
Counter Tree: A Scalable Counter Architecture for

Per-Flow Traffic Measurement

Min Chen Shigang Chen

Department of Computer & Information Science & Engineering

University of Florida, Gainesville, FL 32611, USA

Email:{min, sgchen}@cise.ufl.edu

Abstract—Per-flow traffic measurement, which is to count
the number of packets for each active flow during a certain
measurement period, has many applications in usage accounting,
traffic engineering, service provision and anomaly detection. In
order to maintain the high throughput of routers or switchers, the
per-flow traffic measurement module should use high-bandwidth
SRAM that allows fast memory accesses. Due to the limited
SRAM space, exact counting, which requires to keep a counter for
each flow, does not scale to large networks consisting of numerous
flows. Some recent work takes a different path to accurately
estimate the flow sizes using counter architectures that can fit
into tight SRAM. However, existing counter architectures have
some limitations, either still requiring considerable SRAM space,
or having a very small estimation range. In this paper, we design
a scalable counter architecture Counter Tree which leverages
a two-dimensional counter sharing scheme to achieve far better
memory efficiency and significantly extend estimation range. The
extensive experiments with real network trace demonstrate that
our counter architecture can produce accurate estimates for flows
of all sizes even under a very tight memory space, e.g., 2 bits
per flow.

I. INTRODUCTION

Per-flow traffic measurement is one of the fundamental

problems in network traffic measurement [1]–[9]. In a general

definition, it is to count the number of packets (or called

flow size) for each active flow during a measurement period.

The flows under measurement can be per-source flows, per-

destination flows, per-source/destination flows, TCP flows,

WWW flows, P2P flows, or any user-defined logical flows.

Each flow is uniquely identified by its flow label, e.g., the flow

labels for per-source flows are the source addresses. Per-flow

traffic measurement has many important applications in usage

accounting, traffic engineering, service provision and anomaly

detection of large networks [10]–[13]. For example, ISPs can

use the per-flow information to optimize traffic routing in

backbones to reduce congestion; per-flow measurement can

also help determine the types of traffic transmitted in the

networks, sent from a particular source, or destined to a

particular address; network administrators can perform per-

source traffic measurement to estimate the scanning rates of

worm-infected hosts in a worm attack.

We stress that per-flow traffic measurement significantly

differs from a related problem called flow cardinality

estimation [14]–[18], which is to estimate the number of

distinct elements in each flow. Consider a per-source flow.

Suppose the source sends 1,000 packets to a single destination

during a measurement period. The flow size is 1,000 in terms

of the number of packets, but the flow cardinality is 1 if

destination addresses are considered as elements. The related

work of flow cardinality estimation will be introduced in

Section VIII.

Challenge and Prior Art: The challenge of per-flow

traffic measurement mainly results from the lack of affordable

high-density high-bandwidth memory devices. Commercially

available DRAM, whose access time is in the order of tens of

nanoseconds, cannot keep up with the dramatically increasing

line speed (NEC and Corning achieves a transmission rate

of 1.05 Petabit/s using a 12-core fiber design [19]). On the

contrary, SRAM with much smaller access time has very

low density. As a result, large SRAM is expensive and

difficult to implement on-chip. Moreover, the already limited

SRAM is shared among different functions, such as routing,

scheduling, traffic measurement, and security. Even for traffic

measurement alone, there can be multiple functions performed

concurrently, each requiring some SRAM. Therefore, the

SRAM dedicated for per-flow traffic measurement can be

extremely small, necessitating memory-efficient measurement

approaches. In addition, we need to minimize the processing

time of per-flow traffic measurement, particularly the number

of memory accesses, such that the implementation of the

measurement module will not deteriorate throughput of routers

or switchers.

With tremendous number of flows in the networks, it is

impossible to keep a counter for each flow in SRAM. Exact

counting generally adopts a hybrid SRAM-DRAM architecture

[1]–[3], where small counters in SRAM are incremented at

high speed, and occasionally written back to larger counters

in DRAM. However, the hybrid architecture incurs very costly

SRAM-to-DRAM updates. Furthermore, the flow-to-counter

association requires considerable SRAM (at least 10MB [5]).

To fit the measurement module in tight SRAM, some

schemes only give the distribution of flow sizes [20], [21], or

measure the sizes of large flows [22], [23]. Some recent work

takes a different path to accurately estimate the flow sizes

instead of counting their exact sizes, thereby reducing storage

overhead. The state-of-art estimation approaches include

bitmap-based MSCBF, and counter-based Counter Braids and

randomized counter sharing scheme.

The Multiresolution Space-Code Bloom Filter (MSCBF) [4]

employs multiple Bloom filters [24] to encode packets with

2015 IEEE 23rd International Conference on Network Protocols

1092-1648/15 $31.00 © 2015 IEEE

DOI 10.1109/ICNP.2015.15

111

different sampling probabilities. Filters with high sampling

probabilities can keep track of small flows, while filters with

low sampling probabilities can track large flows. However, the

bitmap nature of MRSCBF determines that it is not memory-

efficient for counting [7].

The Counter Braids (CB) [5], [6] is a counter architecture

for flow size measurement. It avoids the storage of flow-to-

counter association by hashing flows to counters on the fly,

and it reduces memory requirement by sharing counters among

flows. A typical implementation of CB consists of two layers

of counters, and employs three hash functions. To encode a

packet, it is hashed to three counters based on its flow label,

which are all incremented by one. If any of the first-layer

counter overflows, another three second-layer counters will

be used. Since each counter is shared by multiple flows, it

counts all associated flows. Therefore, the counters essentially

form a set of linear equations of the flow sizes. A message

passing reconstruction algorithm was proposed to estimate the

flow sizes in an iterative way. CB can recover the exact flow

sizes when sufficient memory is available, e.g., 10 bits per

flow. However, CB has three limitations. First, it performs

6 (occasionally 12) memory accesses to encode one packet.

Second, it yields very biased or even meaningless estimates

under a tight memory, e.g., less than 4 bits per flow. In fact,

we find that the estimation results of CB do not converge

even with 8 bits per flow, though it may occasionally produce

very accurate results if we manually terminate the process

after some iterations. Third, CB does not support instantaneous

queries of flow sizes. All flow sizes must be decoded together

at the end of a measurement period.

