
SECURE CLOUD COMPUTING: DATA INTEGRITY, ASSURED DELETION, AND
MEASUREMENT-BASED ANOMALY DETECTION

By

ZHEN MO

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2015

© 2015 Zhen Mo

2

To my parents and my wife. Without you I cannot reach so far. I love you!

3

ACKNOWLEDGMENTS

It has been a long journey for me to complete my dissertation and the subsequent

Ph.D. After five years of hard work, finally I reach here. During this long journal, I

received a lot of help from my teachers, friends and family. Without them, I don’t know

whether I can achieve it.

The first and the most important person I would like to thank is my advisor, Dr.

Shigang Chen. Thank you so much for everything you’ve done to help me with my

research. You’ve always been patient and willing to assist me with any problem I

encountered. I sincerely appreciate all the work that you have done to make the Ph.D.

process painless.

I want to give my special gratitude to my Ph.D. committee members. They are Dr.

Jose Fortes, Dr. Sartaj Sahni, Dr. Ye Xia and Dr. Yuguang Fang. Thank you for your

advices and support during my study at University of Florida. I also want to thank the

researchers and colleagues in my research group. Their names are Ming Zhang, Tao Li,

Yan Qiao, Wen Luo, Yian Zhou, Min Chen, Xi Tao, You Zhou, Qingjun Xiao, Zhiping Cai,

and Liping Zhang.

Finally, I would like give my greatest thanks to my parents. Thank you for investing

so much in raising me. Thank you for bringing me everything. Thank you for all the

many, many happy memories. I also want to thank my wife, Jenny. Thank you for your

love and support. I am really grateful and lucky to have you as my life partner.

4

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS . 4

LIST OF TABLES . 7

LIST OF FIGURES . 8

ABSTRACT . 11

CHAPTER

1 INTRODUCTION . 13

1.1 Motivation . 13
1.2 Overview of The Dissertation . 15

2 ASSURED DELETION PROBLEM IN CLOUD COMPUTING 21

2.1 System Model . 21
2.2 Related Work . 21

2.2.1 File Assured Deletion . 21
2.2.2 Key Management in Hierarchical Access Control 23

2.3 Straightforward Two-party Solutions . 24
2.3.1 Master-Key Solution . 24
2.3.2 Individual-Key Solution . 25

2.4 Key Modulation Based Solution . 25
2.4.1 Threat Model . 27
2.4.2 Key Modulation Function . 27
2.4.3 Access Modification and Insertion 35
2.4.4 Managing Master Keys for Large File Systems 37
2.4.5 Security Analysis . 38
2.4.6 Experimental Results . 42

2.5 Recursively Encrypted Red-black Key Tree Based Solution 46
2.5.1 Threat Model . 47
2.5.2 Recursively Encrypted Red-black Key tree 47
2.5.3 Proof of Re-Balancing Complexity 52
2.5.4 Key Deletion and Insertion . 59
2.5.5 Security Analysis . 61
2.5.6 Evaluation . 64

2.6 Summary . 67

3 DATA INTEGRITY PROBLEM IN CLOUD COMPUTING 69

3.1 System Model . 69
3.2 Related Work . 69
3.3 Data Possession Verification and Basic Approach 72

5

3.4 Enabling Efficient Dynamic Updating in Cloud Computing 72
3.4.1 Cloud Merkle B+ Tree Based Design 73
3.4.2 Compact Merkle Hash Tree Based Design 75

3.5 Enabling Non-Repudiable Property in Cloud Computing 77
3.6 Efficient Dynamic Data Possession Verification Solution with Non-repudiable

Property . 78
3.6.1 Problem Statement . 78
3.6.2 Threat Model . 79
3.6.3 Interaction Between Client and Server 79
3.6.4 Solution Details . 81
3.6.5 Client Caching . 86
3.6.6 Security Analysis . 86
3.6.7 Evaluation . 89

3.7 Summary . 93

4 MEASUREMENT-BASED ANOMALY DETECTION IN CLOUD COMPUTING . 94

4.1 Motivation . 94
4.2 Related Work . 95
4.3 Virtual Sketches . 97

4.3.1 Virtual Sketches . 97
4.3.2 Virtual Sketch Vector . 98

4.4 Counting Distinct Elements in Network Flows 99
4.4.1 Online Operation . 99
4.4.2 Offline Estimation Based on Maximum Likelihood Method 101

4.5 Differentiated Estimation Accuracy . 103
4.6 Experiments . 105

4.6.1 Experiment Setup . 105
4.6.2 Estimation Accuracy . 106
4.6.3 Differentiated Estimation Accuracy 107
4.6.4 Varied Memory Availability . 109

4.7 Summary . 109

REFERENCES . 112

BIOGRAPHICAL SKETCH . 116

6

LIST OF TABLES

Table page

2-1 Complexity comparison, including client storage complexity, communication
complexity for deletion, and computation complexity for deletion, where the
latter two are combined in the same row because they have the same big-O
values. 43

2-2 Experimental comparison, including client storage overhead, communication
overhead for deletion, and computation overhead for deletion. 43

2-3 Whole file access overhead . 47

3-1 Summary of existing work . 71

4-1 Traffic trace . 105

7

LIST OF FIGURES

Figure page

2-1 Key modulation . 26

2-2 A modulation tree, where each leaf node is assigned a leaf modulator such
as x5, and each link is assigned a link modulator such as x1 through x4. The
path P(k) from the root to the leaf node k is drawn in bold lines; it is a graphical
representation of Mk = ⟨x1, x2, x3, x4, x5⟩. The nodes in the cut C are shaded.
Mc = ⟨x6⟩ is a prefix of Mk ′ for any leaf k ′ in the sub-tree rooted at c 31

2-3 Balancing the tree after k is deleted. The server sends the nodes with cross
inside to the client. 34

2-4 Balancing a new key e to the tree. The shape of the original tree does not have
the dotted links and dotted nodes. The dotted links are created after the insertion. 36

2-5 MT ∗(k) consists of nodes with cross inside. It contains P(k) shown by bold
lines and C shown by shaded nodes. 42

2-6 Communication overhead for deleting, inserting, or accessing a data item. It
includes all information that the client sends or receives for an operation. . . . 45

2-7 Client computation overhead for deleting, accessing, or inserting a data item. . 46

2-8 A Recursively Encrypted Key tree (RERK) constructed on 5 keys 48

2-9 LLr and LRr color change . 55

2-10 LLb and LRb rotation and color change . 55

2-11 y is the root of the deficient subtree . 56

2-12 Case 2. y and v ′
k are both black. v ′

k has two black children. 56

2-13 Case 3. y and v ′
k are both black. v ′

k has only one red child. Dotted line and
cycle indicate that the client cannot acquire the values of the node based on
this lookup. 57

2-14 Case 4: y and v ′
k are both black, and v ′

k has two red child 57

2-15 Case 5. y is black but v ′
k is red . 58

2-16 Example for key deletion in the RERK. Double-boxes in the left top represent
the node sequence from the leaf node to the root, and other nodes are their
siblings. 60

2-17 Example for key insertion in the RERK . 61

8

2-18 Average communication overhead between the client and the server. The x-axis
shows the total number of data items in logarithmic scale. The y-axis shows
the average communication overhead in KB. 66

2-19 Client computation overhead. The x-axis shows the number of data items in
logarithmic scale. The y-axis shows the average computational time of the
client. 67

2-20 Server computation overhead. The x-axis shows the number of data items
in logarithmic scale. The y-axis represents the average time for the server to
process a client request. 68

3-1 A cloud system. 69

3-2 The cloud merkle B+ tree . 74

3-3 A Coordinate Merkle Hash Tree (CMHT) constructed for 5 blocks 76

3-4 The partial CMHT from the root to w3 . 76

3-5 The procedure of preprocessing . 81

3-6 The procedure of data-possession verification 82

3-7 Algorithm for Judge . 84

3-8 The procedure of data-possession verification 84

3-9 Insert a new leaf node w ∗ into the CMHT, where w3 is the split node 85

3-10 Delete the leaf node w4 from the CMHT . 86

3-11 Comparing our solution (CMHT) and DPDP in terms of average or maximum
communication overhead for data-possession verification with client cache . . 91

3-12 Comparing our solution and DPDP in terms of average communication overhead
for updating a block with client cache . 92

3-13 Average and maximum computational overheads by a client to verify a proof
with client cache . 93

4-1 An illustrative example of constructing virtual sketches from the bit arrays with
l = 3 and m = 8. The first bit in each bit array is shown in bold text. To construct
virtual sketches, the bits in the arrays except for B[0] must be reused. The
figure shows that the bits in B[2] are each used four times in the virtual sketches,
and the bits in B[1] are each used twice. 97

9

4-2 An illustrative example of constructing virtual sketch vectors from the common
pool V with s = 3. Consider two flows, f and f ′. Three sketches are randomly
drawn from V to form Vf . The same happens for Vf ′. The virtual sketch V [2]
is used in both vectors. 99

