IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, APRIL 2007

449

A Scalable Overlay Multicast Architecture
for Large-Scale Applications

Li Lao, Member, IEEE, Jun-Hong Cui, Member, IEEE,
Mario Gerla, Fellow, IEEE, and Shigang Chen, Member, IEEE

Abstract—In this paper, we propose a Two-tier Overlay Multicast Architecture (TOMA) to provide scalable and efficient multicast
support for various group communication applications. In TOMA, Multicast Service Overlay Network (MSON) is advocated as the
backbone service domain, while end users in access domains form a number of small clusters, in which an application-layer multicast
protocol is used for the communication between the clustered end users. TOMA is able to provide efficient resource utilization with less
control overhead, especially for large-scale applications. It also alleviates the state scalability problem and simplifies multicast tree
construction and maintenance when there are large numbers of groups in the network. To help MSON providers efficiently plan
backbone service overlay, we suggest several provisioning algorithms to locate proxies, select overlay links, and allocate link
bandwidth. Extensive simulation studies demonstrate the promising performance of TOMA.

Index Terms—Network architecture and design, multicast, network management.

1 INTRODUCTION

THE Internet has overseen more and more emerging
group communication applications, such as video
conferencing, video on-demand, network games, and
distributed interactive simulation (DIS). Over the years,
tremendous efforts have been made to provide multicast
support, ranging from IP multicast to recently proposed
application-layer multicast. IP multicast utilizes a tree
delivery structure which makes it fast, resource-efficient,
and scalable for very large groups. However, IP multicast is
still far from being widely deployed in the Internet due to
various technical and marketing reasons [2], [14]. The most
critical ones include the lack of a scalable interdomain
routing protocol, the state scalability issue when there are a
large number of groups, and the requirement of global
deployment of multicast-capable IP routers. These issues
make Internet Service Providers (ISPs) reluctant to deploy
and provide multicast service.

Recently, researchers resort to the application-layer
multicast approach, which implements multicast-related
features at end hosts [5], [8], [12], [18], [21], [24], [25], [28],
[30]. Data packets are replicated and transmitted between
end hosts via unicast. These systems do not require

e L. Lao is with Google Inc., 604 Arizona Ave., Santa Monica, CA 90401.
E-mail: llao@google.com.

e [-H. Cui is with the Computer Science and Engineering Department,
University of Connecticut, 371 Fairfield Rd., Unit 2155, Storrs, CT 06269-
2155. E-mail: jeui@engr.uconn.edu.

o M. Gerla is with the Computer Science Department, University of
California Los Angeles, 3732F Boelter Hall, Los Angeles, CA 90095-1596.
E-mail: gerla@cs.ucla.edu.

o S. Chen is with the Department of Computer and Information Science and
Engineering, University of Florida, Gainesville, FL 32611.

E-mail: sgchen@cise.ufl.edu.

Manuscript received 14 Dec. 2005; revised 2 May 2006; accepted 9 May 2006,
published online 9 Jan. 2007.

Recommended for acceptance by M. Ould-Khaoua.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0504-1205.
Digital Object Identifier no. 10.1109/TPDS.2007.1008.

1045-9219/07/$25.00 © 2007 IEEE

infrastructure support and, therefore, can be easily de-
ployed. However, application-layer multicast is generally
not scalable for very large multicast groups due to its low
bandwidth efficiency and heavy control overhead caused
by tree maintenance at end hosts. In addition, because
multicast groups are solely managed at end hosts, it is
difficult for an ISP to have efficient member access control
and to obtain group bandwidth usage, which makes a good
pricing model impractical, if not impossible.

This paper studies the problem of providing practical
solutions for large-scale multicast applications. A multicast
service model involves multiple parties, such as network
service providers (i.e., higher-tier ISPs), Internet Service
Providers (i.e., lower-tier ISPs, or ISPs for short), and end
users. Their relationship is loosely analogic to that among
manufacturers, dealers, and consumers, with the raw
product of bandwidth being sold to end users by ISPs
through the means of multicast applications. Now, which
party cares most about using multicast? End users do not as
long as they get the required functionalities at a reasonable
price. Neither do network service providers, as far as they
can sell their connectivity/bandwidth service. Obviously,
ISPs in the middle are the ones who care the most—their
goal is to use limited bandwidth purchased from network
service providers to support as many users as possible.
Therefore, in order to stimulate the wide deployment of
multicast, it is critical to develop a practical, comprehensive,
and profitable multicast service model for these ISPs.

To address the above challenge, we propose a Two-tier
Overlay Multicast Architecture (called TOMA) that pro-
vides scalable, efficient, and practical multicast support for
various group communication applications. In this archi-
tecture, we advocate the notion of Multicast Service
Overlay Network (MSON) as the backbone service domain.
An MSON consists of service nodes or proxies strategically
deployed by an MSON provider (ISP). The MSON provider
provisions its overlay network according to user traffic

Published by the IEEE Computer Society

450 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, APRIL 2007

characteristics (based on long-term measurement), pur-
chases bandwidth from network service providers based on
service level agreements (SLAs), and sells multicast services
to group coordinators via service contracts. Outside MSON,
end hosts subscribe to the MSON by connecting to proxies
advertised by the MSON provider and form clusters around
these proxies. In each cluster, application-layer multicast
(instead of unicast) is used for efficient data delivery. The
end users only need to pay for their regular network
connection service outside MSON.

The proposed TOMA architecture not only provides
scalable and efficient multicast support, it also brings many
other advantages. First, unlike some other existing multicast
overlays (such as [10], [12], [18], [19]) where each overlay
only supports one group, an MSON provider can support a
variety of group communication applications simulta-
neously. Second, since MSON is based on well-defined
business relationships with network service providers and
group coordinators, overlay service providers can put major
efforts on planning and managing their overlay networks.
Third, the notion of MSON significantly simplifies the
management of underlying networks. Network service
providers only need to provide services to limited numbers
of MSON providers instead of millions or billions of
individual end users. This level of traffic aggregation, in
the long run, will make IntServ practical.!

To make TOMA a reality, we face many challenges. In
particular, the efficient MSON management and MSON
provisioning are the most critical issues. As an MSON is
expected to accommodate a large number of multicast
groups, it is crucial for an MSON provider to efficiently
establish and manage numerous multicast trees. Moreover,
given user traffic characteristics, the MSON provider
should carefully provision the overlay network in order to
reduce operation cost and improve service quality.

In this paper, we target the above issues. To address the
efficient management problem, we propose a lightweight,
scalable protocol called OLAMP (OverLay Aggregated
Multicast Protocol). In this protocol, we adopt the aggregated
multicast approach [17], with multiple groups sharing one
delivery tree. Outside MSON, we develop efficient proxy
selection mechanisms, and choose a core-based application-
layer multicast routing approach for data transmission
inside clusters. In addition, we suggest several effective
algorithms for locating overlay proxies, identifying overlay
links, and provisioning bandwidth. Furthermore, we con-
duct extensive simulation studies and show the promising
performance of TOMA as well as the effectiveness of our
provisioning algorithms.

The rest of this paper is organized as follows: In Section 2,
we review background and related work. In Section 3, we
present an overview of the TOMA architecture and address
the critical issues of MSON management and cluster
formation outside MSON. In Section 4, we describe several
algorithms for overlay network provisioning. In Section 5, we
evaluate the performance of TOMA and the overlay
provisioning algorithms by simulations. Finally, we sum-
marize our contribution in Section 6.

