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Abstract — Wireless sensor networks have attracted great attention in research and industrial
development due to its fast-growing application potentials. New techniques must be developed
for sensor networks due to their lack of infrastructure support and the constraints on computation
capability, memory space, communication bandwidth, and above all, energy supply. To prolong
the life time of a battery-powered sensor network, an energy efficient routing algorithm for data
collection is essential. We propose a new geographic routing algorithm that forwards packets from
sensors to base stations along efficient routes. The algorithm eliminates the voids that cause non-
optimal routing paths in geographic routing. It replaces the right-hand rule by distance upgrading.
It is fully distributed and responds to topology changes instantly with localized operations. We
formally prove the correctness of the algorithm and evaluate its performance by simulations.

I. I NTRODUCTION

Sensor networks provide a critical infrastructure that canbe quickly deployed to extract infor-
mation from the surrounding environment [1]. Due to economic and deployment considerations,
sensors are typically small with very limited storage and computation power. They run on batter-
ies, which makes energy conservation a top issue. They communicate through short-range radio,
which makes multi-hop routing a necessity in order for information to reach a remote destination.

For the vast majority of applications [2], [3], [4], [5], [6], the most important communication
is from sensors to base stations, which is also the focus of this paper. A simple approach is to
build a sink tree from the sensors to each base station. Specifically, a base station broadcasts a
control message, and the reverse broadcast tree can be used by the sensors to route packets to the
base station. The problem of this approach is the maintenance overhead due to topology changes.
A sensor network evolves over time with existing nodes beingdemaged or running out of power
while new nodes being deployed. A network may also be configured such that only a portion of
the sensors are active at a time in order to conserve energy [7]. The sensors in the sleep mode
do not participate in relaying packets. As sensors take turnto sleep and be active, the network
topology changes. Therefore, periodic broadcasts are necessary to maintain the sink trees. There
exists a tradeoff between the accuracy of routing information and the overhead of maintaining such
information. Frequent broadcasts drain the power. Infrequent broadcasts may result in broken sink
trees that are not in compliance with the underline topology. The same thing is also true for the
flooding-based link state algorithms and the distance vector algorithms that employ progressive
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flooding with slow convergence.
One solution is geographic routing (BMSU [8], GPSR [9], SPEED[10], and FGG [11]), where

each sensor knows the location coordinates of itself, its neighbors, and the base stations. The
routing strategy of a sensor is simply to forward its packetsto the neighbor that is closest to a base
station. Because there is no routing information (other thanthe set of neighbors) to be maintained,
the routing paths instantly adapt to the change of the topology. On the other hand, the geographic
routing also has two major problems.
• First, it is not applicable if the sensors do not have the capability of knowing their location

coordinates. This problem can be solved by virtual coordinate systems such as NoGeo [12], GEM
[13], and BVR [14]. The virtual coordinates require sensors to know the hop distances to certain
reference points, and the hop distances require periodic broadcasts to be kept up-to-date.
• Second, there may be void(s) between a source sensor and a base station, as illustrated in

Figure 1. A void is an area that has no active sensors. A routing path based on geolocations may
be blocked from moving closer to a base station due to the lackof relaying nodes to cross the
void. The current solution is based on the “right-hand rule”[9], which routes a packet around the
void. However, the right-hand rule may produce inefficient routing paths as shown in the figure,
particularly for an open void.

This paper addresses the inefficiency problem of the right-hand rule in data aggregation from
sensors to a set of base stations. We propose a new algorithm,called Distance Upgrading Algo-
rithm (DUA), which avoids “voids” without the use of the right-hand rule. The basic idea is that,
if a packet has to detour around a void from a sensor to a base station, then the effective distance
between the sensor and the base station is larger than the Euclid distance. By appropriately upgrad-
ing the distances of some sensors, we are able to direct the packets along efficient routes towards
the base stations, as illustrated in Figure 2.
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The rest of the paper is organized as follows. Section II defines the sensor-network model and
makes assumptions. Section III describes the void problem in geographic routing. Section IV
presents the distance-upgrading algorithm. Section V presents the simulation results. Section VI
draws the conclusion.