A new data encoding/decoding scheme, called randomized

counter sharing [7], was proposed to further reduce the

memory requirement and processing time of per-flow traffic

measurement. The idea is to split each flow among a number

of counters (called the storage vector of the flow) that are

randomly selected from a counter pool. When encoding a

packet of a particular flow, it is randomly mapped to a

counter of the flow’s storage vector, and the counter is then

incremented by one. This scheme requires only 2 memory

accesses for encoding one packet, achieving the optimal

processing speed. Moreover, it can still yield reasonably

accurate estimates under a tight memory space where CB

no longer works. Two estimation methods CSM and MLM

are used to estimate flow sizes. The most serious problem

of this scheme is that its estimation range is limited, e.g., a

few thousands in a typical implementation. For large flows

with sizes beyond the estimation range, the scheme leads to

very negatively biased estimates since overflowed counters

lose information. In the journal version [9], some approaches

were provided to extend the estimation range, which however

cannot address the issue fundamentally. The first approach

is to increase the length of each counter or the size of the

storage vector. However, this approach degrades estimation

accuracy since fewer counters are available or each counter

is shared by more flows. Following a reasonable parameter

setting, the estimation range is still very limited. The second

approach employs a sampling module. Each arriving packet

is sampled with a probability p before being encoded to a

counter. Aggressive sampling not only introduces significant

error [4], but also fails to measure some small-size or even

moderate-size flows. For example, if we let p = 0.001, flows

with sizes less than 1,000 are hardly be captured. The final

approach resorts to the hybrid SRAM/DRAM design, which

requires costly SRAM-to-DRAM updates.

Our Contributions: To address the issues of existing

counter architectures, we design Counter Tree, a novel SRAM-

only counter architecture. The contributions of this paper are

summarized as follows:

1) We propose a two-dimensional counter sharing scheme,

where each counter can be shared not only by different

flows, but also among different virtual counters. Thanks

to this scheme, a significant memory save can be

achieved, making Counter Tree work well under a tight

memory where CB does not work.

2) Counter Tree reserves more significant bits for larger

flows, which dramatically extends the estimation range

when compared with the randomized counter sharing

scheme.

3) Counter Tree has a very high processing speed. Encoding

a packet only requires a little more than 2 memory

accesses on average, which is asymptotically optimal.

4) Counter Tree supports an instantaneous query of the

size of an arbitrary flow. Two offline decoding methods

are proposed to estimate flow sizes. The extensive

experiments with real network trace demonstrate both

methods can generate accurate results even under

extremely tight memory, e.g., 2 bits per flow.

II. PERFORMANCE METRICS

In this paper, we employ three metrics to evaluate

the performance of different per-flow traffic measurement

schemes:

Memory requirement: Due to the constraint of SRAM space,

we want to use as small memory (in the sequel memory refers

to SRAM) as possible to achieve per-flow traffic measurement.

Here we focus on the memory requirement for implementing

the counter architectures, while the collection of flow labels

is beyond the scope of this paper. Some memory-efficient

schemes [6] for flow label collection can be found in literature.

Processing time: To keep up with the line speeds, the

processing time for encoding a packet should be small, such

that the implementation of the measurement module will not

deteriorate throughput. In most counter architectures [4], [5],

[7], the processing time for encoding a packet mainly results

from the memory accesses and hash computations.

Estimation accuracy: Given a particular memory space, the

estimates of flow sizes are desirable to be as accurate as

possible. Suppose the true size of a flow is s, and the estimated

size is ŝ. We use the relative bias Bias(ŝ
s
) and relative

standard error StdErr(ŝ
s
) to evaluate the estimation accuracy,

112

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

n
u

m
b

e
r

o
f

fl
o

w
s

flow size

Fig. 1: Distribution of flow sizes, where each point represents

the number (y coordinate) of flows that have a particular size

(x coordinate).

which are defined as follows:

Bias(
ŝ

s
) = E(

ŝ

s
)− 1, (1)

StdErr(
ŝ

s
) =

√
V ar(

ŝ

s
) =

√
V ar(ŝ)

s
. (2)

III. DESIGN OF COUNTER TREE ARCHITECTURE

A. Motivation

In spite of the large number of flows in networks, many

studies reveal a common observation that a small percentage

of large flows account for a high percentage of the traffic

(also known as the heavy-tailed distribution). The study in

[25] showed that 9% of the flows account for 90% of the byte

traffic. As an example, we use a network trace obtained from

the main gateway of our university, which contains about 68

million TCP flows and 750 million packets. The distribution of

flow sizes is illustrated in Fig. 1, where each point represents

the number (y coordinate) of flows that have a particular size

(x coordinate). This log-scale figure demonstrates that the vast

majority of flows have small sizes, while only a small number

of flows have large sizes. Without knowing the flow sizes

beforehand (which are in fact what we want to measure), the

length of counters should be set according to the maximum

flow size, which may need to be as large as 64 bits [2].

However, if a flow turns out to be small, e.g., with a size

of 1, most of the bits in its counter will be wasted.

B. Two-dimensional Counter Sharing

To reduce the memory waste caused by small flows, we

should enable counter sharing. In this paper, we propose a

novel counter sharing scheme called two-dimensional counter

sharing, including horizontal counter sharing and vertical

counter sharing.

For horizontal counter sharing, each counter is shared by

multiple flows. The rationale is to let large flows borrow

memory from small flows that will not fully use their counters.

As an example, consider two flows f and g with sizes 2 and

58, respectively. If we keep a counter for each flow, the counter

length should be set according to g’s size to avoid overflow,

i.e., at least 6 bits. Obviously, most bits in f ’s counter are

�������

������	

������

��
���	� ���� ���� ���� ���� ���� ���� ���� ��	
� ��		� ��	�� ��	����
�

����

��	� ���� �������� ��
���
�

��	
�

����

���� ��		�

��	�� ��	��

����

�������� ��	
�

��	
��������

Fig. 2: An example of organizing counters into a binary tree.

wasted. Therefore, we want to propose a mechanism to allow

g to borrow unused bits from f .

Using horizontal counter sharing allows part of the bits

wasted by small flows to be reused by large flows. However,

since small flows take a dominant percentage of network

flows, many bits in counters occupied by only small flows can

still be wasted. This observation inspires the idea of vertical

counter sharing, which makes the more significant bits (higher-

order bits) be shared by multiple counters. To do so, we

introduce the concept of virtual counter. Each virtual counter

is comprised of multiple small counters, where a counter

representing more significant bits is shared by more other

virtual counters. Vertical counter sharing in nature is equal

to dynamic memory allocation based on flow sizes (which is

however more difficult since we do not know the flow sizes

beforehand). The more significant bits are reserved for large

flows that can use them on demand. Following the previous

example, suppose we have three counters, each with 3 bits.

The first counter is allocated to f , the second is for g, while

the third is reserved for whoever needs it. As a result, g will

use the third counter when the second counter overflows. The

three counters only require 9 bits to successfully encode f and

g.