1. From this aspect, we share a similar vision with SON [16], a service
overlay proposed to provide scalable end-to-end QoS support.

2 BACKGROUND AND RELATED WORK

2.1 Aggregated Multicast

It is known that IP multicast is plagued from the state
scalability problem, which refers to the explosion of
multicast state (i.e., memory to store multicast state in the
routers) and control overhead (i.e., multicast tree setup and
maintenance overhead when a “soft-state” approach is
employed) in the presence of a large number of coexisting
multicast groups. Aggregated multicast has been proposed
to improve multicast state scalability in transit (especially
backbone) domains [17]. Observing that many multicast
trees within a single domain are likely to have significant
overlapping when there are numerous multicast groups,
aggregated multicast allows multiple groups with similar
members to share a single delivery tree and thus reduces
the number of multicast trees in the domain. In this way,
tree management overhead is significantly reduced, and
multicast state information stored in the routers is drama-
tically decreased. In this paper, we design a protocol called
OLAMP within the MSON based on aggregated multicast.

2.2 Related Work

These is a large body of work on application layer multicast
[5], [8], [12], [18], [21], [24], [25], [28], [30]. In Yoid [18], each
member selects its own parent to construct a multicast tree.
In End System Multicast (ESM) [12], end hosts coopera-
tively build a mesh and establish a multicast delivery tree
on top of this mesh. ALMI [24] uses a centralized entity to
collect membership information and periodically calculate a
minimum spanning tree. NICE [5] recursively arranges
group members into a hierarchical overlay topology, which
implicitly defines a source-specific delivery tree.

Recently, the notion of infrastructure-supported overlays
has received increasing attention. Example seminal work
includes Overcast [19] and RMX [11]. Both of them use
overlay nodes to support multicast routing, and their main
focus is on building reliable multicast trees. Several two-tier
architectures have also been proposed for scalable multicast
support (such as OMNI [6], MSN [26], and Scattercacst [10]).
Moreover, in [6], [26], [27], the authors focus on single
multicast tree optimization and endeavor to optimize end-
to-end delay and access bandwidth usage at service nodes.

2.3 Our Contribution

Our work is different from the above work in the following
aspects. The previous overlay architectures are based on
different service models from ours. Most of them focus on
improving multicast QoS routing performance, and they
assume that the proxies are predeployed, overlay links
between any two proxies are possible (i.e.,, a full mesh
among proxies is used), and link capacities are simplified as
proxy out-degree bounds. In contrast, the foundation of
TOMA is well-defined business relationships between
MSON providers, network service providers, and group
coordinators. Accordingly, we focus on a number of new
challenges faced by MSON providers, such as scalable
MSON management, efficient cluster formation, and MSON
provisioning. To the best of our knowledge, this paper is the
first work to address the multicast state scalability issue in
overlay networks. In other words, our major contribution is

LAO ET AL.: A SCALABLE OVERLAY MULTICAST ARCHITECTURE FOR LARGE-SCALE APPLICATIONS 451

a comprehensive multicast service overlay architecture,
which includes a practical and profitable service model, an
efficient and scalable overlay management protocol and
effective overlay provisioning algorithms.

3 TOMA: A Two-TIER OVERLAY MULTICAST
ARCHITECTURE

3.1 TOMA Overview

In the TOMA architecture, MSON is advocated as the
service backbone domain. It is an overlay network formed
among a set of overlay proxies, on top of which multicast
distribution trees are built for data delivery based on
multicast routing protocols. Since an MSON provider
always aims to have a bigger customer base and maximize
its profit, the MSON management scheme should be
scalable to the group size as well as the number of groups.
We propose a protocol called OLAMP (Overlay Aggregated
Multicast Protocol) for efficient and scalable MSON
management. In OLAMP, we adopt aggregated multicast
[17], which allows multiple groups to share one tree. Data
packets are encapsulated when entering MSON, trans-
mitted on aggregated trees, and decapsulated when exiting
MSON. Outside MSON, end users subscribe to MSON by
connecting to some proxies advertised by the MSON
provider. Each proxy organizes some users into a “cluster,”
where an application-layer multicast tree (also denoted as
peer-to-peer or P2P multicast tree) is formed for data
delivery among the cluster members.

According to the functionalities of proxies, we define
three kinds of proxies. The proxies that users connect to are
member proxies. Host proxies are designated for managing
multicast tree aggregation. The remaining forwarding
proxies are responsible for forwarding multicast data
packets.

EACH TOMA group is identified by a URL-like unique
name in the form of TOMA:/ /groupname.xxxmson.com/ 2
End users (sources and receivers) explicitly subscribe to a
group by issuing a join request containing the URL-like
group name. Through DNS, this request will reach the DNS
server and a group registry server of the MSON. The group
registry server enforces member access control policy and
maintains group membership information. The DNS server
will send back to the subscriber a list of IP addresses of the
advertised member proxies, from which a member proxy
will be selected.

After finding a member proxy, the end user sends its join
request to the member proxy, which will subscribe to the
multicast group inside MSON on behalf of this member.
The member proxy will set up a P2P multicast tree in the
local cluster and relay the join request to a host proxy to
establish an overlay multicast tree in MSON using OLAMP.

In the backbone domain, each group is managed by a
host proxy (which is similar to a core in CBT or an RP in
PIM-SM). After receiving a join request for group g, this
host proxy conducts multicast routing and group-tree
matching to map group g to an aggregated tree. The host

2. The URL-like naming approach has been adopted by many systems,
such as CDN (content distribution networks), Yoid [18], Scattercast [10], and
Overcast [19].

Member Access Control
Member Proxy Distribution
F_/

A,D,E:
Encapsulation/Decapsulation
P2P Tree Maintenance

Group-Tree Matching

Tree | Groups

to go, 91

Fig. 1. A big picture of TOMA, where F is the group registry server/DNS
server, B is the host proxy for groups g, and g;, A, D, and E are member
proxies, and groups g, and g, share the aggregated tree t,.

proxy for group g can be randomly selected by hashing the
group identifier g to the host-proxy identifier space.

In a nutshell, member proxies in TOMA manage P2P
multicast trees in its cluster, host proxies conduct group-
tree matching, and OLAMP connects member and host
proxies, efficiently managing aggregated multicast trees in
the MSON. A big picture of TOMA is illustrated in Fig. 1. In
the following, we address major design issues of TOMA in
detail.

3.2 OLAMP for Efficient MSON Management

If a proxy manages a large number of multicast trees, it has
to maintain large forwarding tables and, thus, causes packet
lookup speed to be slowed down. Furthermore, if a soft
state approach is used, heavy tree management overhead
due to multicast refreshing messages will be incurred.
Therefore, we design OLAMP to address these issues.

OLAMP is used among proxies. It tries to use existing
multicasttrees to disseminate data foranew group. If thereare
no appropriate trees, a tree is established for this group based
on multicast routing algorithms. Each member proxy main-
tains a simple group-tree mapping table in order to identify
which trees are used for which groups. A host proxy needs to
keep group and tree information (e.g., member-proxy lists of
the assigned groups and tree structures) and conducta group-
tree matching algorithm. Note that the dynamic join or leave
of individual end users generally do not affect the tree
aggregation: Only when a cluster joins a group for the first
time or completely leaves a group, the member proxy needs to
joinorleave the group. Tofacilitate our description, we denote
the control messages in OLAMP as O-type messages, which
include O-JOIN, O-JOIN-ACK, O-LEAVE, O-LEAVE-ACK, O-
SWITCH, O-GRAFT, and O-PRUNE. Essentially, every proxy
in MSON is capable of handling O-type messages and
maintains a multicast routing table.