II. A SSUMPTIONS

A sensor network consists of a set of sensors and a set of base stations. Two sensors are neighbors
and can directly communicate if they are in the transmissionrange of each other. We assume each
sensor knows the set of its neighbors via a neighbor discovering protocol. The sensors share the
same wireless media, and each packet is transmitted as a local broadcast in the neighborhood. We
assume the existence of a MAC protocol, which resolves the media contention and ensures that,
among the neighbors in the local broadcast range, only the intended receiver keeps the packet and
the other neighbors discard the packet. The sensors are statically located after deployment. We do
not consider mobile sensors that form a dynamic ad-hoc network. We study the data packets sent
from sensors to base stations. Assume that the base stationsare connected via an external network
to a data collection center. A data packet may be sent to any base station as long as there exists
a routing path. Suppose a sensor knows the coordinates of itsgeolocation. This is a reasonable
assumption because many monitoring applications require the knowledge of where the sensor data
are generated, which in turn requires the sensors to know andreport their geolocations [1].

III. T HE “V OID” PROBLEM IN GEOGRAPHICROUTING

A. Geographic Routing

Consider a setN of sensors and a setB of base stations. After the sensors and the base stations
are deployed, each base station broadcasts a welcome message including its location information.
A sensorx learns the set of reachable base stations from the welcome messages. It calculates the
distanced(x) to the nearest base station. In the rest of the paper, when we say “the distance of a
sensor”, we mean“the distance of the sensor to its nearest base station”.

Let Nx be the set of neighbors ofx. Sensorx learnsd(y),∀y ∈ Nx, by exchanging the distance
information with its neighbors. Consider the routing strategy of forwarding a packet to any neigh-
bor with a smaller distance. This strategy makes sure that the packet will eventually reach one of
the base station. The set of next-hop neighbors is defined as

Rx = {y | d(y) < d(x), y ∈ Nx} (1)

We say there exists arouting link (x, y) if y ∈ Rx. 1 All routing links form therouting graph,
which is acyclic. The graph allows multiple routing paths from a sensor to the base stations.x is
called adead endif Rx = ∅.

A greedy routing algorithm will always forward a packet to the neighbor with the smallest dis-
tance. Other routing algorithms may consider energy availability, congestion level, load balancing,
and real-time requirements. These subjects are beyond the scope of this paper.

1Distance values of two neighbor nodes determine the direction of a routing link. For any routing link(x, y), d(x) > d(y) by
definition.
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B. Problem of Void

The problem of geographic routing is that packets may be routed to a dead end. Consider the
example in Figure 3, where the white/gray circles representsensors and the black circle represents
a base station. The distance from a sensor to the base stationis labeled beside the sensor. Suppose
there is no sensor to the right of the dashed line, which outlines an open void. The void may be a
disaster area where all sensors are destroyed, or it may be a bay where the sensors cannot survive.
There is a single dead end, which does not have any neighbor that is closer to the base station.
Once a packet is routed to the dead end, it cannot proceed any further. The packets from the gray
nodes will be forwarded to the dead end based on geographic routing.

To solve the above problem, BMSU [8], GPSR [9], and FGG [11] usethe “right-hand rule”
to route packets along the boundary of the void until they reach the other side of the void. This
approach finds a specific detour path out of the dead end. Figure 4 shows how a packet fromv
is routed by GPSR [9]. GPSR has two modes, thegreedy modeand theperimeter mode. In the
greedy mode, a sensor forwards a packet to the neighbor that is closest to the base station. When
reaching a dead end, a packet enters the perimeter mode, where the routing is performed on a
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planar graph embedded in the sensor network. The first forwarding link is identified by counter-
clockwise rotating the line from the dead end to the base station. Then, the next forwarding link
is identified by counter-clockwise rotating the previous forwarding link. The packet carries the
location of the dead end. It resumes the greedy mode when reaching a sensor that is closer to the
base station than the dead end. In Figure 4, the left-hand plot shows that a packet is routed fromv
to the dead end, where the greedy mode is switched to the perimeter mode. In the middle plot, the
packet is routed back tov according to the “right-hand rule”. In the right-hand plot,the packet is
then routed fromv to the base station. It was proved that the “right-hand rule”can always route a
packet out of a dead end [9]. But it may create a routing path that is very inefficient. Ideally, the
packet should directly take the path in the right-hand plot of Figure 4 without going fromv to the
dead end and then back tov. In other words, a good solution is notto get out of a dead endbut to
not get into a dead end in the first place.