The scheme of two-dimensional counter sharing contributes

to significant memory save, but it also introduces noise among

counters. The good thing is that we can employ some statistical

tools to remove such noise as we will show shortly.

C. Counter Tree Architecture

We design a Counter Tree architecture to achieve two-

dimensional counter sharing. Given a memory space of M

bytes, we divide it into small counters, each consisting of b

bits. We organize those counters into a tree structure from the

bottom up. The degree of each non-leaf node is d. Let the leaf

nodes be the layer 0, and M ′ bytes be allocated for layer-0

counters, which translates into M ′

b
counters. Hence, the height

of the counter tree can be up to logd
M ′

b
+1. Since the number

of counters on the jth layers is reduced to 1
d

of the (j − 1)th
layer, the following memory constraint should hold

∑
j=0

M ′

dj
≤ M. (3)

113

��
�

����

��	��

��	�

����

��	��

����

����

��	��

����

����

��	��

��
�

��	��

����

��	��

����

��	��

����

��	��

��	
� ��	
� ��		� ��		�

��
� ��	� ���� ���� ��
� ���� ���� ����

���

���

���
� ���	� ����� ���
� ���	� �����

 !��������������������

"�����

 !��������������������

"�����

Fig. 3: Virtual counters and virtual counter arrays for flows.

The virtual counter array for a particular flow consists of

multiple counters pseudorandomly chosen from the counters.

Since
∑

j=0
M ′

dj < d
d−1M

′, we let d
d−1M

′ = M . Hence,

M ′ =
d− 1

d
M, (4)

and the number m of counters on layer 0 is

m =
M ′

b
=

(d− 1)M

bd
. (5)

It means that only 1
d

of the memory will be reserved for non-

leaf counters. Fig. 2 gives an example of organizing the 15

counters into a binary tree with 4 layers, where m = 8 and

d = 2. Note that some high-layer counters may not be used

in practice. Hence, we define the effective height h of the

Counter Tree as the number of layers that have at least one

used counters (the counter value is not zero). The value of h

increases when more packets are encoded. Starting from a leaf

node C[i] (0 ≤ i < m), the h counters along the path to the

root form a virtual counter, denoted by V [i]. As a result, there

will be m virtual counters in total, denoted by V . Starting

from C[i] at layer 0, the counter at layer j (0 ≤ j < h) that

V [i] will include, denoted by V [i][j], is

V [i][j] = C[� i

dj
�+

j∑
t=1

m

dt−1
]. (6)

Suppose C[14] has not been used and therefore h = 3. The

Counter Tree in Fig. 2 can yield 8 virtual counters as shown

in the upper half of Fig. 3

D. Counting Range

In Counter Tree, each virtual counter can have up to b ×
(logd

M ′

b
+ 1) bits. As a result, the counting range of each

virtual counter can be as large as 2b(logd
M′

b
+1) (in number

of packets). In contrast, the counting range of each counter is

only 2b − 1. Let us use specific numbers to demonstrate how

tremendous the improvement is. Suppose M = 1MB, b = 4,

d = 2, and M ′ is therefore 0.5MB according to 4. Hence, the

counting range of each counter is 24 − 1 = 15, while each

virtual counter can count up to 24(log2
0.5MB
4bit

+1) = 284 packets.

Therefore, Counter Tree can scale to measure extremely large

flows.

E. Design Overview

Our traffic measurement function using Counter Tree

consists of two modules. The online data encoding module

stores the information of arriving packets in the Counter Tree.

For each packet, it is mapped to a virtual counter by one

hash computation and then the virtual counter will be updated,

which needs approximately two memory accesses. At the end

of each measurement period, the Counter Tree is stored to the

disk and all counters are then reset to zeros. The offline data

decoding module estimates the flow sizes. It is performed by

a designated offline computer. We propose two methods for

separating the information about the size of a flow from the

noise in the virtual counters. The first one is called Counter

Tree base Estimation (CTE). The second one is based on the

maximum likelihood estimation method (CTM). Both methods

can yield accurate estimates for flow sizes.

IV. ONLINE PACKET ENCODING

In this section, we show how to encode a packet to the

Counter Tree.

A. Encoding

Consider an arbitrary flow f . We pseudorandomly choose r

out of the m virtual counters to logically form a virtual counter

array of f , denoted by Vf . The selection can be achieved

by applying r independent hash functions to the flow label.

Hence, the ith counter of Vf , denoted by Vf [i], is chosen from

V as follows

Vf [i] = V [hi(f)], (7)

where 0 ≤ i < r and hi(·) is a hash function ∈ [0, m − 1].
To reduce the overhead of implementing r independent hash

functions, we can use one master hash function H and a set

S of random seeds, and let

hi(f) = H(f ⊕ S[i]), (8)

where ⊕ is the XOR operator. The bottom half of Fig. 3

illustrates the virtual counter arrays for f and g, where r = 3
and the virtual counter V [4] is shared by both flows.

At the beginning of each measurement period, all counters

are initialized to 0s. When a packet of flow f arrives, the

router extracts its flow label f , randomly chooses a virtual

counter from Vf , and increments that virtual counter by

1. More specifically, the router generates a random number

i ∈ [0, r − 1], computes the hash value u = hi(f), and sets

V [u] = V [u]+1. Note that the update of V [u] may involve the

updates of multiple counters. According to (6), the router first

fetches counter C[u] from memory and increases it by 1. If

C[u] does not overflow, the encoding for this packet is done.

Otherwise, the reader further needs to fetch C[�u
d
�+m], and

add the overflowed 1 to C[�u
d
� +m]. The process continues

until no overflow happens, or the counter on the root has

been used. Note that if the counter on the root still overflows

114

��
�

��
��#�	�

�����#��

��	���#�	
	$�"���%���
�

�$���
�&	

�$��'(������
��

��
�

��
��#�

�����#��

��	���#�	

��
��� ��"��)�

$�"���%�����

�$�����&	�

�$��'(��������

��
�

��
��#�

�����#��

��	���#�	

Fig. 4: The process for encoding a packet to a virtual counter.

(though it rarely occurs in our design), its updated value should

not be written back. Fig. 4 gives an example of the online

encoding process for a packet of f . Suppose b = 4 (i.e., the

counting range of each counter is 15), currently h = 3, and

V [0] is chosen for encoding that packet. The router first fetches

C[0] whose current value is 15. After adding 1 to C[0], C[0]
becomes 0 and leads to an overflow. Hence, the router writes

back C[0] = 0, further fetches C[8] with value 9, and calculate

C[8] = C[8] + 1. Since C[8] = 10 does overflow, the router

just writes it back and the encoding process terminates.