3.2.1 Member (Proxy) Join and Leave

When a member proxy mp decides to relay a join request for
group g, it sends O-JOIN(g) to the host proxy hp of g. After
conducting the group-to-tree matching, hp finds or computes
an aggregated tree, say, t. It will send back an O-JOIN-
ACK(g, t) message to mp. If mp has not joined the delivery
tree ¢, it will graft to the tree by sending an O-GRAFT(t)
message toward hp, and the proxies along this propagation
path will update their routing tables accordingly.

452 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, APRIL 2007

1. 0-JOIN(gs)

2. 0-JOIN-ACK(gs, t)
3. O-SWITCH(gy, t1, to)
4. O-GRAFT(ty)

1. O-LEAVE(g;)
2. O-LEAVE-ACK(t;)
3. 0-PRUNE(t;) . F

Fig. 2. OLAMP examples. (a) Member proxy E joins group g¢;. (b) Member proxy D leaves roup g;.

Similarly, when a member proxy mp discovers that no end
users are connected, mp sends an O-LEAVE(g) message to the
host proxy hp, which may trigger a group-tree matching
process. If no other member proxies belong to group g, hp will
remove the group-tree mapping between g and ¢, which may
trigger removal of the tree ¢ when no other groups are
mapped onto t. In this case, hp sends an O-LEAVE-ACK(?)
messages to the leaves of tree t, which will in turn prune from
t by sending O-PRUNE(t) toward hp.

3.2.2 A Dynamic Group-Tree Matching Algorithm

In aggregated multicast, when an aggregated tree is bigger
than a group, data will be delivered to nonmember nodes,
leading to bandwidth waste. Obviously, there is a trade-off
between bandwidth waste and aggregation: the more
bandwidth we are willing to sacrifice, the more groups
can share one tree and, thus, the better aggregation we can
achieve. Hence, it is necessary to control the amount of
bandwidth waste in group-tree matching. Assume that an
aggregated tree t is shared by groups g;,1 <4 < n, each of
which has a native tree ty(g;) (a native tree of a group is a
“perfect” match for that group without wasting bandwidth,
and it can be computed using multicast routing algorithms).
Then, the average percentage bandwidth overhead of ¢ can
be defined as

5() = >i1 Blgi) x (C(t) — Clto(gi)))
>im1 Blgi) x Cto(gi))
xS Bl
221 Blgi) x C(to(9:)

where C(t) is the cost of tree ¢ (i.e., the total cost of the links
on tree t), and B(g) is the bandwidth requirement of group
g. The cost metric can simply be the number of links or a
function of bandwidth usage, congestion level, delay, or
other factors.”

When a host proxy hp receives an O-JOIN(g) message from
mp, it updates the corresponding entries of the multicast
group table and executes the group-tree matching algorithm

(1)

3. It is important to note that the cost metric is slightly different for
IP multicast and overlay multicast. For example, if assuming each link has
the same bandwidth cost to deliver a unit of data, the cost of a tree for
IP multicast is proportional to the total number of links in the tree. On the
other hand, for overlay multicast, the cost is proportional to the number of
underlying physical links in the overlay multicast tree instead of the number
of overlay links.

(Algorithm 1). The algorithm tries to minimize the number of
aggregated trees without violating a given bandwidth over-
head threshold by;,. It works as follows: If g is not new and the
current tree t for group gis still appropriate (i.e., t can cover all
the members of g with enough bandwidth and the bandwidth
overhead é(t) < bth), ¢ is used for g. In all other cases, search
existing trees T,. If any existing tree is appropriate for g, it is
considered as a candidate to cover g. Among all candidates,
the tree with the minimum cost is selected. If no candidate is
found, the native tree t, is used to cover g (if ¢y, does not exist
due to bandwidth constraint, the join request of mp has to be
rejected). After mapping g to a tree (say, t'), hp sends O-JOIN-
ACK(g, t") back tomp.If gisnotanew group and ¢ # ¢/, an O-
SWITCH(g, t, ') messageissentviamulticast (using treet) to
all other members of g to switch g from tree ¢ to ¢'.

Algorithm 1 GTMatch(y, ¢, T¢, bi)
// tis the current tree for g
// T, is the set of all existing trees
if ¢ is not null AND ¢ covers g AND 6(¢) < bth
then
return ¢
else
T.+ 0 // T, is the set of candidate trees
compute a native multicast tree ty(g) for g
fort' €T, do
if ¢’ covers g AND §4(t') < bth then
T. — T, U{t'}
end if
end for
if T, is not empty then
return ¢’ € T, with min C(t)
else
return ty(g)
end if
end if

We use two examples in Fig. 2 to explain OLAMP. In
these two examples, gy and g, originally have their own
trees ty and ¢, respectively. In Fig. 2a, when a user requests
to join g via member proxy E, E sends an O-JOIN(g;)
message to the host proxy B. After conducting group-tree
matching, B finds out that tree ¢, can also be used to cover
group g¢; therefore, it issues an O-JOIN-ACK(gi, t) to E
and an O-SWITCH(g1, t1, to) to the remaining proxies of g;.

LAO ET AL.: A SCALABLE OVERLAY MULTICAST ARCHITECTURE FOR LARGE-SCALE APPLICATIONS 453

As E does not belong to tree ¢, it sends an O-GRAFT(ty)
message toward the host proxy in order to graft onto .
Proxies A and D only need to update the group-tree
matching information for g;. Note that since no groups
belong to t¢; at this time, a prune process will also be
triggered to prune member proxies A and D from ¢; (which
is omitted for simplicity). In Fig. 2b, when all the users
connected to proxy D leave g;, D needs to notify host proxy
B by sending an O-LEAVE(g;) message. After receiving the
O-LEAVE-ACK(t;) from B, D then prunes itself from ¢;
using an O-PRUNE(t;) message.

3.3 Cluster Formation Outside MSON

3.3.1 Member Proxy Selection

On receiving a list of candidate member proxies from the
MSON DNS server, an end user selects one proxy based on
the criteria of low latency and low workload (in terms of
processing power and bandwidth availability), since low
latency is critical to real-time applications and lightly-
loaded proxies tend to have more resources.

The end user measures the RTT (round-trip time) to
candidate proxies by sending ping requests. In the reply
messages, the proxies piggyback their workload informa-
tion, e.g., the total number of end users they handle or the
total amount of access bandwidth in use. The end user then
discretizes the measured RTT values into predetermined
levels. If there are multiple proxies close by, the one with
the lowest workload will be selected.

3.3.2 P2P Multicast in Access Networks

Outside MSON, end users associated with the same
member proxy form a cluster. In a cluster, nodes commu-
nicate in a P2P fashion via application-layer multicast trees:
When an end user sends packets to the group, the packets
are transmitted to all other end users in the same cluster
and to the member proxy as well. The member proxy will
relay these packets via the aggregated tree to other member
proxies (at the edge of the MSON), which will in turn
deliver the data to group members in their clusters.