IV. D ISTANCE UPGRADING ALGORITHM (DUA)

A. Motivation

Our basic idea is to remove all dead ends by transforming the routing graph. Thisglobal ob-
jective must be achieved through a completely distributed process. Finding a solution requires a
closer examination of the concept of distance. Refer to Figure 3. There is a fundamental difference
between the distance from a white circle to the base station and the distance from a gray circle.
The former is realizable by a path in the routing graph, but the latter is not because the void blocks
the geography-based routing path. To reach the base station, a packet from the dead end has to
take a detour along the boundary of the void. The actual distance traveled is much longer than the
Euclid distance. Because the distance values of the sensors determine the routing paths, without
changing the geographic routing algorithm itself, we can transform the routing graph to Figure 5
by artificially increasing the distance value of the dead end.

In the following, we investigate when a sensor should upgrade its distance and how much the
distance should be increased. No sensor has global information. Each sensor has to make its own
local decisions, while the net effect of all local decisionswill remove the dead ends.
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Fig. 6. Distance Upgrade

B. Distance Upgrading Algorithm

Distance Upgrade: The basic approach is simple: Whenever a sensorx finds itself becoming
a dead end (i.e.,Rx = ∅), it upgrades its distance such thatRx is non-empty. Letde(x) be the
Euclid distance fromx to the nearest base station. We regardde(x) as anumber(not a variable)
that can be calculated at any time based the coordinates ofx and the base stations. The initial value
of the distance variabled(x) is the Euclid distancede(x), but it may be modified by our distance
upgrading algorithm (DUA).d(x) can be regarded as avirtual distance, which determines the
routing graph (as defined in Section III-A). Note that thephysical distancede(x) is never changed
by DUA.

Figure 6 depicts the process of transforming a routing graphuntil it is free of dead ends. In each
plot, the sensor that performs distance upgrade is represented by a gray circle. LetΩ be a constant
that is greater than the largest Euclid distance from any sensor to its nearest base station. An easy
way to chooseΩ is to make it larger than the diameter of the area where the sensors are deployed.
In this example, we letΩ = 100.

Initially, there is only one dead endx in Plot (1). x increases its distance value byΩ, which
reverses all incident routing links, as shown in Plot (2). Now y becomes a dead end. Wheny
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performs distance upgrade, it wants to reverse links(z, y) and (w, y), but not(x, y). Hence,y
chooses a distance value just under that ofx, shown in Plot (3). Subsequently,w andz set their
distance values just under that ofy in Plot (4). Essentially link reversal is carried out in one
direction, away from the original dead endx. After z’s distance upgrade,v becomes a dead end.
The only thing it can do is to reverse(z, v), which can be achieved by increasing its distance by
2Ω, as shown in Plot (5). Finally, in Plot (6)z sets its distance just under that ofv, which reverses
(y, z) only. After that, there is no dead end and the routing graph stabilizes.

The above example demonstrates three different cases of distance upgrade.
• Case 1.A sensorx is a dead end after the initial deployment or becomes a dead end if all

neighbors inRx are not functional.x in Figure 6 belongs to this category. The sensor increases its
distance to reverse all adjacent links. Let “←” be the assignment operator.

while ∃y ∈ Nx, d(y) > d(x) do
d(x) ← d(x) + Ω

Based on Lemma 1 that we will prove in Section IV-D,∀y ∈ Nx, it is always true thatd(y)−d(x) <

2Ω. Hence, from the above pseudo code,d(x) is increased by at most2Ω.
• Case 2:A sensorx becomes a dead end after some (but not all) neighbors have upgraded their

distances.y, z, andw in Figure 6 belong to this category. The sensor sets its distance just below
the smallest value of the upgraded neighbor distances. It reverses links from the neighbors whose
distances have not yet been upgraded. The pseudo code for this case is below.

