
Y. Zhang et al. (Eds.): APWeb 2008, LNCS 4976, pp. 456 – 467, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Building a Scalable P2P Network with Small
Routing Delay

*

Shiping Chen1,2, Yuan Li2, Kaihua Rao2, Lei Zhao2, Tao Li2, and Shigang Chen3

1 Network Center, University of Shanghai for Science and Technology,
Shanghai, 200093, China

2 Department of Computer Engineering, University of Shanghai for Science and Technology,
Shanghai, 200093, China

3 Department of Computer and Information Science and Engineering,
University of Florida, USA
chensp@usst.edu.cn

Abstract. Most existing P2P networks route requests in)kN(O k1 ,)N(logO ,
)klog/N(logO hops, where N is the number of participating nodes and k is

an adjustable parameter. Although some can achieve)d(O -hop routing for a
constant d by tuning the parameter k , the neighbor locations however become
a function of N , causing considerable maintenance overhead if the user base is
highly dynamic as witnessed by the deployed systems. This paper explores the
design space using the simple uniformly-random neighbor selection strategy,
and proposes a random peer-to-peer network that is the first of its kind to re-
solve requests in d hops with a chosen probability of c−1 , where c is a con-
stant. The number of neighbors per node is within a constant factor from the

optimal complexity)N(O d
1

 for any network whose routing paths are bounded
by d hops.

Keywords: Peer-to-Peer Networks, Randomized Topology, Routing Delay.

1 Introduction

Peer-to-peer (P2P) systems have many applications in data sharing, notification ser-
vices, data dissemination, directory lookup, software distribution, and distributed
indexes. Because data may be kept at any node, a fundamental problem is to effi-
ciently locate the node that stores a particular data item. Napster uses a centralized
directory service. Gnutella [1] and KaZaA [2] rely on flooding-based search mecha-
nisms, which cause tremendous communication overhead for large systems [3,4,5,6].

To solve the scalability problem, many P2P proposals use distributed hash tables
(DHT) to uniformly distribute the responsibility of data location management to all
nodes. An identifier is associated with each data item, and each node is responsible
for storing a certain range of identifiers together with the corresponding data items or

* This research was Supported by the National Natural Science Foundation of China under

Grant No. 60573142, The Shanghai Leading Academic Discipline Project under Grant No.
T0502.

 Building a Scalable P2P Network with Small Routing Delay 457

their locations (addresses). DHT provides a basic function,)id(lookup , which maps an
arbitrary identifier to the responsible node. To implement such a function, an overlay
P2P network is formed among the participating nodes. When a lookup request is is-
sued, the request will be routed to the responsible node via the P2P network. In a
highly-dynamic environment where nodes frequently join and depart, the maintenance
overhead for the overlay P2P network is a major design concern [7]. A recent survey
on different types of P2P networks can be found in [17].

When constructing a P2P network, there exists a fundamental space-time tradeoff
between the number of neighbors (i.e., the size of the routing table) and the network
diameter (i.e., the length of the routing path) [8]. Many P2P networks have an adjust-
able parameter (k) that can be tuned for different space-time tradeoffs. For example,
if k = Nlog , both time and space complexities of CAN become)N(logO , where N is
the number of nodes in the system. For all P2P networks, however, the maintenance
overhead is minimized when k is a constant — instead of a function of N that
changes continuously as nodes join/depart.

PRR [9] and Pastry [10] require)
klog

Nlog
k(O neighbors per node and route in

)
klog

Nlog
(O hops with high probability. In the following, we shall omit “with high prob-

ability" as it is true for most complexities to be described. Tapestry [11] and Chord
[12] require)N(logO neighbors and route in)N(logO hops. CAN [13] requires)k(O

neighbors and route in)kN(O k

1

 hops.
The first asymptotically-optimal system is Viceroy [14], which requires seven

neighbors per node and routes in)N(logO hops. Koorde [15], and Manku [16],

achieve asymptotical optimality with)k(O neighbors and)
klog

Nlog
(O routing hops,

where [16] assumes k =))nlog(poly(O .
In the family of P2P networks, one important member is much less investigated,