4-3 Estimation accuracy of virtual maximum likelihood sketches with a single priority
in memory of 1 bit per flow . 107

4-4 Relative standard error of the estimations with a single priority in memory of 1
bit per flow . 107

4-5 Estimation accuracy of higher priority flows with g1 = 4 in memory of 1 bit per
flow . 108

4-6 Estimation accuracy of base priority flows with g0 = 1 in memory of 1 bit per
flow . 108

4-7 Relative standard error of the estimations with two priorities in memory of 1
bit per flow . 108

4-8 Estimation accuracy of higher priority flows with g1 = 4 in memory of 0.5 bit
per flow . 110

4-9 Estimation accuracy of base priority flows with g0 = 1 in memory of 0.5 bit per
flow . 110

4-10 Relative standard error of the estimations with two priorities in memory of 0.5
bits per flow . 110

4-11 Estimation accuracy of higher priority flows with g1 = 4 in memory of 3 bits
per flow . 111

4-12 Estimation accuracy of base priority flows with g0 = 1 in memory of 3 bits per
flow . 111

4-13 Relative standard error of the estimations with two priorities in memory of 3
bits per flow . 111

10

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

SECURE CLOUD COMPUTING: DATA INTEGRITY, ASSURED DELETION, AND
MEASUREMENT-BASED ANOMALY DETECTION

By

Zhen Mo

May 2015

Chair: Shigang Chen
Major: Computer Engineering

Cloud computing brings security concerns. In this work, we focus on the following

three security concerns in the cloud computing systems: the assured deletion problem,

the data integrity problem and the measurement based anomaly detection problem.

The first concern is called the assured deletion problem which is important but has

received much less attention: When users delete data in the cloud, how can they be

sure that the deleted data will never resurface in the future if the actual data removal is

preformed by someone else? How to ensure the inaccessibility of their data when the

data is not in their possession? In this work, we propose two methods to achieve two

party fine-grained assured deletion in cloud computing systems.

Another major security concern in cloud computing is about the integrity of user

data. By outsourcing data to an off-site storage system and removing local copies, cloud

users are relieved from the burden of storage, but in the meantime lose physical control

of their data. Can we trust the cloud service providers? Obviously we can’t. Meanwhile,

there is another complementary problem: When a client claims that the server has lost

their data, how can we be sure that the client is correct and honest about the loss? It is

possible that the client’s meta data is corrupted or the client is lying in order to blackmail

the server. In this work, we propose a non-repudiable data possession verification

solution that protects both the client and the server.

11

The third security concern in cloud computing is how to detect network security

threats. As the Internet moves into the era of big network data, it presents both

opportunities and technical challenges for traffic measurement functions, such as

flow cardinality estimation. We propose a new solution of virtual maximum likelihood

sketches for cardinality estimation. It has four technical contributions: virtual sketches,

virtual sketch vectors, a maximum likelihood method for cardinality estimation based

on per-flow virtual sketch vectors, and a method to achieve differentiated estimation

accuracy among multiple subsets of flows with different priorities.

12

CHAPTER 1
INTRODUCTION

1.1 Motivation

Cloud computing is a type of online service model. Instead of providing a product,

cloud computing provides services in a pay-as-you-go manner. Developers and users

do not need to know about the physical location and configuration of the system that

delivers the services. They can easily and quickly adjust the resources to their needs.

This elasticity of resources, without any pre-investment, attracts more and more people

join the cloud computing. Although envisioned as a promising service model, cloud

computing also brings security concerns. In this work, we focus on the following three

security problems in the cloud computing: the assured deletion problem, the data

integrity problem and the measurement based anomaly detection problem.

Assured Deletion Problem: In cloud storage systems, researchers usually try

to verify the existence and accessibility of the data in its entirety on the cloud servers.

On the other hand, we investigates a complementary problem that is important but has

received much less attention: When users delete data in the cloud, how can they be

sure that the deleted data will never resurface in the future if the actual data removal is

preformed by someone else? How to ensure the inaccessibility of their data when the

data is not in their possession?

One straightforward solution is to encrypt data before outsourcing. The client keeps

the encryption key, while the server keeps the encrypted data. To make sure that data

cannot be recovered in the future, the client only needs to securely delete the key. But

this simple approach has serious problems when the outsourced file system is large: If

the client uses one key to encrypt all files, whenever it deletes anything from any file,

it will have to re-encrypt everything else with a new key because otherwise the whole

file system would become inaccessible after the old key is deleted. If the client uses a

different key for each file, there will be numerous keys for the client to manage, which

13

may become a serious burden particularly for light-weight client devices such as tablets.

More importantly, the client has to change the key of a file even when it deletes just

one data item, e.g., a retired employee record from a large roster, an erroneous entry

of a sensor data file, a sensitive transaction in a secret financial book, an email from

a mail backup file, or one record from a large database file. To make one data item

inaccessible, the client has to retrieve the entire encrypted file from the server, decrypt

it, remove one item, permanently delete the old key, and choose a new key to re-encrypt

the entire file. To avoid the above overhead, one way is to assign a different key to each

data item in each file, but the number of keys may become astronomical. Especially

when the data-item size is comparable to the key size, as the volume of keys rivals the

volume of data itself, the benefit of outsourcing diminishes. In this work, we present two

solutions to help the clients efficiently delete the data permanently.

Data Integrity Problem: Another major security concern in cloud computing is

about the integrity of user data. By outsourcing data to an off-site storage system and

removing local copies, cloud users are relieved from the burden of storage, but in the

meantime lose physical control of their data. Can we trust the cloud service providers?

Even if we assume that service providers will not deliberately hinder clients’ correct

access to their own data (after all this is the providers’ lifeline business), involuntary

security breaches may occur. For example, a provider may lose user data due to

hardware failure, human mistakes or external intrusion. Not having the data, the provider

may attempt to hide such an incident in order to save reputation. Meanwhile, there is

another complementary problem: When a client claims that the server has lost their

data, how can we be sure that the client is correct and honest about the loss? It is

possible that the client’s meta data is corrupted or the client is lying in order to blackmail

the server. In addition, most previous work relies on sequential indices. However,

the indices bring significant overhead to bind an index to each block. We propose to

replace sequential indices with much flexible non-sequential coordinates. The binding

14

of coordinates to data blocks is performed through a Coordinate Merkle Hash Tree

(CMHT). Based on CMHT, we can improve both the average and the worst-case update

overhead by simplifying the updating algorithm.

Measurement-based Anomaly Detection Problem: The third security concern

in cloud computing is how to detect network security threats. As the Internet moves into

the era of big network data, it presents both opportunities and technical challenges for

traffic measurement functions, such as flow cardinality estimation, which is to estimate

the number of distinct elements in each flow. Cardinality estimation has important

applications in intrusion detection, resource management, billing and capacity planning,

as well as big data analytics. Due to the practical need of processing network data in

high volume and high speed, past research has strived to reduce the memory overhead

for cardinality estimation on a large number of flows. One important thread of research

in this area is based on sketches. The representative work includes the FM sketches

[29], the LogLog sketches [24], and the HyperLogLog sketches [28]. Each sketch

requires multiple bits and many sketches are needed for each flow, which results in

significant memory overhead. This work proposes a new method of virtual maximum

likelihood sketches to reduce memory consumption. First, we design virtual sketches

that use no more than two bits per sketch on average. Second, we design virtual sketch

vectors that consider all flows together. Based on these new constructs, we design

a flow cardinality solution with an online operation module and an offline estimation

module. We also consider the problem of differentiated estimation that gives flows of

high priorities better precision in their cardinality estimations. We implement the new

solution and perform experiments to evaluate its performance based on real traffic

traces.

1.2 Overview of The Dissertation

In this work, we first introduce the cloud computing system. Cloud computing

has been gaining firm traction in the marketplace as major high-tech companies rush

15

to offer cloud services, such as Amazon, Google cloud storage, and Apple iCloud.

There is obvious benefit of outsourcing data to the cloud and utilizing services in

the cloud: Its professional data storage, backup, and processing services provide

a high level of efficiency, reliability and economy-of-scale that individual users and

companies can hardly match at a comparable cost. With a pay-as-you-go model, the

users save money by paying only for the resources they actually use, while offloading

the maintenance burden. They can easily adjust resources to their needs in real time.

This elasticity in resource provision, without any pre-investment, are attracting more and

more entrepreneurs and business companies to replace their IT infrastructure with a

cloud-based one. Although envisioned as a promising service model, cloud storage also

brings security concerns.

In Chapter 2, we study the assured deletion problem. The prior art relies on two

approaches to relieve the key management burden from the client. The first approach

is to shift key management burden to third-party servers (also called ephemerizers for

timed deletion) [48, 48, 56]. Assured deletion relies on the security of third-party servers.