α ← b
d(x)

Ω
c

β ← min
y∈Nx∧b

d(y)
Ω

c>α

{d(y) mod Ω}

choose a small positive numberε(< β)

d(x) ← (α + 1)Ω + β − ε

(2)

Temporary variables,α, β, andε are used to break up the expression into smaller sub-expressions.
• Case 3:A sensor becomes a dead end after all neighbors have upgradedtheir distances.v

in Figure 6 belongs to this category. The sensor increases its distance by2Ω, which reverses all
adjacent links.2 Namely,

d(x) ← d(x) + 2Ω

Distance Downgrade:The above distance upgrade is an instance of the general class of Gafni-
Bertsekas algorithms [15]. It may however produce inefficient routing paths as illustrated in Fig-
ure 7. Plot (1) shows the initial routing graph, wherex is the only dead end. The distance upgrade
based on the three cases transforms the routing graph to Plot(2), where the gray nodes are the
sensors that perform distance upgrade. Most sensors followan inefficient path fromx clockwise
around the void to reach the base station. The reason that causes this problem is thatx’ distance
is raised too high. It is necessary to raisex’s distance high enough in order to guarantee the link-
reversal process to proceed outward until reaching a sensorthat has a directed path to the base

2By Lemma 1 in Section IV-D, because∀y ∈ Nx, it is always true thatd(y) − d(x) < 2Ω, x reverses all adjacent links after
increasingd(x) by 2Ω.
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Fig. 7. Distance Downgrade

station, but there should be a mechanism to bring it down to anappropriate level after the dead
ends are removed.
• Case 4:Distance Downgrade:For any routing link(x, y) on a directed path to a base station,

if d(x) > d(y) + |de(y) − de(x)|, namely,d(x) is larger thand(y) by more than the absolute
difference between their Euclid distances to a base station, thenx downgrades its distance to

d(x) ← d(y) + |de(y) − de(x)|

To implement the distance downgrade, when a data packet is transmitted fromx to y, if d(x) >

d(y) + |de(y) − de(x)|, then the packet piggy-backs the locations (i.e., coordinates) ofx andy.
If the packet has already piggy-backed the location information of an upstream link, then it is
overwritten with the locations ofx andy. When the base station receives a packet with the piggy-
backed information aboutx andy, we know that a)(x, y) is on a directed path to the base station,
b) d(x) > d(y) + |de(y) − de(x)|, and hencex should downgrade its distance. The base station
sends a control message DOWN(x, y) to x by GSRP.3 Whenx receives DOWN(x, y) message, it
setsd(x) to bed(y)+ |de(y)−de(x)|. Becaused(x) is decreased, some adjacent routing links may
reverse their directions.x then finds those neighborsz with d(z) > d(x) + |de(x) − de(z)|, and
sends a control message DOWN(z, x) to downgrade the distance ofz.

After the distance downgrade is completed, the routing graph in Figure 7 is transformed from
Plot (2) to Plot (3). Note that some links reverse their directions due to the distance changes.

Distance Recovery: When a void is removed, the routing graph may need to be modified
in order to take advantage of shorter routing paths. Considerthe example in Figure 8. Plot (1)
shows the routing graph after the distance upgrade/downgrade remove the dead endx. In Plot
(2), suppose a new sensorz is deployed in the void, establishing two new routing links(x, z) and
(z, w). The routing graph remains correct but not optimal because there are unused, shorter paths,
such asy → x → z → w → base station. There needs a mechanism to “undo” the distance
upgrade when additional sensors make the previous dead endsbecome transit nodes.
• Case 5:Distance Recovery:For any routing link(x, y), if sensorx finds thatde(x) is larger

thand(y), then it resetsd(x) back tode(x).
3GSRP is used to deliver a one-time control message, not data packets, which are routed based on the routing graph, stored by

Rx and maintained by DUA.
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We continue with the example in Figure 8. Afterx receives the distance of the new sensorz,
it recovers its original distance value (30) in Plot (3). After x notifies its neighborhood of this
distance,y subsequently recovers its original distance (35) in Plot (4). More sensors recover their
original distances in Plot (5) and Plot (6). After the distance recovery is completed, all sensors
change their distance variables back to their original distances due to the addition ofz.