i.e., one with)N(O d

1

 neighbors per node and d routing hops, where d is a constant.
Such a network is appealing in practice because of its small routing delay, which does
not grow with respect to the size of the network. Each routing hop in a P2P network
requires a message to travel end-to-end from one node to another, likely crossing the
Internet. Given the prevalence of inexpensive memory, it is often desirable to trade
more neighbors (space) for shorter routing paths (delay). For increased number of
neighbors, the main problem is not the space requirement, but the complexity for
maintaining the neighboring relationship [7]. This is particularly true for structured
networks such as PRR, Pastry, and randomized Chord, where the neighbors of a node
x are required to match the top i digits of x and differ at the th)i(1+ digit, for

]Nlog...[i k1∈ , where k is the base of the digits. By choosing dNk
1

= , these systems

achieve)d(O routing hops with)dN(O d

1

 neighbors. However, the neighbor locations
are now a function of N because the base k is related to N . As N changes, the base

of the digits (dN
1

) changes, which can make many existing neighbors no longer valid,
causing considerable maintenance overhead.

458 S. Chen et al.

One solution for reducing maintenance overhead is to use random neighbors, which
require little maintenance. A node can take any other nodes as its neighbors based on
certain probability distribution. Among the random P2P networks [14,,16], [16] have
an adjustable parameter k , which must be a polylog function of N in order for their
complexities to hold. For NoN routing [16],))Nlog(poly(Ok = . None can achieve
constant routing distance by adjusting k .

This paper proposes a new random P2P network that combines arbitrary neighbor
selection, typically used only in unstructured P2P networks, with a DHT (distributed
hash table) ring. It is the first of its kind to resolve requests in no more than d hops
with probability c−1 , where d and c are two configurable constants. In more con-
ventional terms, choosing a small value (e.g., 1010−) for c , the system resolves an
arbitrary request in d hops with high probability (e.g., 10101 −−). There is a small
probability c that a request is not resolved in d hops. When it does happen, a slower
routing path will be taken, which guarantees to find the responsible node. The number

of neighbors per node is)dN)cln((O d

1

2
1

− . Random neighbors are easy to manage.
When nodes join or depart, the random neighbors of all other nodes remain un-
changed. Without sacrificing the performance, a node increases (or decreases) its
number of random neighbors only when N doubles (or halves). Note that the location
of any particular neighbor is independent of N .

In Appendix A we prove that, for routing paths to be bounded by d hops, the lower

bound on the number of neighbors is)N(d

1

Ω . Therefore, the space complexity of the

proposed random P2P network is within a constant factor d)cln(21− from the optimal.
The rest of the paper is organized as follows. Section 2 defines the model, notations

and performance metrics. Section 3 proposes a random peer-to-peer network. Sec-
tion 4 presents the simulation results. Section 5 shows the time complexity and the
space complexity. Section 6 draws the conclusion.

2 Model, Notations and Performance Metrics

Each data item is mapped to an m -bit identifier by a hash algorithm. The whole ID
space can be viewed as a modulo- m2 circle, where the next identifier in the circle
after the largest value • m2 -1• is zero. Consider N participating nodes. Each node is
assigned an identifier by hashing its address or domain name. When the node identifi-
ers are marked on the ID space, they split the circle into N segments. A node x is
responsible for the segment (denoted as)x(seg) that immediately follows its node
identifier. The nodes that are responsible for the adjacent preceding (or following)
segments are called the predecessors (or successors) of x . The location information
about a data item is stored at x if the identifier of the item belongs to)x(seg .

When a user queries for a data item whose identifier is id , she submits a lookup
request(id), which is routed through an overlay network to the node that is responsi-
ble for the identifier, denoted as)id(node . The node subsequently returns the data
location to the user. The performance/overhead tradeoff achieved by the routing algo-
rithm is fundamentally determined by the structure of the overlay topology.

