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Abstract—Spreader classification is an online traffic measure-
ment function that has many important applications. In order to
keep up with ever-higher line speed, the recent research trend
is to implement such functions in fast but small on-die SRAM.
However, the mismatch between the huge amount of Internet
traffic to be monitored and limited on-die memory space presents
a significant technical challenge. In this paper, we propose an
Efficient Spreader Classification (ESC) scheme based on dynamic
bit sharing, a compact information storage method. We design
a maximum likelihood estimation method to extract per-source
information from the compact storage and determine the heavy
spreaders. Our new scheme ensures that false positive/negative
ratios are bounded. Moreover, given an arbitrary set of bounds,
we develop a systematic approach to determine the optimal system
parameters that minimize the amount of memory needed to meet
the bounds. Experiments based on a real Internet traffic trace
demonstrate that the proposed spreader classification scheme
reduces memory consumption by 3–20 times when compared to
the best existing work. We also investigate a new multi-objective
spreader classification problem and extend our classification
scheme to solve it.

Index Terms—SRAM, Spreader classification, traffic
measurement.

I. INTRODUCTION

M ODERN high-speed routers forward packets from in-
coming ports to outgoing ports via switching fabric, by-

passing main memory and CPU. New technologies are pushing
line speeds beyond OC-768 (40 Gb/s) to reach 100 Gb/s or
even terabits per second [1]. The line cards in core routers must
therefore forward packets at a rate exceeding 150 Mpps [2];
that leaves the processing time of each packet to be extremely
small. Parallel processing and pipeline are used to speed up
packet switching to a few clock cycles per packet [3]. In order
to keep up with such high throughput, online network func-
tions for traffic measurement, packet scheduling, access con-
trol, and quality of service will also have to be implemented
using on-chip cache memory and bypassing main memory and
CPU almost entirely [2], [4], [5]. However, fitting these network
functions in fast but small on-chip memory represents a major
technical challenge today [3].
The commonly used cache memory on network processor

chips is SRAM, typically a few megabytes. Further increasing
on-chip memory to more than 10MB is technically feasible, but
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it comes with a much higher price tag, and access time is longer.
There is a huge incentive to keep on-chip memory small be-
cause smaller memory can be made faster and cheaper. Off-chip
SRAM is larger. However, it is slower to access. Hence, on-chip
memory remains the first choice for online network functions
that are designed to match the line speeds.
On-chip memory is limited in size. To make the matter

even more challenging, it may have to be shared by multiple
routing/performance/measurement/security functions that are
implemented on the same chip. When multiple network func-
tions share the same memory, each of them can only use a
fraction of the available space. Depending on their relative
importance, some functions may be allocated tiny portions of
the limited memory, whereas the amount of data they have to
process and store can be extremely large in high-speed net-
works. The disparity in memory demand and supply requires us
to implement online functions as compact as possible [6], [7].
Furthermore, when different functions share the same memory,
they may have to take turns to access the memory, making
memory access the performance bottleneck. Since most on-
line functions require only simple computations that can be
efficiently implemented in hardware, their throughput will be
determined by the bottleneck in memory access. Hence, we
must also minimize the number of memory accesses made by
each function when it processes a packet.

A. Online Measurement Function: Spreader Classification

Wedefine a contact as a source–destination pair, for which the
source sends a packet to the destination. The source or destina-
tion can be an IP address, a port number, a combination of ad-
dress/port together with other fields in the packet header, or even
a filename or URL in the payload. The spread of a source is the
number of distinct destinations contacted by the source during
a measurement period. Similarly, we can define the spread of a
destination, which is the number of distinct sources that have
contacted the destination.
It is very costly to measure the spread of each source (or

destination) precisely. When a router measures the spread of a
source, it has to remember the destinations that the source has
contacted so far. Future packets from the source to the same
destinations do not increase the spread value. The spread is in-
creased only when a packet is sent to a new destination. The
problem is that it takes too much memory to store all destina-
tion addresses that every source has contacted.
To solve this problem, various techniques such as sam-

pling [8], probabilistic counting [9], Bloom filters [5], and
bitmaps [6], [10], [11] are used to reduce memory overhead
at the expense of measurement accuracy. The rationale is
that absolutely precise measurement of spread values may
not be necessary for most applications. It is often practically
sufficient to estimate spread values with a certain level of

1063-6692/$31.00 © 2012 IEEE



818 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 3, JUNE 2013

accuracy. Moreover, many applications only require us to
classify spreaders into categories such as: 1) heavy spreaders,
i.e., sources (or destinations) whose spread values are large,
and 2) non-heavy spreaders. This further lowers the accuracy
requirement and allows additional room for memory saving.
For example, in scan detection, we want to identify heavy
spreaders (scanners) that have contacted a lot of destinations.
In the previous server-farm example, we want to know the set
of servers with large spread values. Even if we do not identify
all such servers, it is very helpful in resource allocation if we
can identify most of them.
This paper studies the spreader classification problem.

Single-objective spreader classification is to identify the set
of heavy spreaders. Multi-objective spreader classification
places sources (or destinations) into more categories based on
their spread values. We will formally define these problems in
Sections II and VI, respectively. For space conservation, we
do not require precise measurement of each source’s spread.
Hence, the classification may not be 100% accurate. However,
as we have argued previously, the results are useful if we can
identify most heavy spreaders with bounded false positives
(in which non-heavy spreaders are mistakenly reported as
heavy spreaders) and bounded false negatives (in which heavy
spreaders are not reported). This is particularly true when the
false positive/negative ratios can be set arbitrarily small in a
controllable tradeoff between classification accuracy and space
overhead.
Classifying spreaders and identifying heavy spreaders have

many applications. Intrusion detection systems can use them to
detect port scans [12], in which an external heavy spreader at-
tempts to establish too many connections to different internal
hosts or different ports of the same host. They may be used
to detect distributed denial-of-service (DDoS) attacks when too
many hosts send traffic to a receiver [13], i.e., the spread of a
destination is abnormally high. They can be used to monitor
worm activities by identifying unusually high outbound contact
volumes from internal hosts during a worm outbreak. A large
server farm may use the spread values of its servers to find how
popular the servers’ content is, which provides guidance for re-
source allocation towards frequently accessed content. An in-
stitutional gateway may monitor outbound traffic and identify
external Web servers that have large spread values. This infor-
mation helps the local proxy learn the popularity of servers and
determine the cache priority of Web content.