Due to the existence of a member proxy node in every
cluster, we adopt a core-based approach (similar to ALMI
[24]) to construct P2P multicast trees. In a cluster, the
member proxy acts as a core, storing the group membership
information in its cluster scope. Periodically, end users
monitor their peers in the same cluster regarding path
quality (such as delay and available bandwidth), and report
this information to their member proxies. For the scalability
issue, the users can monitor a fraction of randomly selected
peers and switch them after some period of time. After
putting together the global picture of its clusters, the
member proxy computes P2P multicast delivery trees and
disseminates (parent,children) entries to its members.
Finally, end users connect with their children and transmit
data packets via unicast. If a member leaves ungracefully,
its peers will detect this from periodic probing and the
multicast tree will be repaired by the member proxy.

4 OVERLAY NETWORK PROVISIONING

In the previous section, we describe TOMA with the
assumption that MSON is already constructed by the ISP.

Namely, proxies have been strategically deployed and
overlay link bandwidth has been purchased. In this section,
we discuss the overlay network provisioning problems.
Obviously, the deployment of MSON is a capital-intensive
investment. Thus, it is very imperative to carefully design
MSON so that the ISP can make the best revenue for its
investment. In this section, we design algorithms for
overlay network design by considering traffic patterns
(e.g., group and member distributions), group bandwidth
requirements, end-to-end delay concerns, as well as multi-
cast routing algorithms.

4.1 Problem Formulation

We model the physical network topology as an undirected
graph G = (V,E), where V and E denote the sets of
network nodes (or routers) and physical links, respectively.*
The total number of routers in the network is denoted as n.
Each link e € E has a bandwidth capacity c(e). We also
denote the set of all possible paths in G as €2. From long-
term measurements, we can obtain a set of groups {g; } with
group member distribution and bandwidth requirements
[3], [9], [13], and use this information for MSON design. We
denote the number of members (from all groups) that are
connected to router i as w;.

The overlay provisioning problem can be formulated as
follows: Given the set of groups {g;}, and a physical
network topology G = (V, E), find a virtual topology G’ =
(V',E') on top of G (where V' C V and E' C Q), in which
each ¢’ € E' is assigned a bandwidth b(¢’), such that G can
accommodate all the groups, and the cost of G’ and the
average end-to-end delay of group members are mini-
mized. The determination of the cost of G’ depends on the
MSON management policy. In most cases, we can use the
sum of the assigned bandwidth (purchased from under-
lying network service providers) to estimate bandwidth
cost, and the number of overlay links (i.e., |E’|) to measure
overlay maintenance overhead.

Clearly, to obtain G’, the overlay ISP needs to make three
decisions: 1) determine the locations of the proxy nodes, i.e.,
select V’, 2) select the overlay connections between these
proxies, i.e., choose E’, and 3) compute the bandwidth to be
reserved on each overlay link, i.e., assign a bandwidth b(e’)
to each ¢ € E'. Since it is difficult to achieve the above
optimization goals simultaneously, we divide the whole
problem into three subproblems: overlay proxy placement,
overlay link selection, and bandwidth dimensioning. Solu-
tions obtained this way may be “suboptimal,” as this
approach is mainly concerned with the problem manage-
ability. In the following, we present algorithms to solve
these problems.

4.2 Overlay Proxy Placement

For the proxy placement problem, we limit the total number
of overlay proxies, considering the deployment cost of
proxies. Since end users tend to receive data packets from
the closest proxies, the locations of overlay proxies directly
affect the data transmission latency. Intuitively, if a router is
connected to a lot of users, a proxy should be placed near

4. We assume the MSON provider can obtain the knowledge about
underlying network topology from the network service provider.

454 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, APRIL 2007

this router to reduce the average delay. Hence, we can
minimize the total delay between users and their proxies by
intelligently placing proxies.

The Owverlay Proxy Placement can be formulated as
follows: Given the number of group members w; (1 <14 <
n) for all n routers and the shortest distance d;; between any
two routers ¢ and j (1 < 4,j < n), find no more than K (1 <
K < n) routers as proxies, such that the weighted sum of
distance from each router to its nearest proxy is minimized.

Lemma 1. The Owverlay Proxy Placement problem is NP-
complete.

Proof. If we fix the number of chosen proxies in the Overlay
Proxy Placement problem, we obtain the p-Median
problem, i.e., in graph G, determining p “median” nodes
such that the sum of the distance between each remaining
node and its nearest median node is minimized. p-Median
problem has been proven to be NP-complete [20]; thus, the
Overlay Proxy Placement problem is also NP-complete.O

To solve this problem, we present a greedy approxima-
tion algorithm.” In each step, a router 7 is selected as a proxy
if its selection can reduce the weighted sum of distance (i.e.,
the objective function) by the largest amount. This
procedure repeats until the maximum number of overlay
proxies K is reached. In each iteration, computing the
weighted sum of distance for each router requires O(n)
time, and the whole iteration takes O(n?) time. Therefore,
the time complexity of the algorithm is O(Kn?).

This algorithm tries to minimize the objective function at
each step, but it may be stuck in local minima. In Section 5,
we show that this algorithm can achieve competitive
performance in comparison with the optimal solution
obtained by ILP (Integer Linear Programming). Due to
space limitation, we include the ILP formulation in an
extended version of this paper [22].

4.3 Overlay Link Selection

Once the proxy locations have been determined, the next
step is to connect these proxies into a mesh, on top of which
overlay multicast trees will be constructed. There are two
potential optimization goals, namely, minimizing the end-
to-end latency and minimizing the overlay maintenance
overhead. The end-to-end latency can be measured by the
average number of physical hops, and the overlay main-
tenance overhead can be approximately represented by the
number of overlay links (i.e., |[E'|).

Existing solutions focus on either one of the goals, but
not both. For example, Complete Graph and Adjacent
connection [23] have been proposed to optimize the end-to-
end delay. The former approach establishes an overlay link
between every proxy pair, whereas the latter approach
selects an overlay link between two proxies only if the
network-layer path does not go through other intermediate
proxies, thus removing “redundant” overlay links. Unlike
these approaches, the k-Minimum Spanning Tree (MST)

5. It should be noted that there exist many approximation algorithms for
the p-Median problem, which may potentially be used to solve the Overlay
Proxy Placement problem. Since the main purpose of this paper is to
formulate the problem and examine how the overlay dimensioning affects
the performance of TOMA, we defer the comparison of existing algorithms
with ours to future work.

approach [29] aims to reduce the cost of maintaining the
overlay by using k least-overlapping MSTs to connect
proxies, though at the expense of higher delay.

In this paper, we try to reconcile the trade-offs of these
approaches. We adopt a delay threshold to bound the
delay penalty caused by removing overlay links, and then
minimize the overlay maintenance overhead. We formu-
late the following Overlay Link Selection problem: Given a
delay threshold D, minimize the total number of selected
overlay links such that for every pair of overlay proxies ¢
and j, the percentage of increased shortest path delay in
the overlay G'(V', E') versus the original network G(V, E)
is no larger than D: % <D (i,j € [1,n'],i # j),
where d;;(G) denotes the jdelay of the shortest path
between i and j on graph G, and n’ is the total number of
proxies. In fact, when D = oo, this problem minimizes the
number of overlay links irrespective of the delay and it
can be solved by 1-MST. When D =0, it minimizes the
number of overlay links while maintaining the smallest
end-to-end delay, and Adjacent Connection gives the
solution to this problem. Therefore, our problem formula-
tion and solutions provide higher flexibility for overlay
providers to tune the trade-offs between overlay main-
tenance overhead and end-to-end delay.

