quasi-Likelihood Approach for Accurate
Traffic Matrix Estimation in a High Speed Network,” Proc. of IEEE
INFOCOM, 2008.

[12] G. Flajolet, “Probabilistic counting,” Proc. of Symp. on Fundations of
Computer Science (FOCS), 1983.

[13] National Institute of Standards and Technology, “FIPS 180-1: Secure Hash
Standard,” http://csrc.nist.gov, 1995.

[14] G. Casella and R. L. Berger, “Statistical Inference,” 2nd edition, Duxbury
Press, 2002.

2530