Algorithm: Below we implement Cases 1, 2, 3, and 5 by three subroutines running at each sen-
sorx ∈ N . They are Initialization(), ReceiveDistanceOf Neighbor(), and UpgradeDistance().
Notations can be found in Table I for quick reference. Initialization() is executed afterx boots
up or when the set of neighbors change. The other two subroutines are invoked whenx receives
a notification from a neighbor about a new distance value. Thedistributed computation termi-
nates when there are no more notification messages. Message loss may cause some dead ends
left unremoved. This can be handled by neighbors periodically exchanging their distances and
by an unremoved dead end executing Initialization() to restart the process. We implement Case
4 by ReceiveDOWN Message() that is initiated by the base station receiving a data packet that
piggy-backs the location information of a routing link.
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TABLE I

NOTATIONS

N set of sensors
Nx neighbors of a sensorx

d(x)
distance variable ofx, initialized to be the Euclid distance to the nearest base
station

de(x) Euclid distance fromx to the nearest base station
Rx neigbors whose distances are smaller thand(x)

Ω
constant that is greater than the largest Euclid distance from any sensor to a
base station

α, β, ε
local variables in the algorithm of DUP, whose meanings are apparent in the
context of the algorithm

x.Initialization()
1. if Rx = ∅ then
2. while ∃y ∈ Nx, d(y) > d(x) do
3. d(x) ← d(x) + Ω /* Case 1 */
4. recomputeRx

5. notify the neighborhood of the upgraded distanced(x)

x.ReceiveDistanceOf Neighbor(y) /* received(y) */
6. if de(x) > d(y) then
7. d(x) ← de(x) /* Case 5 */
8. recomputeRx

9. notify the neighborhood with the recovered distanced(x)

10. else
11. recomputeRx

12. if Rx = ∅ then
13. UpgradeDistance()
14. recomputeRx

15. notify the neighborhood of the upgraded distanced(x)

x.UpgradeDistance()
16. if ∀y, z ∈ Nx, b

d(y)
Ω

c = bd(z)
Ω
c then

17. d(x) ← d(x) + 2Ω /* Case 3 */
18. else
19. α ← bd(x)

Ω
c

20. β ← min
y∈Nx∧b

d(y)
Ω

c>α

{d(y) mod Ω}

21. choose a small positive numberε(< β)

22. d(x) ← (α + 1)Ω + β − ε /* Case 2 */
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x.ReceiveDOWN Message(y) /* receive DOWN(x, y) */
23. if d(x) > d(y) + |de(y) − de(x)| then
24. d(x) ← d(y) + |de(y) − de(x)| /* Case 4 */
25. if d(x) modΩ = 0 then
26. d(x) ← d(x)+ a small positive number
27. for z ∈ Nx do
28. if d(z) > d(x) + |de(x) − de(z)| then
29. send DOWN(z, x) to z

In Section IV-D, we formally prove that the algorithm will remove all dead ends, which is also
confirmed by our simulations. To ensure Line 21 is always doable, β must be greater than zero
after Line 20. To see this is indeed the case, we only need to show that,∀x ∈ N ,

d(x) modΩ 6= 0 (3)

First, (3) is true initially because0 < d(x) < Ω, ∀x ∈ N . Second, if (3) is true before a distance
change at a sensorx, it obviously remains true after the change by Line 3, 7, 17, 22, or 24-26.

C. Examples

Figure 9 shows an example with two base stations. Initially,the distance of a sensor is the Euclid
distance from the sensor to the nearest base station, as shown in the left-hand plot. For example,z

is closer to Base station 2, with a distance of 30. The right-hand plot shows the routing graph after
DUA. The gray nodes are the sensors that perform distance upgrade/downgrade.

Figure 10 gives a more complicated example. Sensors are deployed in a peninsula of a closed
void (say, a lake) and a base station is located at the opposite side of the void. The left-hand plot
shows the routing graph without DUA. At the tip of the peninsula, x is the only dead end. The
packets from all sensors inside or above the peninsula will be routed tox and then routed back out
if GPSR [9] is used. The right-hand plot shows the routing graph when DUA is used. The dead
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end is removed. The routing links inside the peninsula are reversed, which prevents the packets
from going in the “wrong direction” towardsx.