Lemma 2. The Overlay Link Selection problem is NP-complete.

Proof. To show that this problem is in NP, we can restate
this optimization problem as a decision problem: We
want to determine if we can choose K overlay links such
that the overlay network is connected, and the increase
of overlay path delay between any proxy pair is bounded
by D. Suppose we are given K overlay links, we can
validate if these links satisfy the above requirements in
polynomial time.

We prove the NP-hardness of the Overlay Link
Selection problem by restricting it to a d-Spanner problem
with unit costand arbitrary (polybounded) length [15]. We
first limit the number of proxies n’ to be equal to the
number of routers n. We then create a complete graph G” of
G, and denote the maximum value among d;;(G)(1 +
D) (i,j € [1,7],i # j) as D". Any solution E’ for this
restricted Overlay Link Selection problem is a solution for
the D"-Spanner problem. Conversely, any solution E” for
the D"-Spanner problem is a solution for the restricted
Overlay Link Selection problem. In the equivalent
D"-Spanner problem, all the edges have unit cost (i.e., all
the overlay links have the same maintenance cost), and the
edge length varies (the delay of each overlay link depends
on the number of underlying physical links) and is clearly
polybounded. In [15], it has been proven that a d-Spanner
problem with unit cost and arbitrary length is NP-hard, so
we can conclude that the restricted Overlay Link Selection
problem is NP-hard. Therefore, the original Overlay Link
Selection problem is NP-complete. 0
Though there are approximation algorithms (with

approximation ratio O(nlogd)) for the general d-spanner

problem with unit cost and arbitrary length [15], it is
unclear if these algorithms can be applied to the Overlay

Link Selection problem. In this paper, we propose solutions

LAO ET AL.: A SCALABLE OVERLAY MULTICAST ARCHITECTURE FOR LARGE-SCALE APPLICATIONS 455

for this problem. Again, we would point out that it is worth
investigating other approaches and examining their perfor-
mance, which is nevertheless out of the scope of this paper.

Before presenting our solutions, we define some nota-
tions. An overlay link is the shortest IP-layer path
connecting two proxies, or a proxy pair. An overlay path
is composed of overlay links and it connects two proxies.
For an overlay network with n’ overlay proxies, there are a
total of p proxy pairs and p overlay links, where p = ’HOLQJ
We rank the proxy pairs and overlay links from 1 to p,
respectively. For every proxy pair i (1 < ¢ < p), we denote
each candidate overlay path between them that satisfies the
delay constraint as (i,j) (1 < j < np;), where np; is the
number of candidate overlay paths for i.

In our solutions, we first enumerate for each proxy pair the
set of candidate overlay paths satisfying the delay threshold.
For each overlay path, we find out the overlay links which the
path is composed of. Then, we can select a set of the overlay
links to minimize its cardinality. In the following, we propose
an ILP formulation and a greedy algorithm.

4.3.1 ILP Formulation
We define the following variables:

L
€T; = 0’

Vi € [1,p],

if the ith overlay link is selected

otherwise

and

1, if the jth overlay path for the ith
Yij = proxy pair is selected
0, otherwise
Vi € [1,p],Vj € [1,np;].
The objective is to minimize the total number of selected

overlay links, ie., Y%, z; subject to the following
constraints:

1. Every proxy pair i is covered by at least one overlay
path:

np;

Yoyl Vie[lp)
=

2. If an overlay path is selected, each overlay link on
the path must be selected:

yi; < Vi€l pl,Vy e [l,np), Yk € [1,nl;],

where nl;; denotes the number of overlay links on an

overlay path (i, j).
3. The delay constraint:

dij(G") — dij(G) . N

<D 1 .
d7](G) — VZ,]G[7n}77’§é]
4.3.2 Greedy Algorithm
To reduce the complexity of solving the above ILP, we
propose a greedy algorithm. For each overlay link [, we
define a utility:

1 1
)

(ipyeop i

where op; is the set of overlay paths that contain the overlay
link [and connect two unconnected proxies, nlj; is the
number of unselected overlay links on an overlay path (i, j).
Intuitively, an overlay link should have higher priority to be
selected, if it is contained in more candidate overlay paths
or it connects a proxy pair with fewer and shorter candidate
overlay paths. Hence, the link utility is determined by the
number of unselected overlay links on a candidate overly
path and the number of candidate overlay paths between a
proxy pair.

In the Greedy algorithm, we first compute the utility
function for each overlay link. Then, we repeat the
following steps until all the proxies are connected. In each
iteration, we select an overlay link with the highest utility. If
all the overlay links for an overlay path are selected, the
corresponding proxy pair is considered to be connected.
Then, the utilities for the remaining overlay links are
updated.

The Greedy algorithm is not optimal in that it heur-
istically selects overlay links according to a utility function.
Nevertheless, we will show that it can yield near-optimal
solutions in Section 5.

4.4 Bandwidth Dimensioning

Having determined the overlay topology (overlay proxies
and links), we then need to decide the bandwidth required
on overlay links to accommodate the groups obtained from
long-term measurements.

Bandwidth dimensioning is complex since it is tightly
related to multicast routing algorithms. Thus, we suggest a
simulation-based approach to take multicast routing algo-
rithms into account. The basic idea is: Compute multicast
trees based on the given routing algorithm for all the
groups, and then by summing up the traffic volume on each
tree, the amount of bandwidth to be leased on every overlay
link can be determined.

Based on long-term measurement results, the computed
bandwidth is sufficient to satisfy the requirement of these
groups on average. However, the traffic peak rate is likely
to exceed the average rate. Hence, the MSON provider
should consider overdimensioning the network by reser-
ving extra bandwidth. If the bandwidth is still insufficient
during peak hours, the MSON can either reject some groups
or lease bandwidth from higher-tier ISPs for short-term
usage (possibly at a higher price).

5 PERFORMANCE EVALUATION

In this section, we first compare the performance of TOMA
with two representative application-layer multicast proto-
cols NICE [5] and NARADA [12], and an IP multicast
protocol (Core-Based Tree [4]) using NS-2. Then, we
evaluate the effectiveness of our overlay provisioning
algorithms.

5.1 Simulation Settings

We use two types of network topologies and group
membership models. The first type is synthetic Transit-
Stub (TS) topologies [7] with 50 transit domain routers and

456 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, APRIL 2007

8000

7000 TOMA -
6000 [|P Multicast
5000 -

4000 e

Total cost

3000
2000 |

1000

0 200 400 600 800 1000 1200
Group size

Fig. 3. Tree cost versus group size in Transit-Stub.

500-2,000 stub domain routers. End hosts are attached to
stub routers uniformly at random. The second type of
network topology is abstracted from a real network
topology, AT&T IP backbone [1], and it consists of 54 nodes.
To each router i, we assign a weight w; and randomly attach
end hosts to the router with a probability proportional to w;.

We use simple overlay provisioning heuristics to evaluate
the performance of TOMA with unoptimized backbone
overlay networks (the overlay provisioning algorithms are
evaluated separately). We randomly select 80 percent of the
transit nodes (i.e., 40 nodes) in TS topologies and nine
gateway routers in the AT&T topology as proxy nodes,
because transit nodes and gateway routers usually have high
degrees and are located in the core of the network. The
overlay links are constructed using the Adjacent Connection
described in Section 4.3.