B. Number of Memory Accesses

To encode a packet, the router at least needs to read and

write 1 counter, which requires 2 memory accesses. Hence, the

lower bound of the number of memory accesses for encoding

a packet is 2. In the worst case, the router needs to update h

counters, which requires 2h memory accesses. The good thing

is that the router needs to fetch another counter only when

the current counter overflows. Hence, we have the following

theorem:

Theorem 1. The upper bound of the amortized number of

memory accesses for encoding a packet to Counter Tree is

2 + 2
2b−1

, where b is length of each counter.

Proof: Consider the extreme case that all flows share

the same virtual counter. This leads to the most overflows

since all packets are encoded to same counters. Because each

counter consists of b bits, the jth layer counter of the virtual

counter overflows after encoding every 1
2(j+1)b packets. It takes

2 memory accesses to read and write a counter. Therefore, the

amortized number of memory accesses for encoding a packet

is

2×
h−1∑
j=0

1

2jb
=

2(1− 1
2bh

)

1− 1
2b

< 2 +
2

2b − 1
. (9)

In Counter Tree, packets are randomly mapped to different

virtual counters, which significantly reduces the number

overflows. Therefore, 2 + 2
2b−1

gives an upper bound of the

amortized number of memory accesses for encoding a packet.

Fig. 5 shows the upper bound of the amortized number of

memory accesses for encoding a packet with respect to b. We

find that it quickly converges to 2, the lower bound, with the

increase of b.

V. COUNTER TREE BASED ESTIMATION

After the measurement period, offline estimation can be

performed to recover flow sizes from the Counter Tree. In

1.8

2.0

2.2

2.4

2.6

2.8

3,0

2 4 6 8 10

m
e
m

o
ry

 a
c
c
e
s
s
e
s

b

Fig. 5: Amortized number of memory accesses with b.

this section, we propose and analyze the Counter Tree based

Estimation (CTE) method. To estimate the size of an arbitrary

flow f , we first add up the values of the virtual counters

f is mapped to, and then subtract the noise introduced by

other flows from the sum. Thanks to the random mapping,

the expected value of such noise can be calculated in a

probabilistic way.

A. CTE method

Consider the ith virtual counter Vf [i] in the virtual counter

array of flow f . According to (7), Vf [i] = V [u], where

u = hi(f). We know V [u] encodes part of f ’s packets, as

well as the noise introduced by other flows. There are two

sources of noise: First, V [u] is shared by other flows; Second,

all component counters in V [u] except C[u] are shared by

other virtual counters. To accurately recover the number of

f ’s packets encoded by V [u], we need to figure out how to

remove such noise.

With a effective height h, the component counter of V [u]
at the highest layer is C[v], where v = � u

dh−1 �+
∑h−1

t=1
m

dt−1

according to (6). Consider the subtree rooted at C[v], denoted

by T . T consists of dh−1 leaf nodes, which correspond to dh−1

virtual counters. Let k = dh−1. Due to counter sharing, any

flows mapped to those k virtual counters may finally introduce

noise to V [u]. Therefore, we treat T as a whole, called a it

subtree counter, when dealing with noise. We denote the value

of T by a random variable Xi. As an example, in Fig. 2 the

value of the subtree counter rooted at C[12] is C[12]× 22b +
(C[8]+C[9])×2b+(C[0]+C[1]+C[2]+C[3]). Let random

variable Yi be the portion of Xi contributed by flow f , and

Zi be the portion of Xi contributed by all other flows. Hence,

Xi = Yi + Zi.

Suppose the true flow size of f during the measurement

period is s, and the sum of all flow sizes is n. Each packet of

f has a probability 1
r

to be mapped to V [u] and increment it

by one. Therefore, we have the following lemma:

Lemma 1. Yi follows a binomial distribution:Yi ∼ B(s, 1
r
).

For the distribution of Zi, we have the following lemma:

Lemma 2. Zi follows a binomial distribution Zi ∼ B(n, k
m
).

Proof: Consider an arbitrary flow g. For a particular

virtual counter in T , it has a probability 1 − (m−1
r)

(mr)
= r

m

115

to be chosen by g. Therefore, one of the k virtual counters in

T is chosen by g is
(
k
1

)× r
m

= kr
m

. Hence, the probability that

a packet of flow g is encoded by any virtual counter in T is
kr
m

× 1
r
= k

m
. Therefore, Zi ∼ B(n− s, k

m
). Since n � s, we

have Zi ∼ B(n, k
m
).

Given the distributions of Yi and Zi, we know E(Yi) =
s
r

,

and E(Zi) =
nk
m

. Therefore, we have

E(Xi) = E(Yi + Zi) = E(Yi) + E(Zi) =
s

r
+

nk

m
.

Hence, we obtain

s = rE(Xi)− nkr

m
. (10)

Since the virtual counter array of f consists of r virtual

counters, which correspond to r subtree counters. The values

of those r subtree counters can roughly be treated as

independent and identically distributed random variables. We

can replace E(Xi) with
∑r−1

i=0 Xi

r
, and obtain an estimator for

s as follows

ŝ =
r−1∑
i=0

Xi − nkr

m
. (11)

B. Analysis of ŝ

We first provide and prove the following theorem:

Theorem 2. ŝ is an unbiased estimator for s.

Proof: We can calculate

E(ŝ) = E(

r−1∑
i=0

Xi)− ndr

m
= r(

s

r
+

nk

m
)− nkr

m
= s.

(12)

Therefore,ŝ is an unbiased estimator for s.

Next, we analyze the variance of ŝ. Since Yi and Zi follow

binomial distributions, we have

V ar(Yi) =
s

r
(1− 1

r
), V ar(Zi) =

nk

m
(1− k

m
). (13)

In addition, Yi and Zi are independent with each other. Hence,

Cov(Yi, Zi) = 0. Hence, we have

V ar(Xi) = V ar(Yi) + V ar(Zi) + 2Cov(Yi, Zi)

=
s

r
(1− 1

r
) +

nk

m
(1− k

m
).

(14)

Hence, we have

V ar(ŝ) = V ar(

r−1∑
i=0

Xi) = r2V ar(Xi)

= s(r − 1) +
nkr2

m
(1− k

m
)

= s(r − 1) +
nr2bdh

(d− 1)M
(1− bdh

(d− 1)M
),

(15)

where we have used m = (d−1)M
bd

and k = dh−1. In addition,

the relative standard error of the estimator is

StdErr(
ŝ

s
) =

√
s(r − 1) + nr2bdh

(d−1)M (1− bdh

(d−1)M)

s
.

