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Abstract
1 Finding top-k elephant flows is a critical task in network

traffic measurement, with many applications in conges-

tion control, anomaly detection and traffic engineering.

As the line rates keep increasing in today’s networks, de-

signing accurate and fast algorithms for online identifi-

cation of elephant flows becomes more and more chal-

lenging. The prior algorithms are seriously limited in

achieving accuracy under the constraints of heavy traf-

fic and small on-chip memory in use. We observe that

the basic strategies adopted by these algorithms either

require significant space overhead to measure the sizes

of all flows or incur significant inaccuracy when decid-

ing which flows to keep track of. In this paper, we adopt

a new strategy, called count-with-exponential-decay, to

achieve space-accuracy balance by actively removing

small flows through decaying, while minimizing the im-

pact on large flows, so as to achieve high precision in

finding top-k elephant flows. Moreover, the proposed al-

gorithm called HeavyKeeper incurs small, constant pro-

cessing overhead per packet and thus supports high line

rates. Experimental results show that HeavyKeeper al-

gorithm achieves 99.99% precision with a small memory

size, and reduces the error by around 3 orders of magni-

tude on average compared to the state-of-the-art.

1 Introduction

1.1 Background and Motivation

Finding the largest k flows, also referred to as the top-

k elephant flows, is a fundamental network management

1Co-primary authors: Junzhi Gong and Tong Yang. Correspond-

ing author: Tong Yang (yangtongemail@gmail.com). Junzhi Gong,

Haowei Zhang, Hao Li finished this work under the guidance of their

supervisor: Tong Yang. This work is supported by Primary Research

& Development Plan of China (2016YFB1000304), National Basic

Research Program of China (973 Program, 2014CB340405), NSFC

(61672061), the OpenProject Funding of CAS Key Lab of Network

Data Science and Technology, Institute of Computing Technology, Chi-

nese Academy of Sciences.

function, where a flow’s ID is usually defined as a com-

bination of certain packet header fields, such as source IP

address, destination IP address, source port, destination

port, and protocol type, and the size of a flow is defined

as the number of packets of the flow. Elephant flows con-

tribute a large portion of network traffic. Many manage-

ment applications can benefit from a function that can

find them efficiently, such as congestion control by dy-

namically scheduling elephant flows [1], network capac-

ity planning [2], anomaly detection [3], and caching of

forwarding table entries [4]. Such a function also has ap-

plications beyond networking in areas such as data min-

ing [5–7], information retrieval [8], databases [9], and

security [10, 11].

In real network traffic, it is well known that the dis-

tribution of flow sizes (the number of packets in a flow),

is highly skewed [12–21], i.e., the majority are mouse

flows, while the minority are elephant flows. most flows

are small while a few flows are very large. The small

flows are usually called mouse flows, while the large ones

are called elephant flows.

Finding the top-k elephant flows (or top-k flows for

short) in high-speed networks is a challenging task. [22]

Extremely high line rates of modern networks make it

practically impossible to accurately track the informa-

tion of all flows. Consequently, approximate methods

have been proposed in the literature and gained wide ac-

ceptance [14, 23–27]. In order to keep up with the line

rates, these algorithms are expected to use on-chip mem-

ory such as SRAM whose latency is around 1ns [28,29],

in contrast to a latency of around 50ns when off-chip

DRAM is used [29]. However, on-chip memory is

small. Adding to the challenge, it is highly desirable to

keep per-packet processing overhead small and constant,

which helps pipelining.

Traditional solutions to finding the top-k flows fol-

low two basic strategies: count-all and admit-all-count-

some. The count-all strategy relies on a sketch (e.g., CM

sketch [14]) to measure the sizes of all flows, while us-
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ing a min-heap to keep track of the top-k flows. For each

incoming packet, it records the packet in the sketch and

retrieves from the sketch an estimate n̂i for the size of the

flow fi that the packet belongs to. If n̂i is larger than

the smallest flow size in the min-heap, it replaces the

smallest flow in the heap by flow fi. As a large sketch is

needed to count all flows, these solutions are not memory

efficient.