5.2 Multicast Tree Performance

To test the scalability of different schemes, we focus on large
group sizes of 200 to 1,000 members. End hosts join the
multicast group during an interval of 400 seconds and the
session ends at 1,000 seconds. We collect the metrics after the
multicast tree has stabilized. We only present the results for
TS topologies since AT&T yields similar results [22].

5.2.1 Multicast Tree Cost

Multicast tree cost measures the number of links in a
multicast tree. It quantifies the bandwidth efficiency of
multicast routing schemes. In Fig. 3, we plot the average
tree cost as group size increases. Clearly, the performance of
TOMA is comparable to IP multicast. In addition, TOMA
outperforms NICE and NARADA in all cases, and their
difference magnifies as group size is increased. This
efficiency gain of TOMA versus NICE and NARADA is
due to two reasons. First, TOMA takes advantage of the
carefully provisioned overlay network which resembles the
underlying network topology, whereas NICE and NAR-
ADA rely on path probing techniques and construct overlay
topologies with degraded quality. Second, by using proxies
as intermediate nodes, TOMA allows packets to be
replicated at proxies and, hence, decreases the redundant
packets sent over the physical links.

5.2.2 Average Path Length

Path Length is the number of links on the path from the
source to a member. The results for average path length are
shown in Fig. 4. Because of the high computation overhead
of NARADA for large groups in the simulations, we were
unable to complete the simulations for NARADA when the

40

35 TOMA ——
NICE ——
30| NARADA
IP Multicast
25 | e
e RS S x

20 -

M /\/\
he . & E— 8

10

Average path length

0 200 400 600 800 1000 1200
Group size

Fig. 4. Average path length versus group size in Transit-Stub.

group size is 1,000. As expected, IP multicast have the
shortest end-to-end paths. The path lengths of TOMA trees
are much shorter than those of NICE and NARADA trees
on average. For instance, at a group size of 800, the average
path lengths of TOMA, NICE, and NARADA trees are 16.5,
21.6, and 22.3, respectively. Again, the performance
improvement of TOMA over NICE and NARADA is gained
through efficient overlays: In TOMA, overlay links are
constructed based on the shortest paths in network layer; as
a result, data packets can avoid going through unnecessa-
rily long paths.

We also found out that TOMA achieves higher perfor-
mance in terms of link stress (defined as the number of
identical data packets delivered over each link), which is
again due to the efficient overlay construction [22].

5.3 Control Overhead

We plot the total number of control messages generated by
TOMA, NICE, and NARADA during a group’s life time in
Fig. 5. Among the three protocols, NARADA has the
highest control overhead. In addition, even though NICE is
more scalable than NARADA as it uses a hierarchical
structure, TOMA significantly outperforms NICE. At group
size of 1,000, TOMA generates only about one third as many
control messages as NICE. The reason is simple: In TOMA,
the local clusters remain rather static and a member stays in
the same cluster in spite of the behaviors of other members.
However, in NICE, as members join and leave, the clusters
change very frequently to enforce the bounds on cluster
size, which induces numerous control messages. Further-
more, a NICE node needs to periodically send “heartbeat”
messages to all other cluster members (or even to multiple
clusters in the case of cluster leaders), whereas a TOMA
node only needs to refresh the connection with its parent.

800
700 TOMA —+—

600
500
400
300

200

Number of control messages (x106)

100

,,,,,,,,,,,,,

0 200 400 600 800 1000 1200
Group size

Fig. 5. Control Overhead for a single group in Transit-Stub.

LAO ET AL.: A SCALABLE OVERLAY MULTICAST ARCHITECTURE FOR LARGE-SCALE APPLICATIONS 457

2500

ILP ——

L Greedy -—x——
2000 Random -

1500 | > "

1000 -

Multicast tree cost

500

0 200 400 600 800 1000 1200
Group size

Fig. 6. Tree cost for different proxy placement.

5.4 Overlay Provisioning

In this section, we evaluate the overlay provisioning
algorithms on the AT&T topology. We assume the proper-
ties of multicast groups can be obtained through long-term
measurements, and the overlay network is constructed
based on the measurement results. Unless otherwise
specified, proxy nodes are placed in the locations deter-
mined by the greedy algorithm and connected using the
Adjacent Connection approach.

5.4.1 Overlay Proxy Placement

We compute proxy locations for K =9 based on the
weights assigned to routers using the ILP and greedy
algorithms, and compare the performance of multicast
groups with different group sizes on the resulting overlay
networks. As a reference, we also include the results when
proxies are randomly selected.

The multicast tree cost as group size varies is plotted in
Fig. 6. The ILP solution yields the lowest tree cost, since it
optimally places proxies as close to exchange routers (which
have a bulk of members) as possible and, thus, prevents the
packets from traversing the links between proxies and
access routers multiple times. In contrast, the random
approach chooses proxies randomly from all the routers in
the network. As a result, end users may use some fairly long
paths to connect to the proxies, and some physical links
may be used multiple times by different users. As for the
greedy algorithm, it selects some gateway routers and
exchange routers, so its performance lies in between.

The average end-to-end path length is depicted in Fig. 7.
It is clear that both the ILP and greedy solutions reduce the
average path length greatly. For example, the average path
length is approximately 10.4 to 10.7 when proxies are
randomly placed, and it is reduced to below 7.0 by the ILP

20

ILP ——
Greedy -——x—
Random -
15 +

ol . SE—

Average path length

0 200 400 600 800 1000 1200
Group size

Fig. 7. Average path length for different proxy placement.

1.55

-y ILP ——
=4 Greedy -
X Random --x
2 1.5
[=J
o
2
£ . y
5 145 e
g .
8
5
5 14 —*
o
E
S
z
1.35

-0.5 0 0.5 1 1.5 2 25
Delay threshold

Fig. 8. Control overhead for different link selection.

or greedy approach. This remarkable improvement is again
due to the fact that the two latter approaches place proxies
closer to end users to avoid using unnecessarily long paths
for data delivery.

5.4.2 Overlay Link Selection

For overlay link selection, we vary the delay threshold and
plot the control overhead of TOMA on the overlay networks
generated by the ILP and Greedy algorithms in Fig. 8. We
also include the results of a Random algorithm, which
randomly selects overlay links until all overlay proxies are
connected without exceeding the delay threshold. For each
delay threshold, we conduct 10 simulations for the Random
algorithm and compute the average results. The average
multicast group size is fixed at 200.

As shown in Fig. 8, when the delay threshold increases,
all of the three algorithms has lower control overhead, as
larger delay threshold allows longer overlay paths which
have more overlaps and use fewer overlay links overall. In
addition, Greedy gives the optimal solutions on the AT&T
topology. By contrast, the random algorithm does not work
as well, as it does not differentiate overlay links that can be
used in many candidate overlay paths from those that
cannot.

5.4.3 Bandwidth Dimensioning

To determine the bandwidth for each overlay link, we
model the traffic pattern as follows: 1) for every group, a
proxy has attached end users participating in the group
with a given probability as described in Section 5.1,
2) groups arrive according to a Poisson process, and the
average life time is exponentially distributed, and 3) each
group requires the same bandwidth throughout its lifetime,
and the bandwidth requirements for different groups
follow a certain distribution. In the simulations, we define
three types of multicast groups: 50 percent of the groups are
low bandwidth (10K), 30 percent are medium bandwidth
(100K), and 20 percent are high bandwidth (1M).