(16)

Taking the partial derivatives of V ar(ŝ) with respect to M , r,

d, and b, respectively, we have

∂V ar(ŝ)

∂M
=

nr2bdh

M2
(−1 +

2bdh

(d− 1)M
),

∂V ar(ŝ)

∂r
= s+

2nrbdh

(d− 1)M
(1− bdh

(d− 1)M
),

∂V ar(ŝ)

∂b
=

nr2dh)

(d− 1)M
(1− 2bdh

(d− 1)M
),

∂V ar(ŝ)

∂d
=

nr2bdh−1

(d− 1)M
(h− d

d− 1
)(1− 2bdh

(d− 1)M
).

(17)

We know bdh

d−1 is close to the number of bits in each subtree

counter, which is generally much smaller than M . Therefore,
∂V ar(ŝ)

∂M
< 0,

∂V ar(ŝ)
∂r

> 0,
∂V ar(ŝ)

∂b
> 0, and

∂V ar(ŝ)
∂d

>

0, implying the variance of ŝ increases with the increase of

r, b or d, but decreases with the increase of M . Since the

counting range of each virtual counter array is proportional

to r2bh, there exists a tradeoff between estimation accuracy

and estimation range. Since the counting range of each virtual

counter array is proportional to r2bh, we suggest a parameter

setting such that r2bh is no less than the estimated largest size

of all flows.

C. Confidence Interval

When n is large enough, the binomial distribution Zi ∼
B(n, k

m
) approximates to a normal distribution, namely

Zi
approx∼ N(nk

m
, nk
m
(1 − k

m
)). Similarly, Yi

approx∼ N(s
r
, s
r
(1 −

1
r
)). Since the linear combination of independent random

variables that follow normal distributions also follow normal

distribution, Xi
approx∼ N(μ, σ2), where μ = nk

m
+ s

r
, and

σ2 = nk
m
(1− k

m
) + s

r
(1− 1

r
). According to (11), we know

ŝ
approx∼ N(s, s(r − 1) +

nkr2

m
(1− k

m
)). (18)

Therefore, the 1− α confidence interval for s is

ŝ± Zα
2

√
s(r − 1) +

nkr2

m
(1− k

m
), (19)

where Zα
2

is the 1 − α
2 percentile for the standard normal

distribution.

VI. COUNTER TREE BASED MAXIMUM LIKELIHOOD

ESTIMATION

In this section, we provide and analyze another estimator

for flow sizes called Counter Tree based Maximum likelihood

Estimation (CTM). Our analysis in Section V-A shows that

for an arbitrary virtual counter in f ’s virtual counter array,

a packet of f has a higher probability to be mapped to this

virtual counter than any packets from other flows. Therefore,

we can use maximum likelihood estimation method to estimate

the flow size of f , such that the probability for observing the

given counter values in f ’s virtual counter array is maximized.

116

A. CTM method

According to Lemma 2, the probability for Zi = zi is

P (Zi = zi) =

(
n

zi

)
(
k

m
)zi(1− k

m
)n−zi .

Since the value of n is known, and the values of m and k

are determined by prescribed system parameters M , b and d,

h, P (Zi = zi) can be written as a function of zi, which is

p(zi). Therefore, the probability for observing Xi = xi can

be calculated by

P (Xi = xi) = P (Yi + Zi = xi)

=

xi∑
zi=0

p(zi)P (Yi + Zi = xi|Zi = zi)

=

xi∑
zi=0

p(zi)P (Yi = xi − zi)

=

xi∑
zi=0

p(zi)

(
s

yi

)
(
1

r
)yi(1− 1

r
)s−yi

=

xi∑
zi=0

p(zi)q(s, yi),

(20)

where yi = xi − zi, q(s, yi) =
(
s
yi

)
(1
r
)yi(1− 1

r
)s−yi , and we

have used Yi ∼ B(s, 1
r
). Hence, the likelihood function for

observing X0 = x0, X1 = x1, . . . , Xr−1 = xr−1 is

L(s;x0, x1, . . . , xr−1) =
r−1∏
i=0

xi∑
zi=0

p(zi)q(s, yi). (21)

Taking the logarithm for both sides of the likelihood function,

we obtain the log-likelihood as follows:

lnL =
r−1∑
i=0

ln(

xi∑
zi=0

p(zi)q(s, yi)).

Using the logarithmic differentiation1, we can calculate

d
(
s
yi

)
ds

=

(
s

yi

) yi−1∑
j=0

1

s− j
.

Hence,

dq(s, yi)

ds
=

(
s

yi

)
(
1

r
)yi(1− 1

r
)s−yi(

yi−1∑
j=0

1

s− j
+ ln(1− 1

r
))

= q(s, yi)(

yi−1∑
j=0

1

s− j
+ ln(1− 1

r
)).

Finally, we obtain

d lnL

ds
=

r−1∑
i=0

∑xi

zi=0 p(zi)q(s, yi)(
∑yi−1

j=0
1

s−j
+ ln(1− 1

r
))∑xi

zi=0 p(zi)q(s, yi)
.

(22)

We find that d lnL
ds

is monotonically decreasing with respect

to s. We can use binary search to efficiently find a value of s

1Since [ln(f)]′ = f ′

f
, we know f ′ = f [ln(f)]′.

that makes d lnL
ds

= 0, which maximizes lnL and thereby L.

Therefore, we obtain an estimator for s as follows:

ŝ = argmax
s

{lnL} = {s|d lnL
ds

= 0}. (23)

B. Analysis of ŝ

Following the analysis in Section V-C, Xi
approx∼

N(μ, σ2). Hence, the probability density function of Xi is

fXi
(xi) =

1√
2πσ

e−
(xi−μ)2

2σ2 . Therefore, the likelihood function

for observing X0 = x0, X1 = x1, . . . , Xr−1 = xr−1 can also

be written as

L(s;x0, x1, . . . , xr−1) =

r∏
i=0

1√
2πσ

e−
(xi−μ)2

2σ2 .

Taking the logarithm of the likelihood function, we have

lnL =
r−1∑
i=0

ln(
1√
2πσ

e−
(xi−μ)2

2σ2),

=

r−1∑
i=0

− ln
√
2π − lnσ − (xi − μ)2

2σ2
.