The admit-all-count-some strategy is adopted by Fre-

quent [30], Lossy Counting [26], Space-Saving [24] and

CSS [23]. These algorithms are similar to each other. To

save memory, Space-Saving only maintains a data struc-

ture called Stream-Summary to counts only some flows

(m flows). Each new flow will be inserted into the sum-

mary, replacing the smallest existing flow. The initial

size of the new flow is set as n̂min + 1, where n̂min is the

size of the smallest flow in the summary. By keeping

m flows in the summary, the algorithm will report the

largest k flows among them, where m > k. It assumes

every new incoming flow is an elephant, and expels the

smallest one in the summary to make room for the new

one. But most flows are mouse flows. Such an assump-

tion causes significant error, especially under tight mem-

ory (for a limited value of m).

1.2 Our Proposed Solution
In this paper, we propose a new algorithm, Heavy-

Keeper, based on a different strategy, called count-with-

exponential-decay, which keeps all elephant flows while

drastically reducing space wasted on mouse flows. Un-

like count-all, our strategy only keeps track of a small

number of flows. Unlike admit-all-count-some, we do

not automatically admit new flows into our data structure

and the vast majority of mouse flows will be by-passed.

For a small number of mouse flows that do enter our data

structure, they will decay away to make room for true

elephants. The decay is not uniform for the flows in our

data structure. The design of exponential decay is biased

against small flows, and it has a smaller impact on larger

flows. This design works extremely well with real traffic

traces under small memory where the previous strategies

will fail.

Main experimental results: As shown in Table 1, when

compared with Space-Saving, Lossy counting, CSS, and

CM sketch, HeavyKeeper achieves 99.99% percent pre-

cision, and much smaller error than all of them.

Contributions: This paper makes the following contri-

butions.

1. We propose a new data structure, named Heavy-

Keeper, which achieves high precision for finding

top-k flows, and achieves constant and fast speed as

well as high memory efficiency.

2. We develop a mathematical analysis for Heavy-

Keeper, to theoretically prove its high precision.

Table 1: Main experimental results.

Precision is defined as the ratio between the number of

correctly reported elephant flows and the total number

of reported flows.

Algorithm
Top-k

precision

Avg. relative error

of flow sizes

Space-Saving [24] 0.27 172.7222

Lossy counting [26] 0.39 54.8440

CSS [23] 0.49 18.9356

CM sketch [14] 0.93 0.2951

HeavyKeeper 0.9999 0.0011

3. We conduct extensive experiments on real network

streams and synthetic datasets, and results show that

HeavyKeeper reduces the error by around 3 orders

of magnitude on average compared to the state-of-

the-art.

4. We integrate HeavyKeeper and other related algo-

rithms with Open vSwitch (OVS) platform. We also

conduct experiments on throughput on OVS plat-

form to show the impact of the algorithms. The

results show that HeavyKeeper has little impact on

the throughput, while other algorithms decrease the

throughput significantly. We release the source code

of HeavyKeeper and related algorithms at GitHub

[31].

2 Preliminaries
2.1 Problem Statement

Simply speaking, finding top-k flows refers to finding the

largest k flows. Let P = P1,P2, · · · ,PN be a network

stream with N packets. Each packet Pl (1 6 l 6 N) be-

longs to a flow fi, where fi ∈F = { f1, f2, · · · , fM} and

F is the set of flows. Let ni be the real flow size of

flow fi in P . We order all flows ( f1, f2, · · · , fM) so that

n1 > n2 > · · ·> nM .

Given an integer k and a network stream P , the output

of top-k is a list of k flows from F with the largest flow

sizes, i.e., f1, f2, · · · , fk.