B. Prior Art

A related but different problem is to measure flow sizes [14].
We can use counters [15]–[17] or counter braids [4], [17] to
measure flow sizes. If a source sends 1000 packets to a desti-
nation, the corresponding counter is increased by 1000. How-
ever, we cannot use counters to measure the spread values. If
a source sends 1000 packets to the same destination, its spread
is one. To remove duplicate packets that are sent to the same
destination, per-source bitmaps are often used for spread esti-
mation [10]. Note that bitmaps may also be used to count the
number of packets under certain circumstances when duplica-
tion does not occur [18].
Cisco’s Netflow provides coarse information (due to

its aggressive sampling) about flow sizes, but does not
gives spread information. It keeps per-flow state and stores

source/destination addresses. Hence, it uses too much space to
be implemented in SRAM.
Another line of related work [19]–[26] is on heavy-hitter

detection, which is different from spreader classification.
The former is to identify sources that send a large number of
packets, whereas the latter is to identify sources that contact a
large number of distinct destinations.
Solutions [5], [6], [11] that are fully equipped to estimate

the spread values of all sources with decent accuracy are an
overkill for spreader classification. Classification does not re-
quire accurate estimation for sources whose spread values are
very low (clearly non-heavy spreaders) or very high (clearly
heavy spreaders). Hence, it should cost much less space, as our
experiments will demonstrate. There is limited work specifically
for spreader classification. They either rely on ternary content
addressable memory (TCAM) [27] or incur significant space
overhead [8]. See Section VII for details.

C. Our Contribution

We propose an Efficient Spreader Classification (ESC)
scheme based on a new storage method, called dynamic bit
sharing, which stores contact information of all sources in a
compact format. The level of compactness is so deep that the
total number of available bits is less than 1/20 of the number
of sources in some of our experiment cases: On average, just
one bit is available for every 20 sources. Yet, still we are able
to make spreader classification with predictable accuracy. Our
scheme employs a maximum likelihood estimation method
to extract per-source information from the compact storage
and identify the heavy spreaders. It ensures that false posi-
tive/negative ratios are bounded. Moreover, given an arbitrary
set of false positive/negative bounds, we develop a systematic
approach to determine the optimal system parameters, such
that the amount of memory needed to satisfy the bounds is
minimized. We perform experiments based on a real traffic
trace and demonstrate that, using these optimal parameters,
we can reduce the memory consumption by 3–20 times when
compared to the best existing work.
The rest of this paper is organized as follows. Section II gives

the problem definition for single-objective spreader classifi-
cation. Section III describes our dynamic bit-sharing scheme.
Section IV presents the analytical results for optimal parame-
ters. Section V presents the experimental results. Section VI
solves the multi-objective spreader classification problem.
Section VII describes the related work. Section VIII draws the
conclusion.

II. PROBLEM STATEMENT

How do we formally define the classification objective? A
straightforward objective is to report all sources whose spread
values exceed a certain threshold. However, unless we measure
the spread of each source precisely, we cannot accurately clas-
sify sources based on the threshold. As we have explained in the
Introduction, precise spread measurement is a costly operation,
and most existing work resorts to spread estimation. Naturally,
the follow-up question is how to define a classification objective
that embodies a probabilistic performance bound.
We adopt the probabilistic classification objective from [8].

Let and be two positive integers, . Let and be
two probability values, and . In each
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Fig. 1. Overall design.

measurement period, the objective is to report any source whose
spread is or larger with a probability no less than and re-
port any source whose spread is or smaller with a probability
no more than . The measurement period may be defined as a
fixed time interval or as a time interval during which a certain
number of contacts is received. Let be the spread of an ar-
bitrary source . The objective can be expressed in terms of
conditional probabilities

(1)

We treat the report of a source whose spread is or smaller as
a false positive, and the nonreport of a source whose spread is
or larger as a false negative. Hence, the above objective can also
be stated as bounding the false positive ratio by and the false
negative ratio by . Our goal is to minimize the amount of
SRAM that is needed for achieving the above objective.
Although our technical discussion in this paper focuses on

spreader classification of sources, the same techniques can be
equally applied to spreader classification of destinations.

III. EFFICIENT SPREADER CLASSIFICATION SCHEME

This section presents our ESC scheme, which is the combi-
nation of probabilistic sampling, dynamic bit sharing, and max-
imum likelihood estimation.

A. Overall Design

As shown in Fig. 1, our traffic measurement function con-
sists of an online module and an offline module. The online
module consists of three components for probabilistic sampling,
bit-sharing storage, and source address collection. The proba-
bilistic sampling component performs only one hash operation
for each arrival packet. The bit-sharing storage component per-
forms two hash operations and sets just one bit in a bitmap. It
does so only for each sampled packet; it does nothing for packets
that are not sampled. The source address collection component
is involved less frequently—once for each TCP/UDP session; it
just stores the source address. In this design, we try to keep the
online module very simple and efficient.
The offline module consists of two components for com-

puting the optimal system parameters and performing heavy
spreader classification based on the data provided by the online
module. While their computation is more complex, they are
performed offline.

B. Probabilistic Sampling

To save space, a router samples the contacts made by external
sources to internal destinations, and it only stores the sampled

contacts. The router selects contacts for storage uniformly at
random with a sampling probability . The sampling procedure
is simple: The router hashes the source/destination address pair
of each packet that arrives at the external network interface into
a number in a range . If the hash result is smaller than

, the contact will be stored; otherwise, the contact will not
be stored.