The first and second order derivatives of lnL with respect to

s are

d lnL

ds
=

r−1∑
i=0

− r − 1

2r2σ2
+

xi − μ

rσ2
+

(xi − μ)2(r − 1)

2r2(σ2)2
,

d2 lnL

ds2
=

r−1∑
i=0

(
(r − 1)2

2r4(σ2)2
− 1

r2σ2
− 2(r − 1)(xi − μ)

r3(σ2)2

− (r − 1)2(xi − μ)2

r4(σ2)3
),

where we have used dμ
ds

= 1
r

, and dσ2

ds
= r−1

r2
. Hence,

E(
d2 lnL

ds2
) = r(

(r − 1)2

2r4(σ2)2
− 1

r2σ2
− (r − 1)2σ2

r4(σ2)3
)

= −2rσ2 + (r − 1)2

2r3σ4
,

since E(xi − μ) = 0 and E(xi − μ)2 = σ2. Hence, the fisher

information [26] I(s|x0, x2, . . . , xr−1) = −E(d
2 lnL
ds2

) =
2rσ2+(r−1)2

2r3σ4 . According to the asymptotic properties of

maximum likelihood estimators [26], we have

ŝ
d→ N(s,

1

I(s|x0, x2, . . . , xr−1)
) = N(s,

2r3σ4

2rσ2 + (r − 1)2
).

(24)

Therefore, the standard relative error is

StdErr(
ŝ

s
) =

√
2r3σ4

2rσ2+(r−1)2

s
, (25)

and the 1− α confidence interval for s is

ŝ± Zα
2

√
2r3σ4

2rσ2 + (r − 1)2
. (26)

117

VII. EXPERIMENTS

A. Experiment Setup

We have implemented the Counter Tree (CT) architecture

with both CTE and CTM estimation methods, and the

most related counter-based architectures randomized counter

sharing with MLM (MLM provides more accurate estimates

than CSE) [7], [9] and Counter Braids (CB) [5], [6]. We

use experiments to compare the performance of CTE, CTM,

MLM and CB. Prior work [7] has shown that the counter-

based architectures remarkably outperforms the bitmap-based

MSCBF. Hence, we only compare our counter architecture

with other counter-based solutions, and exclude MSCBF due

to page limitation of this paper. Without losing generality,

we use TCP flows for presentation, and we have obtained

similar results when carrying out experiments with other

types of flows. The network trace we use was captured by

Cisco’s NetFlow at the main gateway of our university, which

contains about 68 million TCP flows and 750 million packets.

During each measurement period, we assume approximately

10 million packets are processed which are generated by

about 1 million flows. The trace segment used for presentation

contains 10,051,379 packets and 1,070,632 flows. Hence the

average flow size is 9.39 packets/flow. We observe very similar

results when different trace segments are processed.

We conduct two sets of experiments. The first set is used

for comparing CT, MLM and CB. We vary the available

memory space M from 0.25MB, 0.5MB, 1MB to 2MB, which

translates to approximately 2bits/flow, 4bits/flow, 8bits/flow

and 16bits/flow, respectively. For Counter Braids, we follow

the same architecture adopted by [5]: A two-layer CB with

status bits, and 3 hash functions at both layers. The layer-1

counters are 8 bits deep and the layer-2 counters are 56 bits

deep. For MLM, we set the counter length to 6 bits, and the

size of each storage vector to 100 [7]. For CT, we implement

a tree with degree d fixed to 3. For fair comparison with

MLM, we let the number of virtual counters in CT equal

to the number of counters in MLM. Recall from (4) that

M ′ = 2
3M . Therefore, b = 2

3 × 6 = 4 bits. In addition, we set

the size r of each virtual counter array to 100. The results are

presented in Section VII-B and Section VII-C. The second set

of experiments aim at investigating the parameters’ impacts

on the performance of CT. We fix M = 0.5MB, and vary b,

d and r with different values. The results are given in Section

VII-D.

B. Processing Time for Encoding a Packet

The processing time for encoding a packet mainly results

from memory accesses to read and write counters and the

computations of hash values. A typical implementation of

Counter Braids requires 3 hash functions on each layer,

mapping each flow to the corresponding counters. To encode

a packet, the router needs to read the 3 associated counters on

the first layer, increment them by 1, and then write them back

to the memory. If any of the 3 counters overflows, the router

has to read and write another 3 counters on the second layer,

which requires another 3 hash computations. Hence, the lower

bounds of the number of memory accesses and the number

of hash computations by CB are 6 and 3, respectively. In

contrast, MLM aligns all counters on the same layer, and each

packet is hashed to only one counter, which requires 2 memory

access and 1 hash computation. CT also only requires 1 hash

computation to determine the virtual counter for a packet.

Recall that (9) gives an upper bound of amortized number of

memory accesses by CT. When b = 4, the amortized number

of memory accesses is bounded by 2 + 1
24−1 ≈ 2.13. In the

first set of experiments, we record the average number of

memory accesses and average number of hash computations

for encoding a packet by CB, MLM and CT. The results are

shown in Table I. We can see that CT is almost as efficient

as MLM, and they achieve approximately 3× efficiency of

CB. Moreover, the average number of memory accesses of

CT decreases when more memory (counters) are available

since each counter is shared by fewer flows, which reduces

the overflows.

memory size
(MB)

number of
memory accesses

number of
hash computations

CB MLM CT CB MLM CT

0.25 6.01 2 2.09 3.01 1 1

0.5 6.01 2 2.06 3.00 1 1

1 6.01 2 2.03 3.00 1 1

2 6.01 2 2.02 3.00 1 1

TABLE I: Comparison of average processing time for

encoding a packet by CB, MLM and CT.

C. Estimation Accuracy

We now present the estimation results by CB, MLM, CTE

and CTM when different sizes of memory are available.

The estimation results of CB2 are shown in Fig. 6 which

includes four plots for different values of M . Each point in

the plots represents an (s, ŝ) pair for a particular flow, where

the x coordinate is the true flow size s and the y coordinate

is the estimated flow size ŝ. The equality line, y = x, is

presented for reference: The closer a point is to the equality

line, the more accurate the estimate is. We can see that when

a very tight memory M = 0.25MB is available, CB cannot

produce any meaningful results. When M = 0.5MB and 1MB,

CB generates positively biased results that are all above the

equality line. When the available memory space increases to

16MB, CB can yield very accurate estimates as shown in the

fourth plot.

Fig. 7 presents the estimation results of MLM. MLM can

yield accurate estimates for small or moderate flows even

under a tight memory space, e.g., M = 0.25MB. However,

the counters large flows are mapped to may overflow and

therefore cannot encode all packets of those large flows. As a

result, MLM produces very negatively biased estimates for

large flows. Although the increase of M can enlarge the

estimation range of MLM to some extent, it does not address

2We find the estimation results provided by CB do not converge when the
available memory is tight, so we terminate the process after 1000 iterations.

118

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

CB (0.25MB)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

CB (0.5MB)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

CB (1MB)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

CB (2MB)

Fig. 6: • First Plot: estimation results by Counter Braids when M = 0.25MB. Each point in the plot represents an (s, ŝ) pair

for a particular flow, where the x coordinate is the true flow size s and the y coordinate is the estimated flow size ŝ. The

equality line, y = x, is presented for reference: A point closer to the equality line is more accurate. • Second Plot: estimation

results by Counter Braids when M = 0.5MB. • Third Plot: estimation results by Counter Braids when M = 1MB. • Fourth

Plot: estimation results by Counter Braids when M = 2MB.