However, if we cannot fully trust the cloud service providers, shouldn’t we place the

same benefit of doubt on the third-party servers? For example, if a Federal agency has

a court order to force the cloud and the third party to surrender the data and keys of a

company under investigation, no matter how hard the client tries to delete its data, it will

be useless. (In comparison, our solution will ensure the effectiveness of deletion up to

the moment of the client’s device being seized.) Moreover, the third-party servers cause

issues of performance degradation and availability because their key service is needed

for all data operations.

The second approach is to reduce the number of keys by using each key to protect

multiple files which should be deleted at the same future time [48, 48], which belong

to the same class and are expected to be deleted together [48], or which share the

same access policy [56]. This approach cannot support efficient fine-grained deletion

16

on individual data items of each file in general-purpose file systems, because any such

deletion will require an old key to be replaced by a new key and all files under that old

key to be re-encrypted.

If we adapt the prior work [48, 48, 56] for a two-party solution by merging the

function of the third party to the client and support fine-grained deletion by letting the

client keep one key for each data item, then the problem of too many keys comes back.

So in this work, we presents two solutions for two-party fine-grained assured deletion. It

does not rely on any third-party server, yet the client only keeps one or a small number

of keys, regardless of how big the file system is. The client should be able to delete each

individual data item without causing any other data to be re-encrypted, and the deletion

is permanent — no one can recover already-deleted data, not even after gaining control

of both the client device and the cloud server.

The first solution is based on key modulation function. The client stores a master

key and the cloud server stores a set of modulators in a data structure named key

modulation tree. We develop a novel key modulation function that allows the client to

delete each individual data item without having to re-encrypt the rest of the file even

though the master key has been changed. In the first solution, we view the integrity

issues in data storage and data access as complementary problems that have been

solved in [5, 26, 52, 58], which can provide proof of data possession in the cloud and

allow the client to correctly access each data item.

Next, we present a second solution based on a novel multi-layered key structure,

called Recursively Encrypted Red-black Key tree (RERK). The RERK design has the

following four goals: (1) Confidentiality — after the keys are outsourced to the cloud,

the RERK should be able to preserve the confidentiality of the keys. (2) Integrity and

correctness — if the keys are lost by the cloud or a compromised cloud server does

not send the client the correct key material, the client should be able to detect it. (3)

Efficiency — the worst-case communication and computation cost of RERK operations

17

are logarithmically bounded. (4) Key assured deletion — if the client wants to delete a

key in RERK, the key will be made unrecoverable.

In Chapter 3, we focus on the data integrity problem in cloud computing. This

problem stems from the fact that the clients lost the physical control of their data. In

order to solve this problem, many solutions are proposed [5, 6, 11, 25, 34, 52, 58].

However, most of the previous works [5, 6, 11, 34, 52] can only apply to static data

files. Though Wang et al . propose a dynamic version of PoR model in [58] and

Erway et al . present a dynamic PDP model in [25], unfortunately, the performance

of their solutions are not tightly bounded. Accordingly, we first design a new Cloud

Merkle B+ Tree (CMBT) to assist the verification procedure, whose worst-case

computation/communication overhead for inserting/deleting/updating a data block is

O(log n), comparing with O(n) worst-case overhead in [25, 58].

Then, we find that most current designs involve sequential data indices. The user

data is divided into a sequence of blocks, which are sequentially indexed from 1, 2,

..., to n. Index numbers are not needed for data access; data blocks are normally

accessed based on filenames and byte offsets in the files. The indices are used in the

data-possession verification process. For instance, each time the user will randomly

select a subset of indices, and then it will challenge the cloud server to present a proof,

showing that the server possesses the data blocks with the selected indices. To prevent

the cloud server from cheating, the indices are cryptographically bound to the data

blocks either explicitly through a homomorphic data signature [5, 52] or implicitly through

an authentication data structure [25, 58]. Those signatures are used to generate the

integrity proof. The problem of explicitly binding an index number in each signature is

that it effectively prohibits dynamic update of user data. For example, if the user deletes

a block with index i , the indices of all subsequent blocks are reduced by one and thus

their signatures will have to be recomputed. To address this issue, other solutions

implicitly bind indices to blocks through a remotely-stored cryptographic data structure,

18

e.g., skip list [25] or Merkle tree [58], where the index of a block is essentially its position

among all leaves in the postorder traversal of the skip list or Merkle tree. Accordingly,

in order to further bind performance of inserting/deleting and updating a data block in

our solution, we present another new data structure named Coordinate Merkle Hash

Tree (CMHT). Different from the existing designs, CMHT is constructed based on

coordinate instead of indices. With the new design, we optimize the communication and

computational overhead.

Next, we expands data integrity protection by covering an important complementary

problem: When a user claims a data loss, how can we be sure that the user is correct

and honest about the loss? If the meta data stored by the users is corrupted or if a

user tries to blackmail the cloud by lying about data loss, how can the cloud prove its

innocence? In order to solve this problem, we design a new meta data to realize the

non-repudiation property that allows the cloud and the users to supervise each other, so

that users are able to detect whether the cloud has lost their data and the cloud is able

to fend off the false claims of data loss from users. Comparing with previous work, our

solution can protect the rights of both sides.

In Chapter 4, we pay attention to the cardinality estimation in cloud computing.

There are practical needs for reducing per-flow memory overhead in cardinality

estimation. If the cardinality estimation function is implemented on a network processor

chip, because the on-chip memory is typically small and the number of flows in

modern networks can be very large, we will have to minimize per-flow overhead in

order to accommodate more flows. In the previous application example of purchase

associations, if there are hundreds of thousands of different products, the number of

possible purchase associations (flows) can in tens of billions. For such a large number

of flows, memory overhead may become a problem.

we proposes a new cardinality estimation method, called virtual maximum likelihood

sketches, to reduce memory consumption by cardinality estimation on a large number of

19

flows. It embodies two ideas. The first idea is called virtual sketches, which use no more

than two bits per sketch on average, while retaining the functional equivalence to an FM

sketch. The second idea is called virtual sketch vectors, which combine the sketches of

all flows into a mixed common pool. Together, these two ideas can drastically reduce the

overall memory overhead. Based on virtual sketches and virtual vectors, we design a

cardinality estimation solution with an online operation module and an offline estimation

module. For a system where some flows are more important than others, we investigate

the problem of differentiating estimation accuracy, depending on the priorities of the

flows. We implement the new solution and perform experiments based on real traffic

traces. The results demonstrate that the new solution can work reasonably well in very

tight space and has the ability of differentiating flows of different priorities.

20

CHAPTER 2
ASSURED DELETION PROBLEM IN CLOUD COMPUTING

2.1 System Model

A cloud system consists of two parties: (1) The clients are individual users or

companies. They have a large amount of data to be stored, but do not want to maintain

their own storage systems. By outsourcing their data to the cloud and deleting the local

copies, they are freed from the burden of storage management. (2) The cloud servers

have a huge amount of storage space and computing power. They offer resources to

clients on a pay-as-you-go manner.

After putting data on cloud servers, the clients lost direct control of their data.

They may query and retrieve their data, or change the data by sending requests to the

servers. Upon receiving the requests, the servers will perform operations for insertion,

modification, deletion, etc. Due to possible external/internal compromise, the clients

cannot fully trust the servers. Hence, it is important for the cloud-system design to have

built-in mechanisms that guard the security of clients’ data against any misbehavior of

the servers.

2.2 Related Work

We discuss the related work in greater details. There are two categories. The first

one is about file assured deletion. The second one is about hierarchical key tree.

2.2.1 File Assured Deletion

One approach to make data stored on remote servers disappear is called assured

file deletion. It is first designed to ensure the privacy of the past messages transferred

between two parties, such as emails or SMS. As these messages may be cached on the

servers, one may want the assurance that they will be inaccessible after an expiration

time. Perlman proposes the first approach for assured file deletion in [48]. Together

with the followup works [3, 4, 20, 47, 55], they form a so-called the Ephemerizer family

of solutions. These solutions first encrypt each message with a data key. Then the

21

data keys whose expiration times are the same will be encrypted by a public key

called ephemeral public key, which is managed by one or more trusted third parties,

named “the ephemerizers.” As the ephemeral private keys are only known to the

ephemerizer, deleting one ephemeral private key will make the data keys encrypted by

the corresponding ephemeral public key unrecoverable. So the messages encrypted

by the data keys will become inaccessible. However, these solutions require trusted

third parties to perform their deletion operations; if the third parties are down, certain

operations will not be able to perform. Risks arise when the third parties are internally or

externally compromised.

Following the Ephemerizer family of solutions, instead of relying on centralized third

parties to manage the keys, Geambasu et al . design a decentralized approach called

the Vanish [31]. In their solution, the sender first encrypts the data D with a random

key K to obtain a ciphertext C . Then the sender uses threshold secret sharing [53] to

split the key K into N shares k1, k2, ..., kN . The parameter threshold determines how

many of the N shares are required to reconstruct the key. For example, if N = 10

and the threshold is 5, then anybody can reconstruct the key after acquiring any 5 of

the 10 shares. Next, the sender picks at random an access key L to generate N node

indices I1, ..., IN , and store each share ki on a node with index Ii in the distributed hash

tables (DHTs) [54]. As the DHTs evolve dynamically with new nodes joining and old

nodes leaving, each node in the DHTs has a lifetime. With disappearing of the nodes

in DHTs, the keys will become “self-destructed” and accordingly the data will become

unrecoverable. Finally the sender encapsulates L, C , N and threshold into a Vanish

Data Object (VDO) and sends the VDO to the receiver, protected by PGP or GPG.