Figures 11-13 compares DUA and GPSR in how they route packetsaround an open void, a
closed concave void, and a closed convex void, respectively. In Figure 11, suppose the sensors
are densely deployed in a rectangle area except for an open void that is not completely surrounded
by sensors. Consider a packet to be routed from a sensorx to a base station. The routing path
generated by DUA is illustrated in the left-hand plot. The packet does not follow the dotted line
to reach the edge of the void because the routing links in the area are reversed. The routing path
by GPSR is illustrated in the right-hand plot. When a packet reaches the edge of an open void, the
“right-hand rule” will guide the packet along the external boundary of the entire deployment area
until the packet reaches a node that is closer to the base station thany. Therefore, GPSR can be
extremely inefficient in the case of an open void.

Figure 12 examines a closed concave void. The routing paths by DUA are shown in the left-hand
plots. Note that the routing links inside the peninsula are reversed by DUA, as shown in Figure 10.
The routing paths by GPSR are shown in the right-hand plots. GPSR routes packets in far-longer
paths than DUA. Figure 13 examines a closed convex void with adead end at the top of the void.
Again, DUA produces shorter routing paths than GPSR.

D. Correctness Proof

In the following, we prove that DUA will remove all dead ends in finite time.



13

closed void

GPSR

closed void

closed voidclosed void

DUA

base station

base stationbase station

base station

x

xx

x

Fig. 12. Comparing DUA and GPSR with a closed concave void

closed void

GPSR

closed void

closed voidclosed void

DUA

base station

base stationbase station

base station

x

xx

x

Fig. 13. Comparing DUA and GPSR with a closed convex void



14

Theorem 1:The routing graph of a sensor network is always loop-free.

Proof: By the definition of routing link (Section III-A),d(x) > d(y) for any link (x, y) in the
routing graph. Suppose there is a loop in the routing graph,x → y → z → ...w → x, which
consists of routing links(x, y), (y, z), ..., (w, x). We then have,d(x) > d(y), d(y) > d(z), ...,
d(w) > d(x), which leads tod(x) > d(x), a contradiction. 2

Lemma 1:For any routing link(x, y), d(x) − d(y) < 2Ω.

Proof: The lemma holds initially becaused(x) < Ω,∀x ∈ N . Assume that the lemma holds
before a distance change. We prove that it remains valid after the change. It is obviously true
for distance downgrade (Line 24) and distance recovery (Line 7). Now consider the initialization,
Lines 2-3. Before those lines, becauseRx = ∅, ∀y ∈ Nx, d(y) ≥ d(x), and by our assumption,
∀y ∈ Nx, d(y) − d(x) < 2Ω. After Lines 2-3,d(x) is greater thand(y),∀y ∈ Nx, with a distance
increment of at most2Ω, and therefore,d(x) − d(y) < 2Ω. The only cases left are distance
upgrades.

Without losing generality, consider a distance upgrade at asensorx. Let do(x) anddn(x) be
the value ofd(x) before and after the upgrade respectively, where the subscribe “o” means “old”
and “n” means “new”. The upgrade only affectsx’s adjacent links. Before the update, all adjacent
links point atx. After the update, there are two cases.
• Case one:The upgrade ofd(x) reverses a routing link(y, x) to (x, y). Prior to the upgrade,

because the routing link is fromy to x, we have

d(y) > do(x) (4)

Whenx.UpgradeDistance() is executed, if the branch of Line 17 is selected,dn(x) = do(x) + 2Ω.
By (4), we must have

dn(x) − d(y) < 2Ω

Now suppose the branch of Lines 19-22 is executed. By Line 19,do(x) ≥ αΩ. Hence,d(y) > αΩ

because of (4). By Line 20,β < Ω. After Line 22,

dn(x) = (α + 1)Ω + β − ε < d(y) + β − ε + Ω < d(y) + 2Ω

Hence,dn(x) − d(y) < 2Ω after the execution ofx.UpgradeDistance().
• Case two:The upgrade ofd(x) does not reverse the direction of a routing link(y, x). Before

the upgrade,0 < d(y) − do(x) < 2Ω by our assumption. After the upgrade,dn(x) is larger than
do(x) and hence we still have0 < d(y) − dn(x) < 2Ω.

The lemma holds. 2

Lemma 2:∀x, y ∈ N, d(x) − d(y) < 2kΩ, wherek is the number of hops on the shortest path
from x to y.