We generate sample traces of multiple groups. For each
trace, we compute aggregated trees for the groups using the
group-tree matching algorithm and determine the band-
width required on each link averaged for different sampling
points. Then, we overdimension the bandwidth by a certain
amount and validate the dimensioning results by measur-
ing group join request rejection ratio for another trace with the
same traffic pattern. A join request of a multicast group is
rejected if the residual bandwidth of an overlay link is not
enough to accommodate the multicast tree computed for
that group.

458 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, APRIL 2007

0.05

0.04 -
0.03 -

0.02 \

0.01 -

Average Request Rejection Ratio

-0.01 : : : :
0 1000 2000 3000 4000 5000

Average number of groups

Fig. 9. Request rejection ratio for bandwidth dimensioning.

Fig. 9 shows the average request rejection ratio when the
percentage of overdimensioning (denoted as od) and the
number of groups are varied. The rejection ratio remains
very low for different numbers of coexisting groups, even
without overdimensioning. It is not 0 because the band-
width is reserved based on the average traffic rate instead of
the peak rate. As od increases, the rejection ratio decreases,
because more bandwidth is reserved. The rejection ratio
decreases when there are more groups in the network,
because the a larger number of groups can have better
bandwidth multiplexing. These results indicate that our
bandwidth dimensioning scheme is indeed very effective.

5.5 Summary

Our observations through simulation experiments can be
summarized as follows: TOMA creates multicast distribu-
tion trees with quality almost comparable to IP multicast
trees; the control overhead of TOMA is significantly less
than NICE and NARADA for large groups; the perfor-
mance of TOMA can be improved significantly by the
proposed overlay provisioning algorithms. Our additional
results in [22] demonstrate that TOMA is more robust than
NICE and NARADA when there are ungraceful user leaves
and TOMA is scalable to large numbers of groups in terms
of control overhead and multicast state.

If we recall the architecture difference between TOMA and
application layer multicast, it is not difficult to understand
why TOMA outperforms NICE and NARADA by a large
margin. In TOMA, the strategic MSON provisioning takes
physical network topologies into account and, thus, provides
efficient multicast data delivery. In addition, a large amount
of probing overhead can be saved due to the simple clustering
technique. Finally, the aggregated multicast approach further
makes TOMA scalable to large numbers of groups. In
contrast, in application layer multicast, the control messages
for maintaining groups and trees will increase rapidly with
group size. Due to limited bandwidth at end systems,
application layer multicast trees tend to have larger depth
and longer data latency. Nevertheless, we want to point out
that TOMA requires infrastructure support to achieve the
above benefits, which is a trade-off of TOMA versus NICE
and NARADA.

6 CONCLUSIONS

In this paper, we propose and develop a two-tier overlay
multicast architecture (TOMA) to support group commu-
nication applications in an efficient and scalable way. Our
contributions can be summarized as follows:

1. We advocate the notion of infrastructure-supported
overlays to facilitate the deployment of multicast
service.

2. We provide a viable architecture design of TOMA,
which adopts MSON as the backbone service
domain and P2P multicast in the access domains to
achieve efficient resource utilization with reduced
control overhead.

3. We develop OLAMP for MSON management. The
control overhead for establishing and maintaining
multicast trees are significantly reduced, and far less
forwarding state needs to be maintained at proxy
nodes.

4. To efficiently plan the backbone service overlay, we
suggest several provisioning algorithms to locate
proxies, select overlay links, and allocate link
bandwidth.

5. By extensive simulation studies, we show the promis-
ing performance of TOMA and demonstrate the
effectiveness of our provisioning algorithms. We
believe that the invention of our practical, compre-
hensive, and scalable multicast service model would
significantly facilitate the multicast wide deployment.

ACKNOWLEDGMENTS

This material is based upon work supported by the US
National Science Foundation under Grant No. 0435515 and
Grant No. 0435230.

REFERENCES
[1] AT&T IP Backbone, http:/ /www.ipservices.att.com/backbone/,
2001.

[2] K. Almeroth, “The Evolution of Multicast: From the MBone to
Inter-Domain Multicast to Internet2 Deployment,” IEEE Network,
vol. 14, no. 1, pp. 10-20, Jan./Feb. 2000.

[3] K. Almeroth and M. Ammar, “Multicast Group Behavior in the
Internet’s Multicast Backbone (MBone),” IEEE Comm., vol. 35,
no. 6, pp. 124-129, June 1997.

[4] A. Ballardie, “Core Based Trees (CBT Version 2) Multicast
Routing: Protocol Specification,” IETF RFC 2189, Sept. 1997.

[5] S. Banerjee, C. Kommareddy, and B. Bhattacharjee, “Scalable
Application Layer Multicast,” Proc. ACM SIGCOMM, pp. 205-217,
Aug. 2002.

[6] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and S.
Khuller, “Construction of an Efficient Overlay Multicast Infra-
structure for Real-Time Applications,” Proc. IEEE INFOCOM,
vol. 2, pp. 1521-1531, Apr. 2003.

[71 K. Calvert, E. Zegura, and S. Bhattacharjee, “How to Model an
Internetwork,” Proc. IEEE INFOCOM, vol. 2, pp. 594-602, Mar.
1996.

[8] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron,
“Scribe: A Large-Scale and Decentralized Application-Level
Multicast Infrastructure,” IEEE |. Selected Areas in Comm., vol. 20,
no. 8, pp. 1489-1499, Oct. 2002.

[9] R. Chalmers and K. Almeroth, “Modeling the Branching Char-
acteristics and Efficiency Gains of Global Multicast Trees,” Proc.
IEEE INFOCOM, vol. 1, pp. 449-458, Apr. 2001.

[10] Y. Chawathe, S. McCanne, and E.A. Brewer, An Architecture for
Internet Content Distributions as an Infrastructure Service, 2000,
unpublished, http://www.cs.berkeley.edu/yatin/papers/.

[11] Y. Chawathe, S. McCanne, and E.A. Brewer, “RMX: Reliable
Multicast for Heterogeneous Networks,” Proc. IEEE INFOCOM,
vol. 2, pp. 795-804, Mar. 2000.

[12] Y.-H. Chu, S.G. Rao, and H. Zhang, “A Case for End System
Multicast,” Proc. ACM Sigmetrics, pp. 1-12, June 2000.

[13] J.-H. Cui, M. Faloutsos, D. Maggiorini, M. Gerla, and K. Boussetta,
“Measuring and Modelling the Group Membership in the
Internet,” Proc. ACM SIGCOMM/USENIX Internet Measurement
Conf. (IMC 03), pp. 65-77, Oct. 2003.

LAO ET AL.: A SCALABLE OVERLAY MULTICAST ARCHITECTURE FOR LARGE-SCALE APPLICATIONS

(14]

[15]

[1o]

(171

(18]

[19]

[20]

(21]

(22]

(23]

[24]

(23]

26]

(27]

(28]

[29]

(30]

C. Diot, B. Levine, J. Lyles, H. Kassem, and D. Balensiefen,
“Deployment Issues for the IP Multicast Service and Architec-
ture,” IEEE Network, vol. 14, no. 1, pp. 78-88, Jan./Feb. 2000.