After receiving the VDO, the receiver can acquire the message as long as the VDO has

not expired. However the Vanish is vulnerable to Sybil attacks [23]. It has been proved

by Wolchok et al . [60] that attackers can continuously crawl the DHTs and save each

22

stored value before it expires. They can efficiently recover keys for more than 99% of the

messages.

Researchers proposes different approaches to fix the security flaws of the Vanish.

Castelluccia et al . design a solution named EphPub [13]. Their approach is built on

the Domain Name System (DNS) and its caching mechanism. Instead of distributing

the encryption keys into the DHTs, they stores each bit of the key into different DNS

revolvers. As the cache entries have a fixed life time, the key information will be erased

once the entry has expired. Compared with the Vanish, their approach is immune to

Sybil attacks and easier to implement.

2.2.2 Key Management in Hierarchical Access Control

Akl and Taylor [2] investigate how to efficiently and securely entitle users with

different rights to access classes organized in a hierarchical manner, where classes can

be file folders and files in a file system. That is, if a user is entitled to access a certain

class, the user obtains the access right to not only that class, but also its descendants in

the hierarchy. After the seminal work of [2], there have been a large number of follow-up

papers on key management in hierarchical access control [7, 9, 14–18, 22, 32, 51, 64].

We want to stress that the hierarchical key management in this work is designed for

a different purpose: assured deletion, not hierarchical access control. With a different

purpose, the requirements and the operations are also very different. Most notably,

we use a key tree and they do not. The details of key operations and particularly the

semantics of those operations share little common ground between our work and theirs.

Specially, Grolimund et al . [32] propose a cryptographic tree structure called

Cryptree to realize hierarchical access control in file systems operating on untrusted

storage. With the cryptographic tree, they can grant different users access rights to

visit different files or folders without revealing the identities of other users. Although

RERK and Cryptree are both tree like data structures, they are different in the following

two aspects: First, as they have totally different design goals, they have different key

23

updating algorithms. For example, in Cryptree, when a key becomes dirty, they only

need to replace it with a new key. But in RERK, modifying a key will make the changes

from the leaf to the root. Second, Cryptree does not implement any re-balancing

algorithm, so the worst case asymptotic complexity of lookup for a key will be O(n).

However, RERK is a self balanced red-black tree whose lookup and update complexity

are tightly bounded by O(log n).

2.3 Straightforward Two-party Solutions

We first analyze two simple two-party solutions to give the motivation for our new

approach of key modulation. We use {m}k as the notation for encrypting m with key k .

2.3.1 Master-Key Solution

Consider an arbitrary client file of n data items, denoted as {m1, m2, ..., mn}. The

client selects a master key K . From the master key, it derives a different data key

ki = PRF (K , i) for each item mi , where PRF is a pseudo random function. The client

encrypts each data item with its corresponding key, {miH(mi)}ki , i ∈ [1, n], where H is

a collision-resistant hash function. Given two different inputs, the hash outputs will be

different with practically-assured high probability. H(mi) serves the purpose of integrity

protection. After encryption, the client stores the master key and sends all ciphertext to

the cloud.

The advantage of the above master-key solution is that the client only needs to

store one key. However, if the client wants to delete a data item mj , it must delete the

master key K in order to delete kj . If K is not deleted and it is revealed at a later time

(possibly due to external attack that compromises the client’s computer), kj can be

recovered through PRF (K , j). But the problem is that, if the master key is changed, the

keys for all other data items are changed, too. Hence for each deletion, after choosing a

new master key K ′, the client has to re-generate all remaining data keys PRF (K ′, i) and

re-encrypt all remaining data items, with O(n) communication/computation overhead.

24

2.3.2 Individual-Key Solution

To address the above problem, the client may adopt a different solution. It generates

a sequence of n independent keys, denoted as {k1, k2, ..., kn}, where ki is used to

encrypt mi , 1 ≤ i ≤ n. The client sends all encrypted data to the cloud while keeping the

keys by itself.

If the client wants to delete a data item mj , it finds the corresponding key kj , deletes

it permanently from local storage, and sends the server a request to delete cj . Since kj

is known only by the client, deleting kj will make cj undecryptable, regardless of whether

the client removes cj timely or not.

The advantage of the individual-key solution is that its communication/computation

overhead for deletion is O(1), but its weakness is that the client may have to keep too

many keys, particularly when the size of each data item is comparable to the key size

— in this case, the total volume of keys rivals the data itself, which would defeat the

purpose of outsourcing.

2.4 Key Modulation Based Solution

Can we design a new approach to avoid the problems of the above solutions,

while obtaining the benefits of both: small client storage overhead and small deletion

overhead? To achieve the former, we let the client only keep a master key K . On the

one hand, all data keys must be derived from this master key, and when any data key

k is deleted, the master key K must be deleted in order to make sure that k is not

recoverable in the future. On the other hand, even as the master key is changed to

a new value K ′, we want other data keys to stay the same, such that the client does

not have to re-encrypt all other data items after one item is deleted. This requirement

necessarily means that the data keys are not determined solely by the master key in the

way that the previous solution of PRF (K , i) does.

Our idea is called key modulation, as illustrated in Figure 2-1. The data keys

are derived from the master key K and a set M of values called modulators. More

25

Figure 2-1. Key modulation

specifically, each data key k is determined by K and a unique subset Mk of modulators

through a one-way function k = F (K ,Mk). The master key is stored at the client,

while the modulators are stored in the cloud, unencrypted. To delete k , the client will

permanently delete K and choose a new master key K ′. In addition, it will adjust the

values of O(log n) modulators in M −Mk such that all other data keys k ′ stay the same,

i.e., k ′ = F (K ′,M ′
k ′) = F (K ,Mk ′), where Mk ′ is the subset of modulators for k ′ before

deletion and M ′
k ′ is the same subset after deletion (with one modulator having a new

value).

For the deleted key k , since we do not change any modulator in Mk , F (K ,Mk) ̸=

F (K ′,Mk). Therefore, even if the new master key K ′ is compromised in the future, the

deleted key k = F (K ,Mk) is not recoverable after K is permanently deleted.

The challenge is to design a key modulation function F such that after one data key

is deleted and the master key is changed, we can modify O(log n) modulators to keep

the remaining (n − 1) data keys unchanged.

26

2.4.1 Threat Model

Consider a data item that is deleted from the cloud by a client at time T . We adopt

the worst-case threat model that gives attackers the following capabilities: (1) they

may have full control of the server at all time, and (2) they may compromise the client’s

device after time T .

The first attacker capability reflects the possibility that the server may be compromised

before T . Hence, the attackers have access to everything on the server, and they are

able to control the actions of the server in response to the client requests.

The second attacker capability reflects the possibility that the client’s device may be

compromised after T . In this case, the attackers have access to everything stored on

the client side, including any key materials that the client has. (If the attackers manage

to compromise the client’s device before T , they will know the data, which has not been

deleted yet.)

2.4.2 Key Modulation Function

The design of our key modulation function has three components: (1) the formula

of the function F (K ,Mk), (2) how to select the modulators Mk for each data key k , and

(3) which modulators to change and how to change for each deletion. This section will

present the design of these components.

Modulated hash chain. We formulate the function F (K ,Mk) as a modulated hash

chain. The classical hash chain has the following format [38]:

H(...H(H(H(K)))...).

We treat Mk as an ordered list of modulators, denoted as ⟨x1, x2, ..., xl⟩. A modulated

hash chain is defined as follows:

F (K ,Mk) = H(...H(H(K ⊗ x1)⊗ x2)...⊗ xl), (2–1)

27

where ⊗ is the XOR operator and H is a one-way, collision-resistant hash function that

produces pseudo-random output. Let ∅ be an empty list and M
(i)
k , 0 ≤ i ≤ l , be a prefix

of Mk , containing the first i modulators in Mk . An equivalent recursive definition of the

modulated hash chain is given below:

F (K , ∅) = K ;

F (K ,M
(i)
k) = H(F (K ,M

(i−1)
k)⊗ xi),∀ 1 ≤ i ≤ l .

(2–2)

Let S (l−i)
k , 0 ≤ i ≤ l , be a suffix of Mk , containing the last l − i modulators in Mk . In

(2–1), if we treat H(K ⊗ x1) as the new key, we have the following lemma:

Lemma 1. F (K ,Mk) = F (H(K ⊗ x1),S
(l−1)
k).

Lemma 2. F (K ,Mk) = F (F (K ,M
(i)
k),S

(l−i)
k), 0 ≤ i ≤ l .