2.2 Prior Art and Limitations

The count-all strategy: As mentioned above, the count-

all strategy uses sketches (such as the CM sketch [14]

or the Count sketch [25]) to record the sizes of all flows,

and uses a min-heap to keep track of the top-k flows, in-

cluding the flow IDs and their flow sizes. Take the CM

sketch as an example. It records packets in a CM sketch,

consisting of a pool of counters. For each arrival packet,

it hashes the packet’s flow ID f to d counters and in-

creases these d counters by one. The smallest value of

the d counters is used as the estimated size of the flow.
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ing packet Pl belonging to flow fi, we first insert it into

HeavyKeeper. Suppose that HeavyKeeper reports the

size of fi as n̂i. If fi is already in the min-heap, we update

its estimated flow size with max(n̂i,min heap[ fi]), where

min heap[ fi] is the recorded size of fi in min-heap. Oth-

erwise, if n̂i is larger than the smallest flow size which is

in the root node of the min-heap, we expel the root node

from the min-heap, and insert fi with n̂i into the min-

heap. To query top-k flows, we simply report the k flows

in the min-heap with their estimated flow sizes.

3.4 Optimizations

In this section, we propose further optimization methods

to avoid accidental errors and improve speed.

Optimization I: Fingerprint Collisions Detection.

Problems: Assume that there is a bucket in Heavy-

Keeper where flow fi is held, and a mouse flow f j

mapped to the same bucket has the same fingerprint as

fi, i.e., Fi = F j due to hash collisions. Then, the mouse

flow f j is also held at this bucket, and its estimated size

is drastically over-estimated. In the worst case, if flow f j

has a fingerprint collision in all d arrays, the mouse flow

f j will probably be inserted into the min-heap. It can

hardly be expelled due to its drastically over-estimated

size. To address this problem, we propose a solution

based on the following Theorem.

Theorem 1. When there is no fingerprint collision, after

a flow fi is inserted into HeavyKeeper, if its estimated

size n̂i is larger than nmin, then we must have

n̂i = nmin +1

The proof of this Theorem is not hard to derive and we

skip it due to space limitations.

Solution: Based on Theorem 1, if fi is not in the min-

heap but n̂i > nmin+1, then fi is a mouse flow whose size

is drastically over-estimated due to fingerprint collision.

Therefore, we should not insert fi into the min-heap in

this case.

Optimization II: Selective Increment.

Problem: If a flow fi is not in the min-heap, then the

estimated flow size should be no larger than nmin. How-

ever, due to fingerprint collisions, there could be some

mapped buckets of flow fi where the fingerprint field is

Fi and the counter field is larger than nmin. In this case,

flow fi is not the flow that is held at this bucket, and thus

increasing the corresponding counter field can only incur

extra error.

Solution: In this case, instead of incrementing or decay-

ing the corresponding counter field, we make no change.

Optimization III: Speed Acceleration.

Problem: Our basic version of using the min-heap is the

most memory efficient solution. However, the processing

speed is limited, because the time complexity for updat-

ing and searching a flow in the min-heap is O(log(k))
and O(k) respectively, which are time-consuming.

Solution: The min-heap is actually used to record the

flow IDs of elephant flows and their estimated flow sizes.

In this optimization version, instead of using the min-

heap, we use a single array to record the flow IDs.

Specifically, we define a flow size threshold η (e.g.,

η = 1000). For each incoming flow, if its estimated

size is equal to η , we record the flow ID in the ar-

ray. As we record the fingerprints of elephant flows, the

flow size will increases at most by 1 for each incoming

packet when assuming there is no fingerprint collision.

Therefore, any flow whose estimated size is larger than

or equal to η is recorded in this array once in most cases.

Further, this optimization of using an array is only suit-

able for sketches that record flow IDs or fingerprints.

Algorithm 1: Insertion process for finding top-k

flows.

Input: A packet Pl belonging to flow fi

1 f lag← f alse;

2 if fi ∈ min heap then

3 f lag← true;

4 maxv← 0;

5 for j← 1 to d do

6 C← A j[h j( fi)].C;

7 if A j[h j( fi)].FP = Fi then

8 if f lag = true or C < min heap.nmin then

9 A j[h j( fi)].C++;

10 maxv← max(maxv,A j[h j( fi)].C);

11 else

12 if rand(1)< b−C then

13 A j[h j( fi)].C−−;

14 if A j[h j( fi)].C = 0 then

15 A j[h j( fi)].FP← Fi;

16 A j[h j( fi)].C← 1;

17 maxv← max(maxv,1);

18 if f lag = true then

19 min heap[ fi]← max(maxv,min heap[ fi]);
20 else

21 if min heap has empty buckets or

maxv−nmin = 1 then

22 min heap.insert( fi);

3.5 Final Version

Based on the basic version, we propose the common fi-

nal version using the first two optimization methods, and

propose the accelerated final version using the third opti-

mization methods. The insertion and query processes of
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the common final version of our algorithm are as follows

(see pseudo-code in Algorithm 1).