C. Bit-Sharing Storage

For each source, a bit vector (also called bitmap) may be used
to store all its sampled contacts. The bits are initially zeros. Each
sampled contact is hashed to a bit in the bitmap, and the bit is set
to one. At the end of the measurement period, using the method
of probabilistic counting [9] or its variants [10], [11], we can
estimate the number of contacts (i.e., the spread of the source)
based on the number of zeros remaining in the bitmap.
However, using per-source bitmaps is not memory-efficient.

If each bitmap is 32 bits long and there are 1M sources with
sampled contacts, the total memory requirement will be 32 Mb.
If the allocated SRAM space is much smaller, e.g., 0.5Mb, there
will not be enough bitmaps for all sources. This problem cannot
be solved simply by reducing the size of each bitmap because
even if a bitmap has just one bit, it still takes 1 Mb. Moreover,
the performance of probabilistic counting [9] or its variants [10],
[11] requires bitmaps to be not too small.
Our solution is to mix all bitmaps together and let them share

bits, such that an almost arbitrary number of bitmaps can be cre-
ated from a limited available space. Bit sharing among bitmaps
causes information interference, which will be removed when
we derive our formula. The level of bit sharing, which is de-
termined by system parameters (see Section IV), controls the
tradeoff between classification accuracy and space overhead.
Details of our method are presented as follows.
Let be the total number of available bits. All bits are orga-

nized in a single array . For an arbitrary source , we use a
hash function to pseudorandomly select a number of bits from
to store the contacts made by . The indices of the selected bits
are , where

is a hash function whose range is is an integer
array, storing randomly chosen constants whose purpose is to
arbitrarily alter the hash result, and is a system param-
eter that specifies the number of bits to be selected. The above
bits form a logical bitmap of source , denoted as .
Similarly, a logical bitmap can be constructed from for any

other source. Essentially, we embed the bitmaps of all possible
sources in . The bit-sharing relationship is dynamically deter-
mined on the fly as new sources are allocated logical bitmaps
from .
At the beginning of a measurement period, all bits in are

reset to zeros. Consider an arbitrary contact that is
sampled for storage, where is the source address and is
the destination address. The router sets a single bit in to one.
Obviously, it must also be a bit in the logical bitmap .
The index of the bit to be set for this contact is given as follows:

The outer hash, , ensures that it is a bit in
. The inner hash, , ensures that the

bit is pseudorandomly selected from . The private
ke is introduced to prevent the hash collision attacks. In



820 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 3, JUNE 2013

such an attack, a heavy spreader finds a set of destina-
tion addresses, , that have the same hash value,

If it only contacts these destina-
tions, the same bit in will be set, which allows the
heavy spreader to stay undetected. This type of attack can be
prevented if we use a cryptographic hash function such as
MD5 or SHA1, which makes it difficult to find destination
addresses that have the same hash value. However, if a weaker
hash function is used for performance reasons, then a private
key becomes necessary. Without knowing the key, the heavy
spreaders will not be able to predict which destination addresses
produce the same hash value.
To store a contact, ESC only sets a single bit. This is more

efficient than other methods [8], [5] that require setting multiple
bits for storing each contact.

D. Maximum Likelihood Estimation and Heavy Spreader
Classification

At the end of the measurement period, ESC will send the con-
tent of to an offline data processing center. There, the log-
ical bitmap of each source is extracted, and the estimated
spread of the source is computed. Only if is greater than a
threshold value , ESC reports the source as a heavy spreader.
We will discuss how to keep track of the source addresses in
Section III-E, and explain how to determine the threshold
based on a given classification objective in Section IV. The for-
mula for computing the estimated spread is

(2)

where is the sampling probability, is the size of the logical
bitmap is the size of is the fraction of bits in

whose values are zeros, and is the fraction of bits
in whose values are zeros. We formally derive this formula
as follows.
Let be the true spread of source be the number of

distinct contacts made by all sources, and be the number
of bits in whose values are zeros. Clearly, .
Depending on the context, (or ) is used either as a
random variable or an instance value of the random variable.
The probability for any contact to be sampled for storage is
. Consider an arbitrary bit in . A sampled contact
made by has a probability of to set to “1,” and a sampled
contact made by any other source has a probability of to set
to “1.” Hence, the probability for to remain “0” at the
end of the measurement period is

(3)

Each bit in has a probability of to remain “0.”
The observed number of “0” bits in is . The likeli-
hood function for this observation to occur is given as follows:

(4)

Following the standard process of maximum likelihood esti-
mation, we derive the estimated spread in (2). The details can
be found in Appendix A.

We give an intuitive explanation for (2). First, we discuss how
its development has taken information interference (due to bit
sharing) into consideration.
• In (3), the term captures the effect of interfer-
ence; it is the probability that a bit in is not set by
any contact from a different source. Eventually, this results
in two terms, and , in (2).

• In (3), the term represents the actual effect of
the source that we want to estimate. It is the probability
that a bit in is not set by any contact from this
source. Eventually, this results in two other terms,
and , in (2).

Second, the formula (2) is an estimation. It does not give the pre-
cise value of due to its probabilistic bit setting nature. How-
ever, our goal is not precise measurement. We want to classify
spreaders based on (1). Our analysis will demonstrate that, as
long as the system parameters are set appropriately, the objec-
tive in (1) will be met.

E. Source Addresses

Collecting source addresses is treated as a separate task. If
there is not enough SRAM to keep them, ESC stores source ad-
dressed in DRAM. It avoids storing the source address of every
arrival packet. Instead, it stores a source address only when a
contact sets a bit in from “0” to “1.” The frequency of storing
source addresses is by far smaller than the packet arrival rate
due to the following reasons. First, numerous packets may be
sent from a source to a destination in a TCP/UDP session. Only
the first sampled packet may cause the source address to be
stored because only the first packet sets a bit from “0” to “1,”
and the remaining packets will set the same bit (which is al-
ready “1”). Therefore, for any TCP/UDP session, no matter how
many packets it has, it triggers source address storage at most
once. Second, a source may send thousands or even millions of
packets through a router, but the number of times its address
will be stored is bounded by (which is the number of bits in
the source’s logical bitmap). Third, each arrival packet has a
probability of to be sampled. When it is not sampled, it has no
chance to trigger source address storage. In summary, because
the operation of storing source addresses is relatively infrequent,
these addresses can be stored in the main memory.