Proof. We prove it by induction. The lemma holds when i = 0 because M
(0)
k = ∅,

S
(l)
k = Mk , and F (K , ∅) = K by definition (2–2). The inductive assumption is that the

lemma holds for a certain value i . We prove the case of i + 1 as follows:

F (F (K ,M
(i+1)
k),S

(l−i−1)
k)

= F (H(F (K ,M
(i)
k)⊗ xi+1),S

(l−i−1)
k) by (2–2)

= F (F (K ,M
(i)
k),S

(l−i)
k) by Lemma 1

= F (K ,Mk) by inductive assumption

This completes the induction proof.

After a single modulator in Mk is changed from xi to x ′i , we denote the resulting list

as Mk |xi → x ′i .

Lemma 3. The output of a modulated hash chain F (K ,Mk) will stay the same after the

master key is changed from K to K ′ and the value of a single modulator xi , 1 ≤ i ≤ l , is

changed to

x ′i = xi ⊗ F (K ,M
(i−1)
k)⊗ F (K ′,M

(i−1)
k). (2–3)

28

That is,

F (K ,Mk) = F (K ′,Mk |xi → x ′i). (2–4)

Proof. By Lemma 2, we have

F (K ,Mk) = F (F (K ,M
(i)
k),S l−i

k),

F (K ′,Mk |xi → x ′i) = F (F (K ′,M
(i)
k |xi → x ′i),S

l−i
k).

Hence, in order to prove (2–4), it suffices to prove

F (K ,M
(i)
k) = F (K ′,M

(i)
k |xi → x ′i).

By (2–2), we have F (K ,M
(i)
k) = H(F (K ,M

(i−1)
k)⊗ xi), and

F (K ′,M
(i)
k |xi → x ′i)

= H(F (K ′,M
(i−1)
k)⊗ x ′i)

= H(F (K ′,M
(i−1)
k)⊗ xi ⊗ F (K ,M

(i−1)
k)⊗ F (K ′,M

(i−1)
k))

= H(F (K ,M
(i−1)
k)⊗ xi) = F (K ,M

(i)
k).

This completes the proof.

Key modulation tree. We organize all modulators in a tree structure, based on

which we will determine a subset Mk for each data key k . The hierarchical tree structure

allows us to share modulators among the data keys in such a way that we only need to

modify O(log n) modulators in order to keep (n−1) keys unchanged after deleting a data

key.

Before outsourcing a file F of n data items to the cloud, the client randomly picks

a master key K and then builds a modulation tree, which is a complete binary tree with

each internal node having two children and each leaf node representing a data key. The

client assigns each leaf node a randomly-selected leaf modulator, and assigns each link

in the tree a link modulator, as illustrated in Figure 2-2. No modulator is assigned to any

internal node.

29

Each leaf node encodes a data key. For convenience, we refer to the leaf that

encodes key k as “node k”. Let P(k) be the path from the root to node k . The client

turns the link modulators along the path and the leaf modulator at the end of the path

into an ordered list Mk , and computes a data key k = F (K ,Mk) by applying the

modulated hash chain. Note that the path P(k) is essentially a graphical representation

of the modulator list Mk , as illustrated in Figure 2-2 by the bold lines.

Each data key k is used to encrypt a data item m in F . The ciphertext is {m||r ,H(m||r)}k ,

where r is a globally unique number that is appended to m to make it unique. To

generate r , the client maintains a global counter whose value is increased whenever the

client inserts a new block to any file. We will simply treat m||r as m, knowing that there

are no identical data blocks after the appendix of r . The ciphertext may be stored at the

leaf node, and a double linked list can be used to keep an order amongst the encrypted

data items. It may also be stored in a separate data structure, and pointers are used to

map between the leaf nodes and the corresponding ciphertexts.

The client keeps the master key and sends the modulation tree as well as all

ciphertexts to the cloud. One requirement is that all modulators in the tree should

have different values. As the modulators are randomly selected by the client, if the

size of modulators is large enough (such as 160 bits), the chance of collision will be

exceedingly small. However, if the client ever selects a duplicate modulator during

deletion/insertion, as the tree is now in the cloud, the server should inform the client to

re-perform the operation with a different modulator. If the server does not do so, there

will be no harm to assured deletion because the client will refuse to operate on duplicate

modulators from the server (see the proof of Theorem 2.2).

Modulator adjustment algorithm for deletion. We describe a modulator ad-

justment algorithm that modifies O(log n) modulators to keep all data keys except for

the deleted one unchanged after the client changes the master key. We also prove the

30

Figure 2-2. A modulation tree, where each leaf node is assigned a leaf modulator such
as x5, and each link is assigned a link modulator such as x1 through x4. The
path P(k) from the root to the leaf node k is drawn in bold lines; it is a
graphical representation of Mk = ⟨x1, x2, x3, x4, x5⟩. The nodes in the cut C
are shaded. Mc = ⟨x6⟩ is a prefix of Mk ′ for any leaf k ′ in the sub-tree rooted
at c .

security of this algorithm that ensures the deleted date key is unrecoverable even if the

new master key is revealed in the future.

Suppose the client wants to delete a data item m,1 which is identified by a record

ID that is carried by m, the byte offset in the file,2 or other means of indexing. The

client sends the cloud server a request, including the ciphertext of m and indexing

information (such as a record ID). The server finds the encrypted item in its storage and

the corresponding leaf node k in the modulation tree. It constructs a sub-tree of size

O(log n), denoted as MT (k), consisting of nodes on the path from the root to leaf k and

the siblings of these nodes. The set of siblings, denoted as C , serves as a (n − 1)-cut

that separates all (n − 1) leaf nodes other than node k from the root, as illustrated by

1 Recall that we view the integrity issues in data storage and data access as
complementary problems that have been solved in [5, 26, 52, 58], which can provide
proof of data possession in the cloud and allow the client to correctly access each data
item.

2 The server divides the byte offset by the item size to identify which data item should
be deleted. If variable item sizes are allowed, the size of each data item is stored with
the ciphertext, such that the cloud server may sequentially scan the encrypted items and
accumulate the sizes until the specified offset is reached.

31

Figure 2-2, where MT (k) consists of nodes with cross inside and C consists of shaded

nodes. The client expects all modulators in MT (k) to have different values. Otherwise, it

will not accept MT (k) for further operation.

The server sends MT (k) to the client, including only the modulators. The client

extracts Mk from the path P(k), computes k = F (K ,Mk), and uses k to decrypt

the ciphertext into {mH(m)}. Only if the decryption is successful, i.e., the hash of m

matches H(m) from the ciphertext, the client accepts MT (k).

The client updates the master key from K to K ′, but it will not change any link

modulators in MT (k). Let P(c) to be path from the root to a node c ∈ C , and Mc be

the list of link modulators along P(c). Note that Mc is a prefix of Mk ′ for any data key

k ′ encoded by a leaf node within the sub-tree rooted at c . See the circled sub-tree in

Figure 2-2 for an example. The client computes

δ(c) = F (K ,Mc)⊗ F (K ′,Mc). (2–5)

The client sends {δ(c) | c ∈ C} back to the sever. For each node c in the cut C , if it is

an internal node, the sever adjusts the modulators on its child links, (c , d) and (c , d ′), as

follows:

xc,d := xc,d ⊗ δ(c)

xc,d ′ := xc,d ′ ⊗ δ(c),

(2–6)

where “:=” is the assignment operator, xc,d is the link modulator on (c , d), and xc,d ′ is the

link modulator on (c , d ′). If c is a leaf (i.e., the sibling of k), the server adjusts the leaf

modulator:

xc := xc ⊗ δ(c), (2–7)

where xc is the leaf modulator of node c .

We have the following theorems. Theorem 2.1 ensures the correctness of our

solution in not re-encrypting other data items after the master key is changed.

32

Theorem 2.2 ensures the security of our solution in making the outsourced data

unrecoverable after deletion. Their proof can be found in the Section 2.4.5.

Theorem 2.1. For an arbitrary leaf node k , after the master key is changed and the

modulator adjustment algorithm is performed on MT (k), all data keys remain un-

changed except for the key k .

Theorem 2.2. Suppose the key modulation function F uses a collision-resistant hashing

function H. That is, it is polynomially infeasible to find two hashing inputs that produce

the same output or find a hash input to produce a specific output. For an arbitrary leaf

node k , after the master key is changed and the modulator adjustment algorithm is

performed on MT (k), the data key k becomes unrecoverable in polynomial time even if

the new master key is revealed in the future.

We want to point out that the proof of Theorem 2.2 shows that the server cannot

temper with modulators to circumvent the deletion. See the Section 2.4.5 for details.

The size of MT (k) sent from the server to the client is O(log n). The size of

{δ(c) | c ∈ C} sent from the client to the server is also O(log n). Hence, the communication

complexity of the modulator adjustment algorithm is O(log n). The computation

overhead is dominated by the computation of {δ(c) | c ∈ C}, which can be done in

O(log n) time: Because F (K ,M
(i)
k) = H(F (K ,M

(i−1)
k) ⊗ xi), we can recursively compute

F (K ,M
(i)
k), 0 ≤ i ≤ l , in O(log n) time, where l is the size of Mk , which is O(log n).