Insertion: All counters and fingerprints in Heavy-

Keeper and the min-heap are initialized to 0. For each

incoming packet Pl belonging to flow fi, these are the

following three steps for each insertion:

Step 1: Check whether flow fi is already monitored by

the min-heap. For convenience, we use a boolean vari-

able f lag to represent the result.

Step 2: Insert fi into HeavyKeeper. According to Op-

timization II, for each mapped bucket, if the fingerprint

field is equal to Fi, increment the counter field only when

f lag = true or C < nmin, where C is the original value in

the counter field.

Step 3: Get an estimated size n̂i of flow fi from Heavy-

Keeper. According to Optimization III, if f lag = true,

we update the estimated size of flow fi in the min-heap

with n̂i. If f lag = f alse, insert flow fi into the min-heap

with n̂i in only two cases: 1) the number of flows that are

in the min-heap is less than k; 2) n̂i = nmin +1.

Query top-k flows: It reports the k flows recorded in the

min-heap and their estimated flow sizes.

Analysis: Since HeavyKeeper achieves very small error

rate on the flow size estimation of elephant flows, it can

significantly reduce the error in finding top-k elephant

flows. Furthermore, the first two optimizations reduce

the impact of fingerprint collisions, and enhance the pre-

cision of finding top-k elephant flows and their flow size

estimation. The third optimization method has a con-

stant processing time for insertions: 1) For most incom-

ing packets, they are only inserted into HeavyKeeper,

which requires d (e.g., d = 2) memory accesses. 2) For

some packets belonging to elephant flows, they are in-

serted into both HeavyKeeper and the array. It requires

d +1 memory accesses in the worst case. Therefore, the

time complexity of insertion process is O(d). Therefore,

the processing speed of the accelerated final version is

fast on average and constant in the worst case.

3.6 Other uses of HeavyKeeper

Besides finding top-k flows in a network stream, Heavy-

Keeper can also perform other tasks in network traf-

fic measurement, such as heavy hitter detection and

change detection. Due to space limitations, here we

only briefly introduce how to perform these tasks using

HeavyKeeper.

Heavy hitter detection: Given a threshold θ , a heavy

hitter [13] is a flow whose size ni > θN, where N is the

number of packets in total. The heavy hitter detection

algorithm is very similar to that of finding top-k flows.

The only difference is that when querying heavy hitters,

it reports those flows whose estimated size is larger than

θN in min-heap.

Change detection: The network stream is divided into

fixed-size time bins. Given a flow, if the difference of

its flow sizes in two adjacent time bins is larger than

a predefined threshold, then the flow is called a heavy

change [13, 33]. We use the very flow ID as the finger-

print of each flow. For two adjacent time bins, we in-

sert their packets into two different HeavyKeepers. By

comparing buckets in the corresponding location in the

two HeavyKeepers, we obtain the estimated difference

of sizes of the flows, and report the heavy changes by

checking if the difference is larger than the threshold.

4 Mathematical Analysis

In this section, we first prove that there is no over-

estimation in HeavyKeeper, and then derive the formula

of its error bounds.

4.1 Proof of No Over-estimation Error of

HeavyKeeper

Theorem 2. Let ni(t) be the real size of flow fi at time t,

and let A j[h j( fi)](t).C be the counter field of the mapped

bucket of flow fi in the jth array at time t. If there is no

fingerprint collision, then

∀ j, t, A j[h j( fi)](t).C 6 ni(t) (1)

Proof. When t = 0, no packet maps into this bucket, so

ni(0) = 0 and A j[h j( fi)](t).C = 0. Therefore, the theo-

rem holds at time 0. Let’s now prove by induction that

the theorem holds at any time.