IV. OPTIMAL SYSTEM PARAMETERS AND MINIMUM MEMORY
REQUIREMENT

In this section, we first derive the probability for ESC to re-
port an arbitrary source as a heavy spreader. Based on this prob-
ability, we develop the constraints that the system parameters
must satisfy in order to achieve the classification objective in
(1). Using these constraints, we determine the optimal values
for the size of the logical bitmaps, the sampling probability ,
and the threshold . We also determine the minimum amount
of memory that should be allocated for ESC to achieve the
objective.

A. Report Probability

We first derive the probability for ESC to report an arbi-
trary source as a heavy spreader. Consider an arbitrary source
. ESC reports as a heavy spreader if its estimated

spread exceeds a threshold . The probability for this to
happen, , is given in (6), and it is derived as
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follows. From (2), we know that the following inequalities are
equivalent:

For a set of parameters , and , we define a constant

where the instance value of can be measured from after
the measurement period. Hence, the probability for ESC to re-
port is .

follows the binomial distribution with parameters and
, where in (3) is the probability for an arbitrary bit in

to remain zero at the end of the measurement period.
Hence, the probability of having exactly zeros in is
given by the following probability mass function:

(5)

We must have

(6)

After we obtain the probability of reporting an arbitrary
source as a heavy spreader, we can derive the formulas for
satisfying our system constraints in the following.

B. Constraints for the System Parameters

We now derive the constraints that the system parameters
must satisfy in order to achieve the classification objective in
(1). The result can be found in (9) and (10).
First, we give the variance of , which is derived in

Appendix B

(7)

It approaches to zero as increases. In Fig. 2, we plot the
ratio of the standard deviation to

, which can be found in (23). The figure shows that
is very small when is reasonably large. In

this case, we can approximately treat as a constant

(8)

The classification objective can be stated as two requirements.
First, the probability for ESC to report a source with must
be at least . That is, . From (6),
this requirement can be written as the following inequality:

Fig. 2. Relative standard deviation, , approaches to zero as in-
creases. The load factor (LF) is defined as , where is the number
of distinct contacts that are sampled by ESC for storage. In our experiments
(reported in Section V), when we use the system parameters determined by the
algorithm proposed in this section, the load factor never exceeds 2.

where . The
left side of the inequality is an increasing function in . Hence,
to satisfy the requirement in the worst case when , the
following constraint for the system parameters must be met:

(9)

Second, the probability for ESC to report a source with
must be no more than . This requirement can be similarly
converted into the following constraint:

(10)

C. Optimal System Parameters

Our goal is to optimize the system parameters such that the
memory requirement, , is minimized under the constraints (9)
and (10). The problem is formally defined as follows:

Minimize

Subject to

(11)

The parameters, , and , are specified in the classification
objective. There are two ways to define a measurement period
(Section II). If the measurement period is defined as a fixed time
interval, the value of has to be estimated based on historical
data [8]. To be conservative, we take the maximum number
of distinct contacts observed in a number of previous measure-
ment periods. More specifically, (23) in Appendix A can be
turned into a formula for estimating in each previous period
if we replace with the instance value

(12)
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We derive the relative bias and the relative standard deviation
of the above estimation

(13)

(14)

They both approach to zero as increases. Based on the largest
value observed in a certain number of past measurement pe-

riods, we can set the value of . However, if the number of con-
tacts in each period swings wildly, we should use the other def-
inition of measurement period as a time interval during which a
certain given number of contacts are received; it is important
to note that, in this definition, is a “fixed” input parameter set
by the network administrator.
A similar definition is adopted by [4] and [14], where a mea-

surement period ends when a certain number of packets is re-
ceived. In our case, after all system parameters such as and
are computed (using the procedure to be described), during the
runtime the router will be able to determine when each period
ends based on a condition derived from (12): Replacing with
, we have , and thus . The right
side can be precomputed as a threshold, and the value of
(i.e., the number of ones in ) can be kept in a register. When
the value of the register reaches the threshold, the period ends.
To solve the constrained optimization problem (11), we need

to determine the optimal values of the remaining three system
parameters, , and , such that will be minimized. We
consider the left side of (9) as a function , and
the left side of (10) as . Namely

Both of them are nonincreasing functions in , according to
the relation between and . In the following, we present an
iterative numerical algorithm to solve the optimization problem.
The algorithm consists of four procedures.

First, we construct a procedure called ,
which takes a value of , a value of and a value of as
input and returns the maximum value of under
the condition that is satisfied. Because

is a nonincreasing function in , we need to
find the smallest value of that satisfies .
That can be done numerically through binary search: Pick a
small integer such that and a large
integer such that . We iteratively
shrink the difference between them by resetting one of them
to be the average , while maintaining the inequalities,

and . The process
stops when , which is denoted as . The procedure

returns . The pseudocode is
presented in Algorithm 1 in Appendix C.
Essentially, what returns is the maximum

value of the left side in (9) under the condition that (10) is satis-
fied. The difference between and provides

Fig. 3. (A) The curve (without the arrows) shows the value of
with respect to when MB and .

Its nonsmooth appearance is due to in the formula of .
depends on the values of and , which are both

functions of . (B) The arrows illustrate the operation of .
In the first iteration (arrow ), is set to be . In the second
iteration (arrow ), is set to be . In the third iteration (arrow
), is set to be .

us with a quantitative indication on how conservative or aggres-
sive we have chosen the value of . If
is positive, it means that the performance achieved by the cur-
rent memory size is more than required. We shall reduce .
On the contrary, if is negative, we shall
increase .
Given the above semantics, when we determine the optimal

values for and , our goal is certainly to maximize the return
value of .