 Building a Scalable P2P Network with Small Routing Delay 459

Table 1. Notations

N number of nodes in a peer-to-peer network
m number of bits in an identifier

w,z,y,x arbitrary nodes in a peer-to-peer network
)x(seg segment of identifiers that x is responsible for

id arbitrary identifier to be queried
)id(node node that is responsible for id

xS set of sequential neighbors of x

xR set of random neighbors of x

)x(segsup_ segment of identifiers that }x{Sx + is responsible for

s number of sequential neighbors
r number of random neighbors

dP−1 probability for a request to be resolved in d or less hops

c−1 target probability of resolving a request in d or less hops

RP2P)c,d(
random peer-to-peer network that resolves a request in d
or less of hops with a probability of at least)c(−1

The notations defined above and later in the paper are listed in Table 1 for quick

reference. We evaluate the performance of a peer-to-peer system based on the follow-
ing metrics.

1. time complexity: the maximum number of hops that a request(id) must travel in
the overlay topology before reaching)id(node

2. space complexity: the maximum storage that a node is used to keep the neighbor
information

The issues of load balancing [18,19], proximity and locality [20], security [21],
pricing, etc., are beyond the scope of this paper.

3 Random Peer-to-Peer Network (RP2P)

Given two constants d and c , our goal is to develop a peer-to-peer network whose

time and space complexities are)d(O and)N(O d

1

, respectively. We start with an
abstract description of the system. We then present some analytical results and discuss
the protocols/algorithms that realize the system.

For all above complexities in the forms of)N(O d

1

, we have omitted factors that are
functions of d and c . These factors will be shown in the detailed description of the
system.

3.1 Overlay Topology

Each node knows a set of neighbors that it will directly communicate with. There are two
types of neighbors, as shown in Figure 1, where the circle represents the ID space.

460 S. Chen et al.

random neighbors: A node x takes a number of randomly selected nodes as its ran-
dom neighbors, denoted as xR .

sequential neighbors: A node x takes a number of predecessors and a number of
successors as its sequential neighbors, denoted as xS . The combination of the seg-

ments that }x{Sx + are responsible for is denoted as)x(segsup_ , which is called the

super segment of x .

x

z

sup_seg(z)
random neighbors of x

x

seg(x)

sup_seg(x)

sequential neighbors of x

Fig. 1. Random neighbors and sequential neighbors of x

In the example of Figure 1, x has three random neighbors and four sequential
neighbors. A node is required to store the following information about its neighbors.

• For each sequential neighbor xSy ∈ , it uses two integers to store the neighbor’s

segment,)y(seg . Combining all these segments, x also knows its super segment,
)x(segsup_ .

• For each random neighbor xRz ∈ , it uses two integers to store the neighbor’s super

segment,)z(segsup_ .

The above information is learned from the neighbors. The space complexity for
storing the information is equal to the number of neighbors. when x receives a re-
quest whose identifier belongs to)x(segsup_ , it knows immediately which node (a

 Building a Scalable P2P Network with Small Routing Delay 461

sequential neighbor or itself) is responsible for the identifier. On the other hand, if the
identifier belongs to the super segment of a random neighbor z , x should forward the
request to z .

3.2 Routing Algorithm

When a node x receives a request(id), it processes the request by the following algo-
rithm. Suppose the request carries the address of the node that originates the request.

RP2P_Routing(id)
1. if id)x(seg∈ then
2. process request and send result to

original requester
3. else if)y(segid,Sy x ∈∈∃ then

4. forward the request to y
5. else if)z(segsup_id,Rz x ∈∈∃ then

6. forward the request to z
7. else
8. forward the request to all random

neighbors

A few routing examples are given in Figure 2.

zero-hop case: It takes zero hop to resolve a request if)x(segid ∈ , as shown by the
first plot in the figure and implemented by Lines 1-2 of the algorithm.

one-hop case: It takes one hop if xSy),y(segid ∈∃∈ , as shown by the second plot in the

figure and implemented by Lines 3-4 of the algorithm.

two-hop case: It takes two hops if xRz),z(segsup_id ∈∃∈ , as shown by the third plot in

the figure and implemented by Lines 5-6 of the algorithm.