Proof: A direct consequence of Lemma 1. 2

Lemma 3:Two consecutive upgrades increase the distance of a sensor by at leastΩ.

Proof: Each distance upgrade atx increasesbd(x)
Ω

c at least by one (Line 3, Line 17, or Line
22). There is no distance downgrade between the two upgradesbecause that would meanx was
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on a directed path to a base station, which in turn would mean the second upgrade won’t happen.
Hence, two upgrades increasesbd(x)

Ω
c at least by two, and therefore increasesd(x) at least byΩ. 2

Lemma 4:If the routing graph of a sensor network is connected, it willremain connected after
some sensors change their distances.

Proof: The distance change by sensors will only change the direction of routing links but never
remove any link. Hence, the routing graph remains connected. 2

Theorem 2:Consider a connected sensor network. a) DUA will terminate. b) After it terminates,
Rx 6= ∅, ∀x ∈ N , and any path in the routing graph leads to a base station.

Proof: Let the routing graph be〈N,E〉, whereN is the set of sensors andE is the set of routing
links. LetM be the set of sensors that have at least one routing path to reach a base station. Once a
sensor is inM , it will no longer perform any distance upgrade because it has at least one outgoing
link. Before a sensor is inM , it will not perform any distance downgrade because its packets
cannot reach a base station. Consider a sensorx that satisfies the following conditions,x 6∈ M and
∃z ∈ M , (z, x) ∈ E. Because the routing graph is always connected (Lemma 4), there must exist
such a sensor as long asM 6= N . Below we prove that link(z, x) will be reversed by DUA.

Let X be the set of sensors reachable byx and Gx be the subgraph consisting of nodes in
X + {x}. X must not include any base station; otherwise,x would be inM . ∀y ∈ X, because
there is a routing path fromx to y, we must haved(y) < d(x). The DUA algorithm continuously
upgrades the distances of the dead ends (i.e., sinks in the graph other than the base stations) until
there is no dead end. By Theorem 1,Gx is acyclic. An acyclic graph must have a sink. Hence,
there are always some nodes inX upgrading their distances untilX becomes empty. Furthermore,
it takes finite time for this process to complete because of the following reasons. First, by Lemma
2, ∀y ∈ X, d(x) − d(y) is finite and bounded by2Ω multiplied by the length of the shortest path
from x to y in Gx. Second, by Lemma 3, any two distance upgrades byy will increased(y) by at
leastΩ. Hence, it takes a finite number of upgrades ford(y) to be greater thand(x). Onced(y) is
greater thand(x), y cannot be inX. As the sensors inX continuously upgrade their distances and
exclude themselves fromX once their distances become too big,X will eventually be reduced to
an empty set, which makesx a dead end. Whenx upgrades its distance, it reverses link(z, x) and
makes itself a member ofM .

Because any sensorx that satisfies the condition,x 6∈ M ∧ ∃z ∈ M, (z, x) ∈ E, will become
a member ofM and because there exists such a sensor as long asM 6= N , it follows thatM will
eventually becomeN . Because no sensor inM will upgrade its distance and DUA is driven by
distance upgrade, the algorithm will terminate whenM = N .

When the algorithm terminates, there are no sinks in the routing graph except for the base sta-
tions. Hence,Rx 6= ∅, ∀x ∈ N . Because the routing graph is acyclic, any path leads to one ofthe
only exit points — the base stations. 2

Theorem 1 shows that there exists no routing loop. Theorem 2 shows that each sensor will
eventually establish at least one routing path to a base station.
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Fig. 14. average length of routing paths

V. SIMULATION

A. Simulation Setup

We use simulations to evaluate the performance and the overhead of the proposed DUA in ag-
gregating data from sensors to a base station. We compare DUAwith GPSR [9]. The simulation
setup is described as follows. Sensors are randomly placed in a flat area of 1000 by 1000. The
transmission range of a sensor is 100. The coordinates of thebase station is(500, 1000), i.e., the
middle point of the upper boundary line. zero to three voids are randomly placed in the area. The
void has a T shape with a default area size of 70,000. Our choice for the shape of the void does
not carry particular significance. DUA is equivalent to GPSRwhen this is no void. The differ-
ence of the two algorithms manifests only when there are deadends due to voids. A T shape void
conveniently creates one or more dead ends, depending on itslocation relative to the base station.