Second, given a value of and a value of , we con-
struct a procedure that determines the optimal
value such that is maximized. When the
values of and are fixed, becomes a func-
tion of . It is a curve as illustrated in Fig. 3; see explanation
under caption (A) and ignore the arrows in the figure for now.
We use a binary search algorithm to find a near-optimal value

of . Let and . Let be a small positive value
(such as 0.001). Repeat the following operation: Let

. If , set
to be ; otherwise, set to be . The above iterative operation
stops when . The procedure re-
turns , which is within of the optimal. This
difference can be made arbitrarily small when we decrease
at the expense of increased computation overhead. We want to
stress that it is one-time overhead (not online overhead) to de-
termine the system parameters before deployment. The opera-
tion of is illustrated by the arrows in Fig. 3;
see explanation under caption (B). The pseudocode is given in
Algorithm 2 in Appendix C.

Third, given a value of , we construct a procedure
that determines the optimal value such that

is maximized. When the
value of is fixed, becomes
a function of . It is a curve as illustrated in Fig. 4. We can use
a binary search algorithm similar to that of to
find . The pseudocode is given in Algorithm 3 in Appendix C.

Fourth, we construct a procedure
that determines the minimum memory re-
quirement through binary search: Denote

as . Pick a small value such that
, which means that the classification

objective is not met—more specifically, according to the
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Fig. 4. Value of with respect to when
MB.

semantics of , the constraint (9) cannot be
satisfied if the constraint (10) is satisfied. Pick a large value

such that , which means that the
classification objective is met. Repeat the following operation.
Let . If , set to
be ; otherwise, set to be . The above iterative operation
terminates when , which is returned by the procedure

. The pseudocode is given in Algorithm 4 in
Appendix C.
In practice, a network administrator will first define the clas-

sification objective that is specified by , and . Depending
on the definition of measurement period, is a given input or
is set based on historic data. If is a fixed number, the system
parameters are computed offline as follows:

, and is set as the
threshold value before the last call to is
returned during the execution of . All four algo-
rithms use bisection search (i.e., binary search), and therefore
they are logarithmic in nature; see Appendix C. In our experi-
ments, the average execution time for computing a set of optimal
system parameters is 0.959 s on a DELL desktop with Pentium
Dual-Core CPU of 3 GHz. If is set based on historic data, we
can precompute a table of system parameters with respect to dif-
ferent values of , possibly in certain increments (e.g., 1000) to
control the table size. In this way, if changes significantly and
thus the system parameters need to be updated, the new values
can be fetched from the table.

V. EXPERIMENTS

A. Experimental Setup

We evaluate the performance of ESC and compare it to
existing work, including the Two-level Filtering Algorithm
(TFA) [8], the Thresholded Bitmap Algorithm (TBA) [11],
and the Compact Spread Estimator (CSE) [6]. TFA uses two
filters to reduce both the number of sources to be monitored
and the number of contacts to be stored. It is designed to
satisfy the classification objective in (1). TBA is not designed
for meeting the classification objective. It cannot ensure that
false positive/negative ratios are bounded. CSE is designed
to estimate the spreads of external sources in a very compact
memory space. It can be used for spreader classification by
reporting the sources whose estimated spreads exceed a certain
threshold. However, the design of CSE makes it unsuitable for
meeting the objective in (1).
Online StreamingModule (OSM) [5] is another related work.

We do not implement OSM in this study because Yoon et al.

Fig. 5. Traffic distribution: Each point shows the number of sources having a
certain spread value.

show that, given the same amount of memory, CSE estimates
spread values more accurately than OSM [6]. Moreover, the
operations of OSM share certain similarity with Bloom filters.
To store each contact, it performs three hash functions and
makes three memory accesses. In comparison, ESC performs
two hash functions and makes one memory access. Please refer
to Section VII for more details on various spreader classifica-
tion schemes.
The experiments use a real Internet traffic trace (inbound)

captured by Cisco’s Netflow at the main gateway of our campus
for a week. For example, in one day of the week, the traffic trace
records 10 702 677 distinct contacts, 4 007 256 distinct source
IP addresses, and 56 167 distinct destination addresses. The av-
erage spread per source is 2.67, which means a source contacts
2.67 distinct destinations on average. Fig. 5 shows the number
of sources with respect to the source spread in log scale. The
number of sources decreases exponentially as the spread value
increases from 1 to 500. After that, there is zero, one, or a few
sources for each spread value.
We implement ESC, TFA, TBA, and CSE and execute them

with the traffic trace as input. The application scenario is to
monitor overall scanning activities by identifying most external
sources that have suspiciously high spreads. Continuously gath-
ering such information helps network administrators to learn the
patterns of spread values and identify potential intruders that are
frequently classified as heavy spreaders. In the experiments, the
source of a contact is the IP address of the sender, and the desti-
nation is the IP address of the receiver. We have discussed in
Section IV-C that there are two ways to define the measure-
ment period. Accordingly, for our first set of experiments in
Section V-B, we let each measurement period be a time interval
in which 10 million contacts are received. For the rest of the
experiments, the measurement period is one day. The experi-
mental results are the average over the week-long data.
One performance metric used in comparison is the amount of

memory that is required for a spreader classification scheme to
meet a given classification objective. Remarkably, the number
of bits required by ESC is far smaller than the number of distinct
sources in the traffic trace. That is, ESC requires much less than
1 bit per source to perform spreader classification. Other per-
formance metrics include the false positive ratio and the false
negative ratio, which will be explained further shortly.