Three-hop case: It takes three or more hops otherwise, as shown by the last plot in the
figure and implemented by Lines 7-8 of the algorithm.

For the first three cases, x knows for sure which is the next node to forward the re-
quest. For the last case, x has no clue about the next node. Hence, it broadcasts the
request to all random neighbors. To restrain the broadcast overhead, we introduce a
TTL field in the request message such that the request can only travel d or less hops
and allows up to 2−d levels of broadcast (to random neighbors). As illustrated in the
figure, the last two hops do not require broadcast as the node receiving the request has
enough information to determine whether two more hops can reach)id(node and if so,
which is the next node to forward the request.

Below we give a basic analytical result. Suppose each node has s sequential
neighbors and r random neighbors. To simplify the analysis, assume the nodes are
responsible for equal-sized segments of the ID space. We will show that the analytical
results with this assumption match very well with the simulation results without this

462 S. Chen et al.

x

one-hop routing
(one message)

id belongs to seg(y),
i.e., y = node(id)

y

x

zero-hop routing
(zero message)

id belongs to seg(x),
i.e., x = node(id)

x

node(id)
z

x

node(id)

z

two-hop routing
(two messages)

id belongs to sup_seg(z)

three-hop routing
(r + 2 messages)

id belongs to sup_seg(y), where
y is a random neighbor of z and

z is a random neighbor of x

y

id

id

Fig. 2. Routing examples

assumption. Let dP be the probability for request(id) to NOT reach)id(node in d or
less hops. The following upper bound of 2≥d,Pd is proved in Appendix B.

1

1
−

−
dr

d)
N

s
(P ≺ (1)

We will demonstrate shortly that, by appropriately choosing the values of s and r ,
a request can be resolved in d or less hops with a chosen probability (e.g., 10101 −−).

3.3 Determining Appropriate Values for s and r

Consider an integer 2≥d and a small constant)..(c 10∈ . We prove that, if dkNrs
1

==

where d)cln(k
1

−= , then cPd < . By (1), we have

 Building a Scalable P2P Network with Small Routing Delay 463

1
1

1

1
−

−<
dd)kN(

d

d)
N

kN
(P (2)

Define the following quantity.

d

d

d

d
)

k

N
(q

1

1

−

−

=

Rewrite (2) as below.

d
d qk)

q
(P

1
1 −<

q)
q

(
1

1 − is a monotonically-increasing function with respect to q , and

e
)

q
(itlim q

q

11
1 =−∞→ , where e is the base of natural logarithm. Hence, we have

dk
d)

e
(P

1<

d

d)cln()
e

(

1

1 −=

 c=

Let RP2P(c,d) be a random peer-to-peer network where each node has dd N)cln(
11

−
sequential neighbors and the same number of random neighbors.1 As an example,
when 3=d , it becomes RP2P(3, c). Suppose each request carries a TTL field whose
initial value is d . We modify the routing algorithm such that the longest routing path
has no more than d hops.

RP2P_Routing_TTL(id)
1. decrease the TTL of the request by one
2. if)x(segid ∈ then
3. process request and send result to original

requester
4. else if)y(segid,Sy x ∈∈∃ then

5. forward the request message to y
6. else if)z(segsup_id,Rz x ∈∈∃ then
7. forward the request message to z
8. else if TTL of the request 2≥ then
9. forward the request to all random neighbors
10. else
11. discard the request

Based on the previous analysis, we have the following theorem.

1 If 1010−=c
 and 3=d ,then d)cln(

1

− =2.8.

464 S. Chen et al.

Theorem 1. The probability for RP2P(c,d) to resolve a request in d or less hops is
larger than c−1 , where 2≥d and)...(c 10∈ .