When t = 0, the theorem holds.

If the theorem holds when t = v, let’s prove that the

theorem also holds when t = v+1. There are three cases

when t = v+1:

Case 1: The new incoming packet is not mapped

to bucket A j[h j( fi)]. Then ni(v + 1) = ni(v) and

A j[h j( fi)](v + 1).C = A j[h j( fi)](v).C. Therefore,

A j[h j( fi)](v+1).C 6 ni(v+1).

Case 2: The new incoming packet belongs to flow fi.

Then ni(v + 1) = ni(v) + 1 and A j[h j( fi)](v + 1).C =
A j[h j( fi)](v).C + 1. Therefore, A j[h j( fi)](v + 1).C 6

ni(v+1).

Case 3: The new incoming packet is mapped to

bucket A j[h j( fi)] but does not belong to flow fi. Then

A j[h j( fi)](v + 1).C = A j[h j( fi)](v).C or A j[h j( fi)](v +
1).C = A j[h j( fi)](v).C−1, and ni(v+1) = ni(v). There-

fore, A j[h j( fi)](v+1).C 6 ni(v+1).

Therefore, for any time t,

A j[h j( fi)](t).C 6 ni(t)
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4.2 Error Bound of HeavyKeeper

Definition 4.1. Given a small positive number ε ,

Pr{ni− n̂i > dεNe} (ni > n̂i) represents the probability

that the error of the estimated flow size ni− n̂i is larger

than εN. If Pr{ni− n̂i > dεNe} 6 δ , the algorithm is

said to achieve (ε ,δ )-counting.

(ε ,δ )-counting is a metric to evaluate the error rate of

the algorithm. Here HeavyKeeper is proved to achieve

(ε ,δ )-counting, showing that HeavyKeeper achieves a

low error rate in estimating the sizes of top-k flows.

Theorem 3. Let’s assume that there is no fingerprint col-

lision and the fingerprint of an elephant flow is held at its

mapped bucket all the time. Let’s focus on one single ar-

ray of HeavyKeeper. Given a small positive number ε ,

and an elephant flow fi whose size is ni is held at that

bucket,

Pr{ni− n̂i > dεNe}6
1

εwni(b−1)
(2)

where w is the width of each array, N the total number of

packets, and b the exponential base.

Proof. Let’s focus on the jth array. Flow fi is correctly

reported, so at the end, the fingerprint of flow fi is held in

the h j( fi)
th bucket of the jth array. Let Ii, j,i′ be a binary

random variable, defined as

Ii, j,i′ =

{

0 ( fi = fi′)∨ (h j( fi) 6= h j( fi′))

1 ( fi 6= fi′)∧ (h j( fi) = h j( fi′))
(3)

Ii, j,i′ = 1 i f f different flows fi and fi′ are held at the same

bucket in the jth array. We define random variable Xi, j as:

Xi, j =
M

∑
v=1

Ii, j,i′ni′ (4)

Xi, j represents the sum of the sizes of the flows held at

the same bucket as flow fi, except for the size of flow fi

itself. Assume that for each incoming packet, if it be-

longs to flow fi, the counter field is incremented by 1; if

not, the counter field is decayed with a certain probabil-

ity. We have

ni−Xi, j 6 A j[h j( fi)].C 6 ni (5)

Specifically, if all packets that do not belong to flow

fi decay the counter field, then A j[h j( fi)].C = ni−Xi, j.