B. Comparison in Terms of Memory Requirement

The first set of experiments compares ESC and TFA for the
amount of memory that they need in order to satisfy a given
classification objective, which is specified by four parameters,
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TABLE I
MEMORY REQUIREMENTS (IN MEGABYTES) OF ESC, TFA, AND ESC-1 (I.E., ESC WITH ) WHEN AND

TABLE II
MEMORY REQUIREMENTS (IN MEGABYTES) OF ESC, TFA, AND ESC-1 (I.E., ESC WITH ) WHEN AND

TABLE III
MEMORY REQUIREMENTS (IN MEGABYTES) OF ESC, TFA, AND ESC-1 (I.E., ESC WITH ) WHEN AND

, and . See Section II for the formal definition of the
classification objective. We do not compare TBA and CSE here
because they are not designed to meet this objective.
The memory required by ESC is determined based on the it-

erative algorithm in Section IV-C. The values of other parame-
ters, , and , are also decided by the same algorithm. For
example, when

, the system parameters are
, and MB. Using these parameters, we per-

form experiments on ESC with the traffic trace as input. The
amount of memory required by TFA is determined experimen-
tally based on the method in [8]. The parameters of TFA are
chosen based on the original paper.
The memory requirements of ESC and TFA are presented in

Tables I–III with respect to , and . For and
, Table I shows that TFA requires 6–24 times of the

memory that ESC requires, depending on the values of and
(which the system administrator will select based on the organ-
ization’s policy). For example, when and ,
ESC reduces the memory consumption by an order of magni-
tude when comparing with TFA.
Our experiments have also confirmed that the classification

objective is indeed achieved by ESC. That is, the false positive
ratio is always bounded by , and the false negative ratio is
bounded by for all experiments reported in Tables I–III.
To demonstrate the impact of probabilistic sampling, the table

also includes the memory requirement of ESC when sampling
is turned off (by setting ). This version of ESC is de-
noted as ESC-1. Since is set as a constant, the iterative algo-
rithm in Section IV-C needs to be slightly modified: The pro-

cedure will always return 1, while other pro-
cedures remain the same. Table I shows that the memory saved
by sampling is significant when is large. For example, when

and , ESC with sampling uses less than 1/13
of the memory that is needed by ESC-1. However, when be-
comes smaller or becomes larger, ESC has to choose a larger
sampling probability in order to limit the error in spread esti-
mation caused by sampling. Consequently, it has to store more
contacts and thus require more memory. For instance, when

and , ESC with sampling uses 55.6% of the
memory that is needed by ESC-1.
Table II compares the memory requirements of ESC and TFA

when and . Table III compares the memory
requirements when and . They show similar
results: 1) ESC uses significantly less memory than TFA;
and 2) the probabilistic sampling method in ESC is critical
for memory saving especially when is large or is small.
The tables also demonstrate that the memory requirement of
either ESC or TFA increases when the classification objective
becomes more stringent, i.e., is set larger and smaller.
TFA requires more memory because it stores the source and

destination addresses of the contacts. In [28], the authors also
indicate that Bloom filters [29], [30] can be used to reduce the
memory consumption. However, the paper does not give de-
tailed design or parameter settings. Therefore, we cannot im-
plement the Bloom-filter version of TFA. The paper claims that
the memory requirement will be reduced by a factor of 2.5
when Bloom filters are used. Even when this factor is taken
into account in Tables I–III, memory saving by ESC will still
be significant.
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TABLE IV
FALSE NEGATIVE RATIO AND FALSE POSITIVE RATIO OF ESC, CSE, AND TBA

WITH MB

TABLE V
FALSE NEGATIVE RATIO AND FALSE POSITIVE RATIO OF ESC, CSE, AND TBA

WITH MB

C. Comparison in Terms of False Positive Ratio and False
Negative Ratio

The false positive ratio (FPR) is defined as the fraction of all
non-heavy spreaders (whose spreads are no more than ) that
are mistakenly reported as heavy spreaders. The false nega-
tive ratio (FNR) is the fraction of all heavy spreaders (whose
spreads are no less than ) that are not reported by the system.
In Section V-B, we have shown that, given the bounds of FPR
and FNR, it takes ESCmuch less memory to achieve the bounds
than TFA. Since CSE and TBA are not designed for meeting a
given set of bounds, we compare our ESC to them by a different
set of experiments that measure and compare the FPR and FNR
values under a fixed amount of SRAM.
Given a fixed memory size , we use

in Section IV-C to determine the value of in ESC, use
to determine the value of , and then set

the threshold as . We perform experiments using the
week-long traffic trace. We average the daily FPR and FNR
values over the week. For MB, and 0.2 MB, the
results are presented in Tables IV and V, respectively. In both
tables, . We also perform the same experiments for
CSE and TBA, and the results are presented in the tables as
well. The optimal parameters are chosen for each scheme based
on the original papers.
When the available memory is very small, such as 0.05 MB

in Table IV, CSE has zero FNR, but its FPR is 1.0, which
means it reports all non-heavy spreaders. The reason is that,
without probabilistic sampling, CSE stores information of too
many contacts such that its data structure is fully saturated. In
this case, the spread estimation method of CSE breaks down.
TBA has a small FPR but its FNR is large. For example, when

, its FNR is 26%. Only ESC achieves small values
for both FNR and FPR. For example, when , its FNR
is 7.4% and its FPR is 5.0%. These values decrease quickly
as increases. When , they are 1.0% and 0.55%,
respectively, while the FNR of TBA remains to be 26%. When
the available memory increases in Table V, the performance of
all three schemes improves. Still, ESC performs better in most
cases.

TABLE VI
FALSE NEGATIVES RATIO AND FALSE POSITIVES RATIO WITH AND

D. Performance of ESC

The iterative algorithm in Section IV-C gives the memory
requirement for meeting a certain classification objective in the
worst case. In reality, the worst-case scenario rarely happens.
Hence, we expect the observed FPR to be much smaller than
and the observed FNR to be much smaller than . This is
indeed what we see in our experiments.
We run ESC on the week-long traffic trace under the fol-

lowing parameter settings: is varied
from 500 to 5000, and is varied from to . We
use the iterative algorithm to determine the values of and
other system parameters. (Unlike Section V-C, is not a given
value.) We then collect the daily values of FPR and FNR, and
the average results are shown in Table VI. It shows that the real
FPR/FNR are much smaller than the 5% objective (i.e.,
or ).
The reason is that the amount of memory that ESC uses is

determined based on the worst-case scenario, where the spreads
of all non-heavy spreaders are and the spreads of all heavy
spreaders are . Recall that in Section IV-B, we choose
in (10) and in (9). However, in reality, not all non-
heavy spreaders make the same number of distinct contacts;
many sources make very small numbers of contacts, as shown in
Fig. 5. For a non-heavy spreader whose spread is much smaller
than , the probability for its estimated spread to exceed the
threshold (thus resulting in false positive) is certainly smaller
than that of a non-heavy spreader whose spread is . Similarly,
not all heavy spreaders make the same number of distinct
contacts. For a heavy spreader whose spread is much larger
than , the probability for its estimated spread to fall below the
threshold (which results in false negative) is certainly smaller
than that of a heavy spreader whose spread is .
The above observation is also confirmed by experiment.