4 Simulation Results

Our simulation results match very well with the analysis. We simulated RP2P(3, c)
on networks of 1000,10000, and 100000 nodes, respectively. The simulation was
repeated for different values of c . The results are shown in Table 2. The column of c
is the target failure probability. The column of s r, is the number of sequential (ran-
dom) neighbors. The column of 3P is the measured probability of NOT resolving a
request in 3 or less hops. 3P is always better (smaller) than the target value c . That is
because our analysis made a conservative simplification when using (5) to derive the
upper bound of dP in Appendix B.

Table 2. Simulation results for RP2P(3, c)

N = 1,000 N = 10,000 N = 100,000
c rs,

3P rs,
3P rs,

3P

1.0e-1 13 6.8e-2 28 8.8e-2 61 1.1e-1
1.0e-2 16 9.4e-3 35 1.1e-2 77 9.1e-3
1.0e-3 19 4.3e-4 41 7.4e-4 88 8.6e-4
1.0e-4 20 1.4e-4 45 7.1e-5 97 8.1e-5
1.0e-5 22 7.7e-6 48 9.2e-6 104 9.4e-6
1.0e-6 23 1.5e-6 51 8.9e-7 111 8.7e-7
1.0e-7 25 3.5e-8 54 7.0e-8 117 8.4e-8

5 Complexities of RP2P(cd,)

The maximum number of hops that a request will travel in RP2P(c,d) is d , and the
time complexity is thus)d(O . The number of neighbors per node is

sr + = dd N)cln(
11

2 − , and the space complexity is thus dd N)cln((O
11

− .

6 Conclusion

This paper designs a random peer-to-peer network with neighbor nodes selected uni-
formly at random. The network is the first of its kind to resolve requests within a con-
stant number of hops with high probability. A key advantage is the ease of neighbor
management when nodes join/depart. The time and space complexities of the pro-

posed network are)d(O and dd N)cln((O
11

− , respectively. We conduct comprehensive

 Building a Scalable P2P Network with Small Routing Delay 465

analysis to derive the properties of the systems. Our simulation results match with the
analytical results.

References

1 Gnutella: Gnutella, http://gnutella.wego.com
2 KaZaA: KaZaA, http://www.kazaa.com
3 Ritter, J.: Why Gnutella can’t Scale. No, Really,
 http://www.tch.org/gnutella.html

4 Ripeanu, M., Iamnitchi, A., Foster, I.: Mapping the Gnutella Network. IEEE Internet Com-
puting Journal, Special Issue on Peer-to-Peer Networking 6(1) (2002)

5 Sen, S., Wang, J.: Analyzing Peer-to-Peer Traffic across Large Networks. In: ACM SIG-
COMM Internet Measurement Workshop (August 2002)

6 Saroiu, S., Gummadi, K.P., Dunn, R.J., Gribble, S.D., Levy, H.M.: An Analysis of Internet
Content Delivery Systems. In: Proc. of the 5th Symposium on Operating Systems Design
and Implementation (OSDI) (December 2002)

7 Ratnasamy, S., Shenker, S., Stoica, I.: Routing Algorithms for DHTs: Some Open Ques-
tions. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS,
vol. 2429, Springer, Heidelberg (2002)

8 Xu, J.: On the Fundamental Tradeoffs between Routing Table Size and Network Diameter
in Peer-to-Peer Networks. In: Xu, J. (ed.) Proc. of IEEE INFOCOM 2003 (April 2003)

9 Plaxton, C., Rajaraman, R., Richa, A.: Accessing Nearby Copies of Replicated Objects in a
Distributed Environment. In: Proc. of ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA) (June 1997)

10 Druschel, P., Rowstron, A.: Pastry: Scalable, Distributed Object Location and Routing for
Large-Scale Peer-to-Peer Systems. In: Proc. of 18th IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware 2001) (November 2001)

11 Zhao, B., Kubiatowicz, J., Joseph, A.: Tapestry: An Infrastructure for Fault-Tolerant
Wide-Area Location and Routing, Tech. Rep. UCB/CSD-01-1141, University of Califor-
nia at Berkeley, Computer Science Department (2001)