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

MLM (0.25MB)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

MLM (0.5MB)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

MLM (1MB)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

MLM (2MB)

Fig. 7: Estimation results by MLM when M = 0.25MB, 0.5MB, 1MB, and 2MB, respectively.

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

CT (0.25MB)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

CT (0.5MB)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

CT (1MB)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

CT (2MB)

Fig. 8: Estimation results by CTE when M = 0.25MB, 0.5MB, 1MB, and 2MB, respectively.

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

CTM (0.25MB)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

CTM (0.5MB)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

CTM (1MB)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

CTM (2MB)

Fig. 9: Estimation results by CTM when M = 0.25MB, 0.5MB, 1MB, and 2MB, respectively.

119

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

0 1 2 3

re
la

ti
v

e
 b

ia
s

s (× 10
3
)

CTE (0.25MB)

CTE (0.5MB)

CTE (1MB)

CTE (2MB)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 1 2 3

re
la

ti
v

e
 s

ta
n

d
a
rd

 e
rr

o
r

s (× 10
3
)

CTE (0.25MB)

CTE (0.5MB)

CTE (1MB)

CTE (2MB)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

0 1 2 3

re
la

ti
v

e
 b

ia
s

s (× 10
3
)

CTM (0.25MB)

CTM (0.5MB)

CTM (1MB)

CTM (2MB)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 1 2 3

re
la

ti
v

e
 s

ta
n

d
a
rd

 e
rr

o
r

s (× 10
3
)

CTM (0.25MB)

CTM (0.5MB)

CTM (1MB)

CTM (2MB)

Fig. 10: • First Plot: the relative estimation bias Bias(ŝ
s
) of CTE. • Second Plot: the relative standard error StdErr(ŝ

s
) of

CTE. • Third Plot: the relative estimation bias Bias(ŝ
s
) of CTM. • Fourth Plot: the relative standard error StdErr(ŝ

s
) of

CTM.

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

b=4

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

b=6

0

2

4

6

8

10

12

0 2 4 6 8 10 12
ŝ
 (

×
 1

0
3
)

s (× 10
3
)

b=8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 1 2 3

re
la

ti
v

e
 s

ta
n

d
a
rd

 e
rr

o
r

s (× 10
3
)

b=4

b=6

b=8

Fig. 11: Impact of b on the performance of CTE, where M = 0.5MB, d = 3, and r = 100. • First Plot: estimation results of

CTE when b = 4. • Second Plot: estimation results of CTE when b = 6. • Third Plot: estimation results of CTE when b = 8.

• Fourth Plot: the comparison of relative standard error when b = 4, 6, 8.

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

r=50

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

r=100

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

r=150

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 1 2 3

re
la

ti
v

e
 s

ta
n

d
a
rd

 e
rr

o
r

s (× 10
3
)

r=50

r=100

r=150

Fig. 12: Impact of r on the performance of CTE, where M = 0.5MB, b = 4 and d = 3.

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

d=2

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

d=3

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ŝ
 (

×
 1

0
3
)

s (× 10
3
)

d=4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 1 2 3

re
la

ti
v

e
 s

ta
n

d
a
rd

 e
rr

o
r

s (× 10
3
)

d=2

d=3

d=4

Fig. 13: Impact of d on the performance of CTE, where M = 0.5MB, b = 4 and r = 100.

120

the problem fundamentally. For example, the estimation range

is about 6000 when M = 16MB.

The estimation results of CTE and CTM are given in Fig. 8

and Fig. 9, respectively. As expected, the employment of

Counter Tree architecture significantly extends the counting

range than MTM. Moreover, we observe that only the first

two layers of the tree are used (the effective height of the

tree is 2), implying that CT is capable of estimating much

larger flows. Both CTE and CTM can yield very accurate

estimates for all flows, including flows with very large sizes,

even under a tight memory, e.g., 2 bits per flow. The estimates

become more accurate when more memory space is available.

The relative estimation bias Bias(ŝ
s
) and the relative standard

error

√
V ar(ŝ)

s
of CTE and CTM are presented in Fig. 10. We

find that CTE and CTM in fact have comparable estimation

accuracy.

In summary, CB does not suite for traffic measurement

under a very tight memory, where it only produces

unmeaningful results; MLM cannot be applied to estimate

the sizes of large flows under a tight memory, which is a

serious problem since it is hard to predict the sizes of the

flows to be measured; In contrast, CT performs much better

than CB under a tight memory, and it significantly extends the

estimation range when compared with MLM.

D. Impact of b, r and d

We now vary the system parameters b, r and d to study

their impacts on the performance of CT, while M is fixed to

0.5MB. The parameters are set as follows:

1) Impact of b: we fix d = 3, r = 100, and vary b from 4,

6 to 8.

2) Impact of r: we fix b = 4, d = 3, and vary r from 50,

100 to 150.

3) Impact of d: we fix b = 4, r = 100 and vary d from 2,

3 to 4.

We find that those parameters affect CTE and CTM in a

similar way. Hence, we only present the estimation results

of CTE in Fig. 11, Fig. 12, and Fig. 13. It is clear that the

performance of CTE is not very sensitive to the change of b, r

or d. Although the estimation accuracy of CTE deteriorates a

little with the increase of b, r, or d as shown in the fourth plot

of each figure, CTE still yields very accurate results. Since the

increase of b, r or d makes each counter be shared by more

flows, which in turn introduces more noise, the estimation

accuracy degrades.

VIII. RELATED WORK

We have elaborated on the directly related work of counter

architectures in the introduction. In this section, we discuss

the prior art for a related but different problem, called flow

cardinality estimation, which is to estimate the number of

distinct elements in each flow during a measurement period. A

significant difference is that flow cardinality estimation needs

to remove duplicate elements.

Bitmap [14] is a compact data structure that can be used

for cardinality estimation. All bits are initialized to zeros.

When an element arrives, it is hashed to a bit that will be

set to one. Duplicate elements mapped to the same bit are

automatically filtered out. At the end of a measurement period,

the cardinality is estimated based on the size of the bitmap and

the ratio of zeroes in the bitmap.

MultiResolutionBitmap [15] employs an array of bitmaps,

each having a different sampling probability, to extend

estimation range. Probabilistic Counting with Stochastic

Averaging (PCSA) [16] (also known as FM sketch) maps each

element to the ith (zero-based indexing) bit with a probability
1

2i+1 . An FM sketch, also referred to as a register in the

literature, can give an estimation up to 2w, where w is the

number of bits in the register.