We set % % , and . After
executing ESC on the traffic trace, we count the average daily
number of false positives for sources whose spreads are in the
range of , or , and the average
daily number of false negatives for sources whose spreads are
in the range of The resulting
FPR/FNR values in those ranges are presented in Fig. 6, where
each point represents FPR (or FNR) for in a certain range of
spread values (on the horizontal axis). The figure shows that
FPR decreases quickly to zero for sources whose spreads are
very small and FNR decreases quickly to zero for sources
whose spreads are very large.

VI. MULTI-OBJECTIVE SPREADER CLASSIFICATION

So far, we have studied spreader classification with a single
objective: for example, reporting sources whose spreads are 100
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Fig. 6. False positive ratio and false negative ratio with and
.

or more with at least 95% probability, while reporting sources
whose spreads are 75 or less with at most 5% probability. In
practice, one may want to configure a router with more than one
objective. For instance, in addition to the above objective of re-
porting modestly heavy spreaders, we may want to add another
objective to identify more aggressive ones: reporting sources
whose spreads are 1000 or more as heavy spreaderswith at least
99% probability, and reporting sources whose spreads are 500
or less with at most 1% probability. How to efficiently perform
spreader classification with multiple objectives is the subject of
this section.

A. Problem Definition

Suppose there are objectives. The th objective, for any
is defined by four parameters, , and . Among

them, and are positive integers with , while
and are probability values, and .
The th objective is to report any source whose spread is or
larger as a type- heavy spreader with a probability no less than
, and report any source whose spread is or smaller with

a probability no more than . Similar to (1), the conditional
probabilities that express the whole set of objectives are

-
-

(15)

where is an arbitrary source and its spread is . Each objec-
tive is expressed by a pair of conditional probabilities. Our goal
is to minimize the amount of SRAM that is needed for achieving
the above objectives.

B. Multi-Objective Spreader Classification Scheme and
Optimal System Parameters

The spreader classification scheme in Section III can be
extended to detect heavy spreaders under multiple objectives.
The probabilistic sampling, dynamic bit sharing, and max-
imum likelihood-based spread estimation stay the same. The
difference is how to determine the optimal system parameters.
For spreader classification with one objective, we determine a
threshold value in Section IV and report all sources whose
estimated spreads exceed the threshold. The optimal values
of , and are computed based on (11). For spreader
classification with multiple objectives, we need to determine

one threshold for each objective. If the estimated spread of a
source exceeds the threshold for the th objective, the source
is reported as a type- heavy spreader, where .
Following a mathematical process similar to Section IV, we

can derive the set of constraints that the system parameters must
satisfy in order to meet all objectives. We want to minimize
the amount of memory that is needed to satisfy the constraints.
(We omit the derivation process to avoid excessive repetition of
content similar to Section IV.)

Minimize

Subject to (16)

(17)

(18)

where

The conditional probabilities for the th objective are trans-
formed into two equivalent constraints:

is transformed to (17) and
to (18). Our goal is to determine the optimal values

for and , such that they together minimize
. Note that there exists one threshold for each objective. In

total, there are thresholds. However, , and are common
parameters shared for all objectives.
The algorithm in Section IV-C can be extended to solve the

above constrained optimization problem. We briefly describe
the solution below. Consider the left side of (17) as a func-
tion and the left side of (18) as a function

. Namely,

We modify the iterative numerical algorithm in Section IV-C to
determine the optimal system parameters. The revised algorithm
consists of five procedures, which are described as follows.

First, we overload the procedure in
Section IV-C and add one input parameter, , indicating
which functions the procedure is applied to. More specifically,

, the new procedure is applied
to functions and . It uses the
same binary search method as in Algorithm 1 to find the optimal
value of that maximizes the value of under
the condition that . The procedure returns
the maximum value of , and as a byproduct,
determines the optimal value of . The pseudocode is the
same as Algorithm 1 in Appendix C except that
is replaced by and is replaced
by .

Second, we construct a new procedure called
, which takes a value of ,
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a value of and a value of as input and returns
the minimum value of

.
Clearly, if , all objectives can be
satisfied.
Essentially, the value of quantitatively

indicates how conservative or aggressive we have chosen
the value of . If is positive, it means
that the performance achieved by current memory size is
more than required. We shall reduce . On the other hand, if

is negative, we shall increase .
Third, given a value of and a value of , we construct a

procedure that determines the optimal value
such that is maximized. This proce-

dure is similar to its counterpart in Section IV-C. The pseu-
docode is the same as Algorithm 2 in Appendix C except that

is replaced with .
Fourth, given a value of , we construct a procedure

that determines the optimal value such that
is maximized. This

procedure is the same as its counterpart in Section IV-C (Algo-
rithm 3 in Appendix C), except that is replaced
with and is replaced with

.
Fifth, we construct a procedure

that determines the minimum memory re-
quirement such that

is
satisfied. Again, this procedure is similar as its counterpart
in Section IV-C (Algorithm 4 in Appendix C). We skip
the detailed description, which is virtually identical to the
description in Section IV-C.
In practice, given the objectives that are specified by

and , a network adminis-
trator sets

, and as the threshold value
before the last call of is returned during
the execution of .