If those packets do not decay the counter field, then

A j[h j( fi)].C = ni. Let’s define another random variable

Pi, j,l . Among the Xi, j packets defined above, Pi, j,l is de-

fined as the probability that the lth packet decays the

counter field. Therefore,

A j[h j( fi)].C = ni−
Xi, j

∑
l=1

Pi, j,l (6)

Given a small positive number ε , the following for-

mula based on the Markov inequality holds

Pr{A j[h j( fi)].C 6 ni− εN}

= Pr{ni−
Xi, j

∑
l=1

Pi, j,l 6 ni− εN}

= Pr{
Xi, j

∑
l=1

Pi, j,l > εN}6
E(∑

Xi, j

l=1 Pi, j,l)

εN

(7)

Now let’s focus on E(∑
Xi, j

l=1 Pi, j,l). Assume that all pack-

ets are uniformly distributed, we have the following for-

mula:

Pr{Pi, j,l =
1

bC
}=

1

A j[h j( fi)].C
=

1

ni−E(∑
Xi, j

l=1 Pi, j,l)
(8)

where 1 6 C 6 ni − E(∑
Xi, j

l=1 Pi, j,l). Let β be ni −

E(∑
Xi, j

l=1 Pi, j,l) for convenience. As a result,

E(
Xi, j

∑
l=1

Pi, j,l) =
E(Xi, j)

∑
l=1

E(Pi, j,l)

= E(Xi, j)
β

∑
C=1

1

bC

1

β
=

E(Xi, j)

β
·

β

∑
C=1

1

bC

=
E(Xi, j)

β
·

1
b
(1− ( 1

b
)β )

1− 1
b

6
E(Xi, j)

nib
·

1− ( 1
b
)ni

1− 1
b

=
E(Xi, j)(1− ( 1

b
)ni)

ni(b−1)
(9)

Furthermore, for E(Xi, j), based on Equation 4,

E(Xi, j) = E(
M

∑
v=1

Ii, j,i′ni′) 6

M

∑
i′=1

ni′E(Ii, j,v) =
N

w

(10)

Therefore, based on Equation 9,

E(
Xi, j

∑
l=1

Pi, j,l)6
N(1− ( 1

b
)ni)

wni(b−1)
6

N

wni(b−1)
(11)

then

Pr{A j[h j( fi)].C 6 ni− εN}6
E(∑

Xi, j

l=1 Pi, j,l)

εN

6
N

εNwni(b−1)
=

1

εwni(b−1)

Note that for an elephant flow fi, ni is very large, and

( 1
b
)ni ≈ 0. The estimated size of fi is the maximum value

of A j[h j( fi)].C, so we have

Pr{ni− n̂i > dεNe}6 Pr{n̂i 6 ni− εN}6
1

εwni(b−1)
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sketch is respectively 10%, 11%, 19%, and 41%, while

the one of HeavyKeeper is 82%. Furthermore, we find

that the precision of HeavyKeeper reaches 100% for a

memory size of 30KB, while the corresponding preci-

sion of Space-Saving, Lossy counting, CSS, and CM

sketch is 27%, 39%, 49%, and 93%. This implies that

HeavyKeeper has indeed much better precision than the

other three algorithms. We find that Lossy counting is

more accurate than Space-Saving. However, as will be

mentioned later, Lossy counting is much slower than

the other algorithms. For the CAIDA dataset (see Fig-

ure 6), we find that the precision of HeavyKeeper reaches

99.99% when memory size is larger than 20KB, while

for Space-Saving, Lossy counting, CSS, and CM sketch,

precision is respectively 18%, 33%, 34%, and 89% when

memory size is 50KB.

Precision vs. k: As shown in Figure 7, for the cam-

pus dataset, as k becomes larger, the precision of Heavy-

Keeper stays high, while it degrades for other algorithms.

For the campus dataset, as k becomes larger, the preci-

sion of HeavyKeeper is always higher than 95.9%, while

that of Space-Saving, Lossy counting, CSS, and CM

sketch reaches 32.7%, 44.1%, 50.1%, and 77.9% respec-

tively when k = 1000. This happens for two main rea-

sons: 1) larger k requires larger memory usage to store

information about more flows; 2) as k increases, the dif-

ference of flow sizes among flows becomes smaller, so

it is easy to mistake other flows for top-k flows. For

the CAIDA dataset (Figure 8), we find that the preci-

sion of HeavyKeeper is always above 94%, while for

Space-Saving, Lossy counting, CSS, and CM sketch,

it is 26.6%, 37.1%, 44%, and 70% respectively when

k = 1000.