Y. Dodis and S. Khanna, “Design Networks with Bounded
Pairwise Distance,” Proc. 31st Ann. ACM Symp. Theory of
Computing (STOC), pp. 750-759, 1999.

Z. Duan, Z.-L. Zhang, and Y.T. Hou, “Service Overlay Networks:
SLAs, QoS, and Bandwidth Provisioning,” IEEE/ACM Trans.
Networking, vol. 11, no. 6, pp. 870-883, Dec. 2003.

A. Fei, J-H. Cui, M. Gerla, and M. Faloutsos, “Aggregated
Multicast: An Approach to Reduce Multicast State,” Proc. Sixth
Global Internet Symp. (GI '01), vol. 3, pp. 1595-1599, Nov. 2001.

P. Francis, “Yoid: Extending the Multicast Internet Architecture,”
white paper, http://www.aciri.org/yoid/, 2007.

J. Jannotti, D.K. Gifford, K.L. Johnson, M.F. Kaashoek, and J.W.
O'Toole Jr., “Overcast: Reliable Multicasting with an Overlay
Network,” Proc. USENIX Symp. Operating Systems Design and
Implementation, pp. 197-212, Oct. 2000.

O. Kariv and L. Hakimi, “An Algorithmic Approach to Network
Location Problems. ii: The p-Medians,” SIAM]. Applied Math.,
vol. 37, no. 3, pp. 539-560, Dec. 1979.

M. Kwon and S. Fahmy, “Topology Aware Overlay Networks for
Group Communication,” Proc. Workshop Network and Operating
System Support for Digital Audio and Video (NOSSDAV '02), pp. 127-
136, May 2002.

L. Lao, J.-H. Cui, and M. Gerla, “A Scalable Overlay Multicast
Architecture for Large-Scale Applications,” Technical Report CSD
TR040008, Univ. of California Los Angeles, http://www.cs.
ucla.edu/NRL/hpi/AggMC/index.html, Feb. 2004.

Z. Li and P. Mohapatra, “The Impact of Topology on Overlay
Routing Serive,” Proc. IEEE INFOCOM, vol. 1, pp. 408-418, Mar.
2004.

D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel, “ALMI: An
Application Level Multicast Infrastructure,” Proc. Third USENIX
Symp. Internet Technologies and Systems, pp. 49-60, Mar. 2001.

S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Application-
Level Multicast Using Content-Addressable Networks,” Proc.
Conf. Networked Group Comm. (NGC), pp. 14-29, Nov. 2001.

S. Shi and].S. Turner, “Routing in Overlay Multicast Networks,”
Proc. IEEE INFOCOM, vol. 3, pp. 1200-1208, June 2002.

S. Shi, J.S. Turner, and M. Waldvogel, “Dimensioning Server
Access Bandwidth and Multicast Routing in Overlay Networks,”
Proc. Workshop Network and Operating System Support for Digital
Audio and Video (NOSSDAV '01), pp. 83-92, June 2001.

A. Sobeih, W. Yurcik, and J.C. Hou, “VRing: A Case for Building
Application-Layer Multicast Rings (Rather Than Trees),” Proc.
IEEE Computer Soc. 12th Ann. Int’l Symp. Modeling, Analysis, and
Simulation of Computer and Telecomm. Systems (MASCOTS "04), Oct.
2004.

A.Young, C. Jiang, M. Zheng, A. Krishnamurthy, L. Peterson, and
RY. Wang, “Overlay Mesh Construction Using Interleaved
Spanning Trees,” Proc. IEEE INFOCOM, vol. 1, pp. 396-407, Mar.
2004.

S5.Q. Zhuang, B.Y. Zhao, A.D. Joseph, R.H. Katz, and].D.
Kubiatowicz, “Bayeux: An Architecture for Scalable and Fault-
Tolerant Wide-Area Data Dissemination,” Proc. Workshop Network
and Operating System Support for Digital Audio and Video (NOSS-
DAV '01), pp. 11-20, June 2001.

459

Li Lao received the BS degree from Fudan
University, China, in 1998. She received the MS
and PhD degrees in computer science from the
University of California Los Angeles in 2002 and
2006, respectively. She joined Google Inc. in
April 2006. Her research focuses on multicast-
ing, overlay network management, multicast
modeling, and performance evaluation. She is
a member of the |IEEE.

Jun-Hong Cui received the BS degree in
computer science from Jilin University, China,
in 1995, the MS degree in computer engineering
from the Chinese Academy of Sciences in 1998,
and the PhD degree in computer science from
the University of California Los Angeles in 2003.
Currently, she is an assistant professor in the
Computer Science and Engineering Department
at the University of Connecticut. Her research
interests are in computer networks and data
communications. They cover the protocol design, network modeling,
and performance evaluation of the Internet, wireless networks, sensor
networks, peer-to-peer networks, and overlay networks. Currently, her
research mainly focuses on multicasting and QoS support in wired and
wireless networks, algorithm and protocol design in large-scale mobile
wireless sensor networks, and mobility modeling and management in
mobile ad hoc networks. Please see http://www.cse.uconn.edu/~jcui/ for
her recent projects and publications. She is a member of the IEEE.

Mario Gerla received the graduate degree in
engineering from the Politecnico di Milano in
1966, and the MS and PhD degrees in engineer-
ing from the University of California Los Angeles
in 1970 and 1973, respectively. After working for
the Network Analysis Corporation from 1973 to
1976, he joined the faculty of the Computer
Science Department at the University of Califor-
nia Los Angeles, where he is now a professor.
His research interests cover the performance
evaluation, design, and control of distributed computer communication
systems, high-speed computer networks, wireless LANs, and ad hoc
wireless networks. He has worked on the design, implementation, and
testing of various wireless ad hoc network protocols (channel access,
clustering, routing, and transport) within the DARPA WAMIS, GloMo
projects, and, most recently, the ONR MINUTEMAN project. He is also
conducting research on QoS routing, multicasting protocols, and TCP
transport for the Next Generation Internet (see www.cs.ucla.edu/NRL for
recent publications). He is a fellow of the IEEE.

Shigang Chen received the BS degree in
computer science from the University of Science
and Technology of China in 1993. He received
P the MS and PhD degrees in computer science
3 from the University of lllinois at Urbana-Cham-
oy - paign in 1996 and 1999, respectively. After
o —— graduation, he worked for Cisco Systems for
three years before joining the University of
Florida as an assistant professor in the Depart-
= ment of Computer and Information Science and
Engineering. His research interests include network security, quality of
service, and sensor networks. He received the IEEE Communications
Society Best Tutorial Paper Award in 1999. He was a guest editor for
ACMy/Baltzer Journal of Wireless Networks (WINET) and IEEE Transac-
tions on Vehicle Technologies. He is serving as a Technical Program
Committee cochair for the Computer and Network Security Symposium of
IEEE IWCCC 2006. He served as a vice Technical Program Committee
chair for IEEE MASS 2005, a vice general chair for QShine 2005, a
Technical Program Committee cochair for QShine 2004, and a Technical
Program Committee member for many conferences including IEEE
ICNP, IEEE INFOCOM, IEEE SANS, IEEE ISCC, IEEE Globecom, etc.
He is a member of the IEEE.

=

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