12 Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A Scalable Peer-
To-Peer Lookup Service for Internet Applications. In: Proc. of ACM SIGCOMM 2001
(August 2001)

13 Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content-
Addressable Network. In: Proc. of ACM SIGCOMM 2001 (August 2001)

14 Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A Scalable and Dynamic Emulation of the
Butterfly. In: Proc. of ACM PODC 2002 (July 2002)

15 Kaashoek, F., Karger, D.R.: Koorde: A Simple Degree-Optimal Hash Table. In: Kaashoek,
M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, Springer, Heidelberg (2003)

16 Manku, G.S.: Routing Networks for Distributed Hash Tables. In: Proc. of 22nd ACM
Symposium on Principles of Distributed Computing (PODC) (June 2003)

17 Risson, J., Moorsa, T.: Survey of Research towards Robust Peer-to-Peer Networks: Search
Methods. Journal of Computer Networks 55 (2006)

18 Joung, Y.-J., Yang, L.-W., Fang, C.-T.: Keyword search in DHT-based peer-to-peer net-
works. IEEE Journal on Selected Areas in Communications 25 (2007)

19 Li, Z., Xie, G.: A Distributed Load Balancing Algorithm for Structured P2P Systems. In:
Proc. of the 11th IEEE Symposium on Computers and Communications (June 2006)

466 S. Chen et al.

20 Ferreira, R.A., Jagannathan, S., Grama, A.: Locality in structured peer-to-peer networks.
Journal of Parallel and Distributed Computing 66 (2006)

21 Navabpour, S., Nejad, N.F., Abbaspour, M., Behzadi, A.: Secure Routing in Structured
Peer to Peer File-Sharing Networks. In: Proc. of International Conference on Communica-
tions and Networking in China (ChinaCom 2006) (October 2006)

Appendix A. Number of Neighbors Per Node in Networks of
Constant Diameter

Theorem 1: The average nodal degree must be)N(d

1

Ω for an N-node network
with diameter d .

Proof: For a network with diameter d , starting from an arbitrary node, we can
reach all nodes by a breadth-first search tree of d levels in depth. Let x be the aver-

age nodal degree. The number of nodes in the tree is)x(ON
d

i

i∑
=

=
0

=)x(O d . In order for

=N)x(O d to hold, it is required that)N(x d

1

Ω= .

Appendix B. Upper Bound for dP in RP2P

We establish an upper bound for dP , 2≥d , in the following. Consider an arbitrary

identifier id and an arbitrary node x . Suppose x issues request(id). Each node has
an equal probability of being responsible for id .)x(segsup_ consists of the segments
of)s(1+ nodes. Hence, the probability for id ∈)x(segsup_ is

N/)s(P 1+= (3)

It takes zero hop for the request to reach)id(node if x =)id(node . Hence,

N
P

1
10 −= . It takes one or less hop if id belongs to)x(segsup_ . Hence, 1P ≤ P−1 =1-

N/)s(1+ . We now derive dP for 2≥d . The request will not reach)id(node in d or

less hops if and only if the following two conditions are satisfied.
Condition 1: id ∉)x(segsup_
Condition 2: Starting from any random neighbor of x , the request will not reach

)id(node in)d(1− or less hops.
The probability for Condition 1 to hold is P−1 . The probability for Condition 2

to hold is r
d)P(1− . Hence,

dP =)P(−1 r
d)P(1− (4)

By induction we have, for 2≥d ,

 Building a Scalable P2P Network with Small Routing Delay 467

dP = ∑
−

=

−−
1

1

11
d

i

ir)p(
1

1

−dr)P((5)

We simplify the formula as follows.

dP <
1

1

−dr)P(

 <
1

1
−

−
dr)

N

s
(

	Building a Scalable P2P Network with Small Routing Delay
	Introduction
	Model, Notations and Performance Metrics
	Random Peer-to-Peer Network (RP2P)
	Overlay Topology
	Routing Algorithm
	Determining Appropriate Values for s and r

	Simulation Results
	Complexities of RP2P(d,c)
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