LogLog [17] and HyperLogLog [18], [27] reduce the size

of each register from 32 bits to 5 bits while retaining the

same estimation range of 232. As a result, there will be many

more registers available under the same memory constraint.

Therefore, LogLog and HyperLogLog (HLL) significantly

improve the estimation accuracy of PCSA.

IX. CONCLUSION

In this paper, we design a scalable counter architecture

Counter Tree. We propose a two-dimensional sharing scheme,

where each counter can be shared by multiple virtual counters

and each virtual counter can be shared by multiple flows. As a

result, Counter Tree significantly reduces memory requirement

and extends estimation range. To encode a packet, Counter

Tree only requires a little more than 2 memory accesses, which

is asymptotically optimal. We propose two offline decoding

methods to estimate flow sizes. The extensive experiments

with real network trace demonstrate that our methods can

yield very accurate estimates even under an extremely tight

memory space, e.g., 2 bits per flow. In our future work, we

will investigate the performance of Counter Tree when the

flows sizes follow different distributions. In addition, we will

explore the theoretic upper bound of estimation accuracy of

counter architectures under a given memory space.

X. ACKNOWLEDGMENTS

This work was supported in part by the National Science

Foundation under grant NeTS-1115548.

REFERENCES

[1] D. Shah, S. Iyer, B. Prabhakar, and N. McKeown, “Analysis of a
statistics counter architecture,” in Hot Interconnects 9, 2001. IEEE,
2001, pp. 107–111.

[2] S. Ramabhadran and G. Varghese, “Efficient implementation of a
statistics counter architecture,” in ACM SIGMETRICS Performance

Evaluation Review, 2003, vol. 31, pp. 261–271.
[3] Q. Zhao, J. Xu, and Z. Liu, “Design of a novel statistics counter

architecture with optimal space and time efficiency,” ACM SIGMETRICS

Performance Evaluation Review, vol. 34, no. 1, pp. 323–334, 2006.
[4] A. Kumar, J. Xu, and J. Wang, “Space-code bloom filter for efficient

per-flow traffic measurement,” IEEE Journal on Selected Areas in

Communications, vol. 24, no. 12, pp. 2327–2339, 2006.
[5] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,

“Counter Braids: A Novel Counter Architecture for Per-Flow
Measurement,” Proc. of ACM SIGMETRICS, June 2008.

[6] Y. Lu and B. Prabhakar, “Robust Counting Via Counter Braids: An
Error-Resilient Network Measurement Architecture,” Proc. of IEEE

INFOCOM, April 2009.

121

[7] T. Li, S. Chen, and Y. Ling, “Fast and Compact Per-Flow Traffic
Measurement through Randomized Counter Sharing,” Proc. of IEEE

INFOCOM, pp. 1799–1807, April 2011.
[8] T. Li, S. Chen, and Y. Qiao, “Origin-Destination Flow Measurement

in High-Speed Networks,” Proc. of IEEE INFOCOM, pp. 2526–2530,
2012.

[9] T. Li, S. Chen, and Y. Ling, “Per-flow traffic measurement through
randomized counter sharing,” IEEE/ACM Transactions on Networking,
vol. 20, no. 5, pp. 1622–1634, 2012.

[10] N. Wang, K. H. Ho, G. Pavlou, and M. Howarth, “An Overview
of Routing Optimization for Internet Traffic Engineering,” IEEE

Communications Surveys and Tutorials, vol. 10, pp. 36 – 56, 2008.
[11] S. Chen and K. Nahrstedt, “Maxmin Fair Routing in Connection-

Oriented Networks,” Proc. of Euro-PDS, pp. 163–168, 1998.
[12] S. Chen, Y. Deng, P. C. Attie, and W. Sun, “Optimal Deadlock Detection

in Distributed Systems Based on Locally Constructed Wait-for Graphs,”
Proc. of IEEE ICDCS, pp. 613–619, 1996.

[13] K. C. Claffy, H. W. Braun, and G. C. Polyzos, “A Parameterizable
Methodology for Internet Traffic Flow Profiling,” IEEE Journal on

Selected Areas in Communications, vol. 13, pp. 1481–1494, 1995.
[14] K. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A Linear-time

Probabilistic Counting Algorithm for Database Applications,” ACM

Transactions on Database Systems, vol. 15, no. 2, pp. 208–229, June
1990.

[15] C. Estan, G. Varghese, and M. Fish, “Bitmap algorithms for counting
active flows on high-speed links,” IEEE/ACM Transactions on

Networking, vol. 14, no. 5, pp. 925–937, 2006.
[16] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for

database applications,” Journal of Computer and System Sciences, vol.
31, pp. 182–209, September 1985.

[17] M. Durand and P. Flajolet, “Loglog counting of large cardinalities,”
Proc. of European Symposia on Algorithms, pp. 605–617, 2003.

[18] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: The
analysis of a near-optimal cardinality estimation algorithm,” Proc. of

AOFA, pp. 127–146, 2007.
[19] NEC and Corning achieve petabit optical transmission, Available at

http://optics.org/news/4/1/29.
[20] N. Duffield, C. Lund, and M. Thorup, “Estimating Flow Distributions

from Sampled Flow Statistics,” Proc. of ACM SIGCOMM, October 2003.
[21] A. Kumar, M. Sung, J. Xu, and J. Wang, “Data Streaming Algorithms

for Efficient and Accurate Estimation of Flow Size Distribution,” Proc.

of ACM SIGMETRICS, June 2004.
[22] N. Kamiyama and T. Mori, “Simple and Accurate Identification of

High-rate Flows by Packet Sampling,” Proc. of IEEE INFOCOM, April
2006.

[23] C. Estan and G. Varghese, “New Directions in Traffic Measurement and
Accounting,” Proc. of ACM SIGCOMM, August 2002.

[24] Y Qiao, T. Li, and S. Chen, “One Memory Access Bloom Filters and
Their Generalization,” Proc. of IEEE INFOCOM, pp. 1745–1753, 2011.

[25] W. Fang and L. Peterson, “Inter-as traffic patterns and their
implications,” in Proc. of Global Telecommunications Conference. IEEE,
1999, vol. 3, pp. 1859–1868.

[26] E. Lehmann and G. Casella, “Theory of Point Estimation,” Springer

Press, 1998.
[27] Q. Xiao, S. Chen, M. Chen, and Y. Ying, “Hyper-Compact Virtual

Estimators for Big Network Data Based on Register Sharing,” Proc. of

ACM SIGMETRICS, , no. 417-428, 2015.

122