C. Additional Experimental Results

We perform additional experiments to evaluate our multi-ob-
jective spreader classification scheme. We use the same traffic
trace as described in Section V. We do not implement TFA,
TBA, or CSE because none of them can be applied for multi-ob-
jective spreader classification. In the new experiments, we let

, i.e., there are two objectives, which are specified as fol-
lows: ,
and .
In the first set of experiments, we let and vary
from , to . We use the iterative al-

gorithm in Section VI-B to compute the minimum amount of
memory needed, as well as the optimal values for other system
parameters. After that, we perform experiments based on these
system parameters to report the heavy spreaders in the traffic
trace. We measure the FPR and FNR values that are observed
in the experiments. The results are presented in Table VII. The
FNR values for type-1 heavy spreaders are shown in the column
labeled with FNR1; they are indeed smaller than . The
FPR values for type-1 heavy spreaders are shown in the column

TABLE VII
MEMORY REQUIREMENT, FALSE NEGATIVE RATIO, AND FALSE POSITIVE RATIO

WITH , AND

TABLE VIII
MEMORY REQUIREMENT, FALSE NEGATIVE RATIO, AND FALSE POSITIVE RATIO

WITH , AND

labeled with FPR1; they are smaller than as required. Simi-
larly, the data in columns FNR2 and FPR2 show that the second
objective (specified by and ) is also met.
In the second set of experiments, we let and vary
from , to . Again we use the itera-

tive algorithm to determine the system parameters and run ex-
periments to measure the FPR and FNR values. The results are
presented in Table VIII. The data are interpreted in a similar way
as we do for Table VII. Clearly, both objectives are met.

VII. RELATED WORK

Venkataraman et al. [8] use hash tables to store the addresses
of the sampled contacts. Their main contribution is to derive
the optimal sampling probability that achieves a classification
objective with prespecified upper bounds on false positive ratio
and false negative ratio. However, because their algorithms
store the contact addresses, it leaves great room for improve-
ment. Even if Bloom filters are used, the room for improvement
is still significant, as we have argued in Section V.
Estan et al. [10] propose a variety of bitmap algorithms to

store the contacts (or active flows in their context). It saves space
because each destination address is stored as a bit. However, as-
signing one bitmap to each source is not cheap if the average
number of contacts per source is small. In addition, an index
structure is needed to map a source to its bitmap. It is typically a
hash table where each entry stores a source address and a pointer
to the corresponding bitmap. Cao et al. [11] develop the thresh-
olded bitmap algorithm based on the virtual bitmap algorithm
presented in [10] for spread estimation. They use probabilistic
sampling to reduce the information to be stored.
Zhao et al. [5] share a set of bitmaps among all sources. The

scheme assigns three pseudorandomly selected bitmaps to each
source. When the source contacts a destination, the destination
is stored by setting one bit in each of the three bitmaps. Because
the bitmaps are shared by others, the information stored for one
source becomes noise for others. Yoon et al. [6] observe that
the noise introduced by sharing bitmaps cannot be appropriately
removed if the number of bitmaps is not sufficiently large. By
sharing bits instead of bitmaps, CSE considerably reduces the
memory consumption.
Also related is the work by Bandi et al. [27] on the heavy dis-

tinct hitter problem, which is essentially the same as spreader
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classification. Their algorithm exploits TCAM, a special kind
of memory found in network processing units (NPUs). The em-
phasis of their work is on the processing time.
A related branch of research is the detection of heavy-hit-

ters [19]–[26]. A heavy-hitter is a source that sends a lot of
packets during a measurement period no matter whether the
packets are sent to a few or many distinct destinations.

VIII. CONCLUSION

Spreader classification is one of the most important functions
in intrusion detection systems. The recent research trend is to
implement such a function in the tight SRAM space to catch up
with the rapid advance in network speed. This paper proposes
an efficient scheme based on a new method for spreader clas-
sification, which optimally combines probabilistic sampling,
bit-sharing storage, and maximum likelihood estimation. We
demonstrate theoretically and experimentally that the new
scheme is able to achieve a classification objective with arbi-
trarily set bounds on worst-case false positive/negative ratios. It
does so in a very tight memory space where the number of bits
available is much smaller than the number of external sources
to be monitored. In addition, we extend our scheme to solve the
multi-objective spreader classification problem.

APPENDIX A
COMPUTE

In the standard process of maximum likelihood estimation,
the unknown value is technically treated as a variable in (4).
We want to find an estimate that maximizes the likelihood
function. Namely

(19)

Since the maxima is not affected by monotone transformations,
we use logarithm to turn the right side of (4) from product to
summation

From (3), the above equation can be written as

To find the maxima, we differentiate both sides

(20)

We then let the right side be zero. That is

(21)

Taking logarithm on both sides, we have

(22)

Suppose the number of sources (which equals to the number of
logical bitmaps) is sufficiently large. Because every bit in every
logical bitmap is randomly selected from , in this sense, each
of the contacts has about the same probability of setting
any bit in . Hence, we have

(23)

Applying (23) to (22), we have

(24)

Replacing by the instance value , we have the estima-
tion for in (2). can be measured by counting the number of
zeros in can be measured by counting the number
of zeros in , and , and are preset parameters of ESC.

APPENDIX B
VARIANCE OF

Let be the event that the th bit in remains “0” at the
end of the measurement period and be the corresponding
indicator random variable. Let be the random variable for
the number of “0” bits in . We first derive the probability for
to occur and the expected value of . For an arbitrary bit

in , each distinct contact has a probability of to set the bit
to one. All contacts are independent of each other when setting
bits in . Hence

The probability for and , to happen
simultaneously is

Since and , we have
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Based on (23) and the equation above, we have

(25)

APPENDIX C
ALGORITHMS FOR OPTIMAL SYSTEM PARAMETERS

Algorithm 1:

INPUT: , and
OUTPUT: The maximum value of under the
condition that .

Pick a small integer such that and
a large integer such that
while do

if then

else

end if
end while

return

Algorithm 2:

INPUT: , and
OUTPUT: The optimal value of such that

is maximized

while do

if then

else

end if
end while

return

Algorithm 3:

INPUT:
OUTPUT: The optimal value of such that

is maximized

while do

if
then

else

end if
end while

return

Algorithm 4:

OUTPUT: The smallest value that satisfies

Pick a small value such that
and a large value such that .
while do

if then

else

end if
end while

return
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