Similarly, we can recursively compute F (K ′,M
(i)
k), 0 ≤ i ≤ l , in O(log n) time. Any node

c in the cut C is the sibling of a node on P(k). That means Mc has a prefix of M(j)
k for

some j ∈ [0, l), plus one extra link modulator x∗. Hence, F (K ,Mc) can be computed

in O(1) time from H(F (K ,M
(j)
k) ⊗ x∗). Similarly, F (K ′,Mc) can also be computed

in O(1) time. The size of C is O(log n). Overall, it will take O(log n) time to compute

{δ(c) | c ∈ C}, including the time spent on F (K ,M
(i)
k) and F (K ′,M

(i)
k), 0 ≤ i ≤ l .

Balancing algorithm. In order to keep the worst-case performance at O(log n), we

want to restore the modulation tree back to a complete binary tree after deletion. Let t

33

Figure 2-3. Balancing the tree after k is deleted. The server sends the nodes with cross
inside to the client.

be the last leaf node at the last level of the modulation tree. See Figure 2-3. After we

delete node k , we will move t to the location of node k .

The server sends the client the path P(t) from the root to node t, together with the

sibling s of t. The client extracts Ms from P(s), which is the same path as P(t) except

for the last link. Let p be the parent of s and t. The client extracts Mp from P(p), which is

the sub-path of P(s) without the last link. The balancing algorithm has two steps:

• Step 1: remove node t from the tree: The client computes a new leaf modulator for
node s as follows:

x ′s = F (K ′,Mp)⊗ H(F (K ′,Mp)⊗ xp,s)⊗ xs , (2–8)

where xs is the original modulator for node s, and xp,s is the link modulator on
(p, s). The client sends x ′s to the server, which removes node t from the tree,
replaces parent p with node s , and assigns x ′s as the new leaf modulator for node
s. Below we prove that the data key encoded by node s will stay unchanged. The
new key is computed from the modulators in Mp and x ′s . Let “+” be the operator that

34

concatenates two lists.

F (K ′,Mp + ⟨x ′s⟩)
= H(F (K ′,Mp)⊗ x ′s) by (2–2)
= H(F (K ′,Mp)⊗ F (K ′,Mp)⊗ H(F (K ′,Mp)⊗ xp,s)⊗ xs)

= H(H(F (K ′,Mp)⊗ xp,s)⊗ xs)

= H(F (K ′,Mp + ⟨xp,s⟩)⊗ xs) by (2–2)
= F (K ′,Mp + ⟨xp,s , xs⟩) by (2–2)
= F (K ′,Ms),

where Ms is the original modulator list for s before removal of t.

• Step 2: insert node t to the place of node k : This step is performed only if node
t is not node k . Let p′ be the parent of node k in MT (k), and Mp′ be the list of
modulators extracted from P(p′). The client randomly selects a link modulator for
(p′, t). The client computes a new leaf modulator for node t as follows:

x ′t = F (K ′,Mp + ⟨xp,t⟩)⊗ F (K ′,Mp′ + ⟨xp′,t⟩)⊗ xt , (2–9)

where xp,t is the link modulator on (p, t) when t is at its original location. The client
will send xp′,t and x ′t to the server. Below we prove that the data key encoded by t

remains the same after it is moved to the new location.

F (K ′,Mp′ + ⟨xp′,t , x ′t⟩)
= H(F (K ′,Mp′ + ⟨xp′,t⟩)⊗ x ′t) by (2–2)
= H(F (K ′,Mp′ + ⟨xp′,t⟩)⊗ F (K ′,Mp + ⟨xp,t⟩)⊗

F (K ′,Mp′ + ⟨xp′,t⟩)⊗ xt)

= H(F (K ′,Mp + ⟨xp,t⟩)⊗ xt)

= F (K ′,Mp + ⟨xp,t , xt⟩) by (2–2),

where Mp + ⟨xp,t , xt⟩ is the list modulator for node t at its original location.
The communication complexity of the balancing algorithm is O(log n), including
P(t) of size O(log n) from the server to the client and O(1) modulators from the
client to the server. Eq. (4–2) and (2–9) require O(log n) hashes. Hence, the time
complexity is also O(log n).

2.4.3 Access Modification and Insertion

Although the goal of this work is to support assured deletion, a practical system

should also allow access, modification and insertion of outsourced data. For the

purpose of completeness, we discuss these issues below.

35

Figure 2-4. Balancing a new key e to the tree. The shape of the original tree does not
have the dotted links and dotted nodes. The dotted links are created after
the insertion.

To access a data item, the client makes a request to the server with appropriate

indexing information such as a record ID or byte offset. The server identifies the

encrypted item and the corresponding leaf node k in the modulation tree.3 From

the path P(k), the server extracts a modulator list Mk . It sends the ciphertext and Mk to

the client, which computes a data key k = F (K ,Mk), and uses the key to decrypt the

ciphertext into mH(m). The client computes the hash of m and compares with H(m)

from the ciphertext. They will match only if the key is correct.

To modify a data item, the client first fetches the item from the server using the

access procedure above. It modifies the item, re-encrypts it using the same data key,

and sends the ciphertext back to the server.

To insert a data item m′, the client makes a request to the server for inserting a new

leaf in the modulation tree. Let t ′ be the location in the tree where the insertion happens.

For a full binary tree, the server sets t ′ to be the first leaf node at the last level; if there

are leaves at the last two levels, the server sets t ′ to be the first leaf at the second-to-last

level. See Figure 2-4. The server sends the client the path P(t ′) from the root to node t ′.

Let M−
t′ be Mt′ without the last modulator xt′.

3 Again we assume the correct return of requested item is enforced by another branch
of research [5, 26, 52, 58], which ensures integrity in data storage and access.

36

The client replaces node t ′ with a new internal node p, and sets t ′ and a new leaf e

as the children of p. It assigns random modulators to leaf e and links (p, t ′) and (p, e). It

reassigns a new leaf modulator to node t ′ as follows:

x ′t′ = F (K ,M−
t′)⊗ F (K ,M−

t′ + ⟨xp,t′⟩)⊗ xt′.

Following the same method as used in (2.4.2), it can be shown that the data key

encoded by node t ′ is unchanged with the new leaf modulator (after the insertion of

p). Next, the client computes the data key encoded by the new leaf e, i.e., F (K ,M−
t′ +

⟨xp,e , xe⟩). It then uses the key to encrypt m′. The client sends the following information

to the server: the encrypted new item, the modulators for (p, t ′), (p, e), t ′, and e, as

well as the location (such as byte offset) in the file where the ciphertext should go.

The server updates the modulation tree, stores the ciphertext, and keeps the mapping

between node e and the ciphertext.

The communication/time complexity is O(log n) for access, modification, and

insertion.

2.4.4 Managing Master Keys for Large File Systems

Even though only one master key is needed for each file, the number of files in

a large file system can be enormous, which means the number of master keys to be

maintained by the client may still represent a problem. One solution is to outsource both

data keys and master keys to the cloud through two levels of modulation trees. Each file

has a master key and a modulation tree. If we treat all master keys as the data items of

a meta file, we can introduce a so-called meta modulation tree and use a higher-level

control key as the master key of the meta file. To access a file, the client will first use the

control key to access the meta modulation tree in order to retrieve the master key for

the file, and then use the master key to access the modulation tree of that file. Deleting

a master key from the meta modulation tree will make the entire file unrecoverable.

Deleting a data item of a file involves two steps: first deleting the data key from the

37

modulation tree of the file, and then modifying the master key of the file in the meta

modulation tree. Instead of storing just a single control key, the client may also divide the

master keys of all files into groups based on the directory structure or file types, and use

a separate control key and a corresponding meta modulation tree for each group.

If a client has many users sharing the same file system, the master keys (or control

keys) may be stored in a shared local secure storage for users to access. Alternatively,

the client may designate a local proxy server to manage these keys. When a user wants

to operate on data, its request is redirected to the proxy, which will act on the user’s

behalf to access or update the data before forwarding the data to the user.

2.4.5 Security Analysis

Security definition. For the security definition, a solution for deleting data in a

cloud system is secure if all data that have been deleted before time T will be provably

unrecoverable in polynomial time even when the adversary is able to gain full control of

servers before T and full control of clients after T , assuming the existence of a collision-

resistant hash function such that it is polynomially infeasible to find two hash inputs that

produce the same output or find a hash input to produce a specific output.