B. Comparing Average Length of Routing Paths

When there are voids, the average length of routing paths in DUA can be considerably smaller
than that in GPSR, as demonstrated by Figure 14. With zero to three voids respectively, the four
plots show the average path length with respect to the numberof sensors deployed. When there
is zero T void, DUA and GPSR have similar path lengths. DUA is slightly better due tonaturally
formedsmall voids between sensors, which can happen when the number of sensors (and thus the
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node density) is relatively small. When the number of T voids increases, DUA outperforms GPSR
significantly. With one void, the routing paths in DUA are 39%- 50% shorter than those in GPSR.
With two voids, the routing paths in DUA are 60%-71% shorter than those in GPSR. With three
voids, the routing paths in DUA are 71%-80% shorter than those in GPSR. It should be noted
that, although only a very small number of sensors actually become dead ends, their impact can
be significant in GPSR because data from many upstream sensors will be routed to them and then
have to be routed out via long paths based on the right-hand rule.

All four plots indicate that the average path length decreases slightly with respect to the node
density (proportional to the number of sensors deployed in the area). That is because DUA is a
greedy routing algorithm that picks the sensor with the smallest distance inRx as the next hop.
When there are more nodes in the neighborhood, a sensor is morelikely to find its next hop closer
to the base station. The same thing is true for GPSR when thereis no void. However, when there
is one or more voids, on one hand, the average path length decreases with respect to the node
density in the greedy mode; on the other hand, it increases with respect to the node density in the
non-greedy perimeter mode. The net result is that, as the node density increases, the routing paths
first become shorter and, after the node density reaches certain level, they start to grow longer.

C. Overhead of DUA

DUA requires additional overhead to remove dead ends. Because the radio transmissions domi-
nate the sensors’ energy spend, we measure the overhead of DUA by the total number of control-
message transmissions befor all dead ends are removed. Herea transmission is a distance notifica-
tion message sent by a sensor to its neighborhood immediately after the sensor performs a distance
upgrade.

Figure 15 shows that DUA has modest overhead. First of all, when there is no void, DUA
incurs no overhead. Secondly, the more the number of voids, the more the overhead for dead-
end removal. For three voids, the number of transmissions is123 for 2000 sensors, namely, 0.06
transmission per sensor, which is very small. The reason is that dead-end removal only involves
localized operations, which has limited one-time overheadin a small region.
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D. Comparing Energy Expenditure of Data Aggregation

Because DUA and GPSR have different average lengths of routing paths, their energy expendi-
ture in data aggregation (characterized by the number of transmissions for delivering one packet
to the base station) will also differ. Figure 16 shows the ratio of energy expenditure by DUA and
that by GPSR. When there is zero T void, the ratio is close to one because DUA and GPSR are
virtually identical in this case. The more the number of voids, the smaller the ratio becomes, which
means more energy saving by DUA. Moreover, this saving is long term, as long as data are sent
from sensors to the base station.

E. Impact of Void Size

Figure 17 shows the impact of void size on the average length of routing paths. There is a single
T void. Increasing the size of a void may not increase the number of dead ends, but will increase
the number of upstream sensors whose packets fall into the dead ends. Therefore, the path length
increases with void size in GPSR. It also increases in DUA but much more lowly. The performance
gap between DUA and GPSR increases when there are more voids.
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F. Multiple Base Stations

We also simulated the case of multiple base stations. One through ten base stations are placed
with even spacing along the upper boundary of the deploymentarea. We ran DUA and GPSR,
respectively. Figure 18 compares their average lengths of routing paths from sensors to the nearest
base stations. For both DUA and GPSR, the routing paths are shorter when there are more base
stations. DUA consistently outperforms GPSR by 40%-50%. A single T void was used in the
simulation of Figure 18. With more voids, the performance gap between DUA and GPSR will
increase.

VI. CONCLUSION

This paper proposed a new geographic routing algorithm thatremoves the interference of voids
on the routing paths from sensors to the base stations. It produces more efficient routing paths than
the traditional right-hand rule. No global periodic broadcasts are required to maintain the routing
paths. The algorithm responds to topology changes instantly with localized operations.
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