Precision vs. skewness: As shown in Figure 9, the

precision of HeavyKeeper reaches 99.99%. For all

considered values of skewness, the precision of Heavy-

Keeper does not go below 94.9%, while the highest pre-

cision for Space-Saving, Lossy counting, CSS, and CM

sketch is 46.8%, 41.3%, 74.5%, and 85.7%, respectively.

5.4 Experiments on AAE and ARE

In this section, we focus on the ARE and the AAE of

the estimated frequency of reported top-k flows. We also

conduct experiments with varying memory size, k, and

skewness. The parameter settings are the same as in Sec-

tion 5.3.

ARE vs. memory size: As shown in Figure 10, for the

campus dataset, we find that the ARE of HeavyKeeper is

smaller than 0.01 when memory size is larger than 20KB,

while for Space-Saving, Lossy counting, CSS, and CM

sketch, it is larger than 100. Furthermore, we find that

the ARE of HeavyKeeper is between 100158 and 648291

times smaller than the one of Space-Saving, between

8450 and 78209 times smaller than the one of Lossy

counting, between 945 and 49561 times smaller than the

one of CSS, and between 279 and 226986 times smaller

than the one of CM sketch. For the CAIDA dataset (see

Figure 11), we find that the ARE of HeavyKeeper is be-

tween 21119 and 1190365 times smaller than the one of

Space-Saving, between 2955 and 456275 times smaller

than the one of Lossy counting, between 950 and 154047

times smaller than the one of CSS, and between 238 and

656145 times smaller than the one of CM sketch.

ARE vs. k: As shown in Figure 12, for the campus

dataset, we find that the ARE of HeavyKeeper is be-

tween 25579 and 56791 times smaller than the one of

Space-Saving, between 852 and 9312 times smaller than

the one of Lossy counting, between 142 and 3132 times

smaller than the one of CSS, and between 293 and 20370

times smaller than the of of CM sketch. For the CAIDA

dataset (see Figure 13), we find that the ARE of Heavy-

Keeper is between 4506 and 121912 times smaller than

the one of Space-Saving, between 383 and 23666 times

smaller than the one of Lossy counting, between 137 and

8816 times smaller than the one of CSS, and between 66

and 27290 times smaller than the one of CM sketch.

ARE vs. skewness: As shown in Figure 14, for all

considered values of skewness, we find that the ARE of

HeavyKeeper is between 15566 and 27829 times smaller

than that of Space-Saving, between 11915 and 41575

times smaller than that of Lossy counting, between 2174

and 6099 times smaller than that of CSS, and between

3819 and 10080 times smaller than that of CM sketch.

AAE vs. memory size: As shown in Figure 15, for the

campus dataset, we find that the AAE of HeavyKeeper is

between 433 and 3013 times smaller than that of Space-

Saving, between 267 and 1221 times smaller than that of

Lossy counting, between 200 and 758 times smaller than

that of CSS, and between 155 and 428 times smaller than

that of CM sketch. When memory size is 50KB, the AAE

of HeavyKeeper is only 2.73, confirming that the esti-

mated flow sizes of almost all reported flows are accu-

rate. For the CAIDA dataset (see Figure 16), we find that

the AAE of HeavyKeeper is between 697 and 1810 times

smaller than that of Space-Saving, between 421 and 928

times smaller than that Lossy counting, between 289 and

647 times smaller than the one of CSS, and between 86

and 284 times smaller than that of CM sketch.

AAE vs. k: As shown in Figure 17, for the campus

dataset, we find that the AAE of HeavyKeeper is between

271 and 1382 times smaller than that of Space-Saving,

between 142 and 346 times smaller than that of Lossy

counting, between 93 and 196 times smaller than that of

CSS, and between 74 and 318 times smaller than that of

CM sketch. For CAIDA dataset (see Figure 18), we find

that the AAE of HeavyKeeper is between 206 and 694

times smaller than that of Space-Saving, between 118

and 329 times smaller than that of Lossy counting, be-
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