Security proofs. Proof of LEMMA 1: Let S (l−i)
k , 0 ≤ i ≤ l , be a suffix of Mk ,

containing the last l − i modulators in Mk . In (2–1), if we treat H(K ⊗ x1) as the new key,

it becomes

F (K ,Mk) = F (H(K ⊗ x1),S
(l−1)
k). (2–10)

Next we prove by induction that

F (K ,Mk) = F (F (K ,M
(i)
k),S

(l−i)
k), 0 ≤ i ≤ l . (2–11)

(2–11) holds when i = 0 because M
(0)
k = ∅, S (l)

k = Mk , and F (K , ∅) = K by definition

(2–2). The inductive assumption is that (2–11) holds for a certain value i . We prove the

38

case of i + 1 as follows:

F (F (K ,M
(i+1)
k),S

(l−i−1)
k)

= F (H(F (K ,M
(i)
k)⊗ xi+1),S

(l−i−1)
k) by (2–2)

= F (F (K ,M
(i)
k),S

(l−i)
k) by (2–10)

= F (K ,Mk) by inductive assumption

Now according to (2–11), we have

F (K ,Mk) = F (F (K ,M
(i)
k),S l−i

k),

F (K ′,Mk |xi → x ′i) = F (F (K ′,M
(i)
k |xi → x ′i),S

l−i
k).

Hence, in order to prove (2–4), it suffices to prove

F (K ,M
(i)
k) = F (K ′,M

(i)
k |xi → x ′i).

By (2–2), we have F (K ,M
(i)
k) = H(F (K ,M

(i−1)
k)⊗ xi), and

F (K ′,M
(i)
k |xi → x ′i)

= H(F (K ′,M
(i−1)
k)⊗ x ′i)

= H(F (K ′,M
(i−1)
k)⊗ xi ⊗ F (K ,M

(i−1)
k)⊗ F (K ′,M

(i−1)
k))

= H(F (K ,M
(i−1)
k)⊗ xi) = F (K ,M

(i)
k).

This completes the proof. 2

Proof of THEOREM 1: Consider an arbitrary leaf node k ′ (other than k). The path P(k ′)

from the root to node k ′ must pass a node c in the cut C . Node c divides P(k ′) into a

sub-path from the root to c and a sub-path from c to leaf k ′, which correspond to a prefix

Mc of the modulator list Mk ′ and a suffix, respectively. Hence, Mc = M
(i−1)
k ′ for a certain

value of i , where 1 < i ≤ l and l is the number of modulators in Mk ′. The suffix, denoted

as S
(l−i+1)
k ′ , contains the last (l − i + 1) modulators in Mk ′, including the leaf modulator of

39

node k ′. Hence, Eq. (2–5) can rewritten as

δ(c) = F (K ,M
(i−1)
k ′)⊗ F (K ′,M

(i−1)
k ′). (2–12)

When the server receives δ(c), it performs either (2–6), which updates the modulator on

the child link belonging to P(k ′), or (2–7), which updates the leaf modulator if c is a leaf

node. In either case, the updated modulator belongs to Mk ′, and it is right after the prefix

M
(i−1)
k ′ . Hence, it is also denoted as xi . Based on (2–6), (2–7) and (2–12), the new value

of this modulator is

x ′i = xi ⊗ F (K ,M
(i−1)
k ′)⊗ F (K ′,M

(i−1)
k ′).

No other modulator in Mk ′ has been changed. By Lemma 3, we have

F (K ,Mk ′) = F (K ′,Mk ′ |xi → x ′i).

The data key k ′ remains unchanged. 2

Proof of THEOREM 2: There are two cases: i) the server sends correct MT (k) to the

client, and ii) the server sends incorrect MT (k). According to the threat model, we

assume that an attacker may have compromised the server before deletion, allowing it to

send incorrect information to the client, and that the attacker may also compromise the

server after deletion, allowing it to learn the new master key T ′ (but not the old one T).

Let l be the size of Mk .

Case i): The modulator adjustment algorithm does not change any modulator in

MT (k). Since the path P(k) from the root to node k is entirely in MT (k), the algorithm

does not change any modulator in Mk , which is extracted from P(k).

We prove F (K ,Mk) ̸= F (K ′,Mk) w.h.p by contradiction. Suppose F (K ,Mk) =

F (K ′,Mk). By (2–2) we have

H(F (K ,M
(l−1)
k)⊗ xl) = H(F (K ′,M

(l−1)
k)⊗ xl),

40

which means F (K ,M
(l−1)
k) = F (K ′,M

(l−1)
k) w.h.p; otherwise, we would have found

two different hash inputs that produce the same output. Recursively applying the

same token, we have F (K ,M
(1)
k) = F (K ′,M

(1)
k), which is H(K ⊗ x1) = H(K ′ ⊗ x1).

We have found two different inputs, K ⊗ x1 and K ′ ⊗ x1, producing the same hash

output, contradicting with the theorem assumption. Therefore, it must be true that

F (K ,Mk) ̸= F (K ′,Mk) w.h.p. Note that even if F (K ,Mk) = F (K ′,Mk) occurs in

practice (whatever low probability it is), the client can simply pick a different K ′ such that

F (K ,Mk) ̸= F (K ′,Mk).

Because F (K ,Mk) ̸= F (K ′,Mk), knowing K ′ will not help an attacker figure out

k = F (K ,Mk) after K is permanently deleted and thus unknown. This is because if

the attacker had a polynomial way to hash K ′ and some modulators into key k , it would

break the assumption that it is polynomially infeasible to find a hash input for a specific

output.

Case ii): Suppose an attacker controls the sever to send incorrect MT (k). To begin

with, the server can send MT (k ′) for a different leaf node k ′, and try to trick the client

into deleting k ′, while keeping other keys (including k) unchanged under a new master

key K ′. After K ′ is revealed, the attacker would be able to recover k . However, according

to the modulator adjustment algorithm, after the client receives MT (k ′), it computes

the data key k ′ = F (K ,Mk ′), which will not be able to correctly decrypt the ciphertext

{mH(m)}k . Consequently, the client will reject MT (k ′). Let MT ∗(k) be what the client

actually receives. To avoid being rejected, MT ∗(k) must contain the correct path P(k)

from the root to the leaf, carrying correct Mk to produce the correct key k in order to

correctly decrypt {mH(m)}k .

Since MT ∗(k) consists of P(k) and the cut C , if P(k) must be correct, it will leave C

the only place that the server can manipulate. As illustrated in Figure 2-5, the server can

replace the modulators on the path P(k̂) to a different leaf node k̂ with those of Mk . By

doing so, the key encoded by node k̂ becomes the same as the key by node k . After k is

41

Figure 2-5. MT ∗(k) consists of nodes with cross inside. It contains P(k) shown by bold
lines and C shown by shaded nodes.

deleted, if the key encoded by node k̂ is kept unchanged, the deleted key is recoverable.

In general, no matter how the server changes the modulators outside of P(k), as long as

F (K ,Mk) = F (K ,Mk̂), we must have Mk = Mk̂ because otherwise we would have two

different sets of hash inputs that produce the same output.

Suppose path P(k̂) intersects with path P(k) at node p. See Figure 2-5. Let a be

the child node of p on path P(k), and c be the child node on path P(k̂). Node c is a

sibling of node a, and thus it belongs to the cut C . It follows that both link (p, a) and link

(p, c) belong to MT ∗(k). Because Mk = Mk̂ , the modulators on these two links must

be the same, which violates the requirement that all modulators should be different, and

hence the client will reject MT ∗(k).

Combining the above two cases, if the server sends correct MT (k), the deleted

key k will be unrecoverable; if the server sends incorrect MT (k) to make k recoverable,

the client will reject the received MT ∗(k), which prevents the modulator adjustment

algorithm from being executed. Hence, the theorem is proved. 2

2.4.6 Experimental Results

We use experiments to evaluate the practicality of our solution and compare it

with other solutions in terms of client storage overhead, communication overhead,

and computation overhead. The communication overhead consists of all information

that the client receives and sends for an operation, but the overhead does not include

42

the data item itself if the operation is to access (fetch) a data item. The computation

overhead measures the time that the client spends on a certain operation; note that

most computation is done at the client side in our solution (as well as in other solutions).

The end-to-end access delay is not measured because it is not unique to our approach

but a consequence of using remote cloud storage.

Implementation. We implement cloud storage servers on Amazon EC2. Each

server instance has the following parameters: 2 virtual cores, each with 2 Compute

Units; 7.5 GB RAM; 850 GB instance storage; Microsoft Windows Server 2008 R2 Base

64-bit. Note that although Amazon S3 provides cloud storage services, developers

cannot directly run programs on Amazon S3. We use an ordinary desktop computer in

our lab for the client, with the following configuration: Intel Core i7-3770 3.40 GHz, 8 GB

RAM, 1 TB driver, and Windows 8 Professional 64-bit.

We use Secure Hash Algorithm-1 (SHA-1) [12] in the modulated hash chain. SHA-1

produces a 160-bit message digest. Each modulator is also 160-bit long. We choose

Advanced Encryption Standard (AES) [21] to encrypt each data item. AES has a key

size of 128, 192, or 256 bits. In our implementation, we use 128-bit keys, taken from the

output of the key modulation function.

Table 2-1. Complexity comparison, including client storage complexity, communication
complexity for deletion, and computation complexity for deletion, where the
latter two are combined in the same row because they have the same big-O
values.

Complexities Master-key Individual-key Our work
Client storage O(1) O(n) O(1)
Comm./Comp. O(n) O(1) O(log n)

Table 2-2. Experimental comparison, including client storage overhead, communication
overhead for deletion, and computation overhead for deletion.

Overhead Master-key Individual-key Our work
Client storage 16 Bytes 1.53 MB 16 Bytes
Comm. overhead 391 MB 0 1.61 KB
Comp. overhead 5.5 minutes almost 0 0.24 ms

43

Performance comparison. We compare our two-party solution with the master-key

solution and the individual-key solution, which do not require a third party, either. The

difference between our solution and those requiring third parties [48, 48, 56] is more

fundamental than performance alone, as we have discussed their security problem

under the threat model of this work in the introduction. Moreover, they use one key

to protect multiple files, and therefore do not support efficient fine-grained deletion. If

they are used to delete individual data items, their performance will be similar to the

master-key solution, assuming each of their keys protects one file.

• Complexity Comparison
Table 4-1 gives the complexity comparison for one file of n data items. The
master-key solution has O(1) client storage complexity but O(n) communication/computation
complexities. The individual-key solution has O(1) communication/computation
complexities but O(n) client storage complexity. In comparison, our approach has
both low client storage complexity of O(1) and low communication/computation
complexities of O(log n).
If we consider a file system of m files. The client storage complexity of the
master-key solution will be O(m), but that of our solution will still be O(1).

• Experimental Comparison
We further compare the deletion overhead of the three solutions through real
experiment. The results are shown in Table 2-2. Suppose the size of each data
item is 4KB (typical sector size of newer hard disks) and the total number of data
item is 105. The master-key solution and our solution only need to store a master
key of 16 bytes. But the individual-key solution has to store 105 keys of 1.53MB
in total; note that 1.53MB is the storage overhead for one file (in order to support
fine-grained deletion), and the file system may have numerous files.
The master-key solution has a communication overhead of 391MB and a
computation overhead of 5.5 minutes in order to retrieve and re-encrypt the
entire file. In comparison, our solution has a communication overhead of 1.61KB
and a computation overhead of just 0.24 ms.

Communication Overhead. Next, we validate the practicality of our modulation

tree by measuring the scalability of our solution in communication overhead from

small file size (10 data items) to large size (107 items). The results are presented in

Figure 2-18, where the x-axis shows the total number of data items in logarithmic scale,

and the y-axis shows the average communication overhead in KB. To measure the

44

communication overhead of deletion or access, we perform the operation on each data

item once and take the average overhead. Insertion into the modulation tree always

happens at the same location in the tree, and averaging is not necessary.

 0

 0.5

 1

 1.5

 2

 2.5

 3

101 102 103 104 105 106 107

A
ve

ra
ge

 c
om

m
. o

ve
rh

ea
d

(K
B

)

Total number of data items

Delete a data item
Access a data item

Insert a data item

Figure 2-6. Communication overhead for deleting, inserting, or accessing a data item. It
includes all information that the client sends or receives for an operation.

The communication overhead for deletion is modest even for very large files of 107

items, and the overhead for access or insertion is much lower. Clearly, all measured

communication overheads increase logarithmically with respect to the number of data

items, demonstrating good scalability.

Computation Overhead. We further validate the practicality of our modulation tree

by measuring the scalability of our solution in computation overhead from small file size

(10 data items) to large size (107 items). The results are presented in Figure 2-7, where

the x-axis shows the number of data items in logarithmic scale, and the y-axis shows the

average client computational time in ms. The computation overhead for deletion is small,

under 0.3ms for very large files of 107 items. The overhead for access and insertion is

again much smaller. All measured computation overheads increase logarithmically with

respect to the number of data items.

45

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

101 102 103 104 105 106 107

A
ve

ra
ge

 c
om

p.
 o

ve
rh

ea
d

(m
s)

Total number of data items

Delete a data item
Access a data item

Insert a data item

Figure 2-7. Client computation overhead for deleting, accessing, or inserting a data item.

Whole File Access Overhead. It is a common operation for a client to fetch a

whole file from a remote file system. With our solution, the client will take the extra steps

of fetching the entire modulation tree and computing all data keys from the tree, which

causes communication/computation overhead. Fetching the file itself and decrypting the

file are normal, necessary expenses that have to be taken in any encrypted cloud-based

file system, and therefore do not count as overhead due to the design of our solution.

We define the communication overhead ratio as the communication overhead

divided by the size of the file, and the computation overhead ratio as the time of

computing all data keys from the modulation tree divided by the time of decrypting

the file. The size of each data item is 4KB. The experimental results are shown in Table

2-3. Both the communication overhead ratio and the computation overhead ratio are

largely insensitive to the file size. The former is less than 1%, and the latter is less than

0.3%.

2.5 Recursively Encrypted Red-black Key Tree Based Solution

In Key modulation based solution, we consider the integrity protection as a solved

problem. But in recursively encrypted key tree based solution, we involve the integrity

protection into the solution.

46

Table 2-3. Whole file access overhead
NO. of data items Comm. ratio Comp. ratio
10 0.0093 0.0004
102 0.0097 0.0024
103 0.0098 0.0025
104 0.0098 0.0025
105 0.0098 0.0027
106 0.0098 0.0027
107 0.0098 0.0027

2.5.1 Threat Model

Consider a data item D that is deleted by a client at time T from a cloud server. We

adopt the worst-case adversary model that gives attackers the following capabilities:

(1) they may have full control of the server at all time and (2) they may compromise the

client’s host after time T .

The first attacking capability reflects the possibility that the server may be

compromised before T . Hence, the attackers have access to everything on the server,

and they are able to control the actions of the server in response to the client’s requests.

The second attacking capability reflects the possibility that the client’s host may be

compromised after T . In this case, the attackers have access to everything stored on

the client side, including any key materials remained on the client.

2.5.2 Recursively Encrypted Red-black Key tree

Before presenting our approach, we first introduce a novel data structure called

Recursively Encrypted Red-black Key tree (RERK). The RERK design has the following

four goals: (1) Confidentiality — after the keys are outsourced to the cloud, the RERK

should be able to preserve the confidentiality of the keys. (2) Integrity and correctness

— if the keys are lost by the cloud or a compromised cloud server does not send the

client the correct key material, the client should be able to detect it. (3) Efficiency — the

worst-case communication and computation cost of RERK operations are logarithmically

bounded. (4) Key assured deletion — if the client wants to delete a key in RERK, the key

will be made unrecoverable.

47

Figure 2-8. A Recursively Encrypted Key tree (RERK) constructed on 5 keys

Before we describe the deletion algorithm in RERK, we must first explain how the

RERK is constructed step by step for confidentiality, integrity, and efficiency, which are

critical ingredients to set the stage for efficient assured deletion in a cloud environment.

Confidentiality. The client first constructs a red-black tree with n leaves. We

denote the n leaves from left to right as w1, w2, ..., wn. Each leaf wi represents a key ki

in the sequence K . Recall that keys in K are used to encrypt data items. We call them

data keys.

We use letter subscribes (such as wa, wb and wc in Figure 2-8) to denote internal

nodes, which helps distinguish them from leaves. For each internal node, the client

randomly chooses an auxiliary key (used for encrypting other keys). Finally, the

client arbitrarily picks a metakey k∗. Notice that the red color will show up as grey in

black-n-white print in Figure 2-8 as well as other figures.

We use wx to denote an arbitrary node in the tree, where x may be a number or a

letter. Let kx be the key of wx , which may be a data key or an auxiliary key, depending on

whether wx is a leaf node or an internal node. Let px be the key of wx ’s parent node. We

48

define a value called Encrypted Key (EK) for node wx as follows:

EK(wx) =

 {kx}k∗ if wx is the root

{kx}px
otherwise

(2–13)

It is the node’s key encrypted by its parent’s key, except for the root, whose key is

encrypted by the metakey. An example is shown in Figure 2-8, where the EK value of

each node is shown inside the box representing that node.

The client will then outsource the EK values of all nodes to the cloud. After that, it

securely deletes all data/auxiliary keys and only keeps the metakey k∗.

All data/auxiliary keys are now stored in the cloud, but they are recursively

encrypted from the root of RERK to the leaves. Only the client holds the metakey to

decrypt them.

Key Lookup: When the client wants to look up for the i th data key ki , it will send

a lookup request to the cloud server that handles this client. The server will reply with

a node sequence from the i th leaf node wi to the root and their siblings in RERK. The

siblings are used to ensure the integrity and correctness of the node sequence which

will be explained next. By decrypting the keys recursively, the client can acquire the key

ki .

Integrity and correctness. By recursive encryption, we minimize the amount of

metadata that the client has to store, yet we are able to keep the confidentiality of the

outsourced keys. However, a critical problem needs to be addressed before we can

complete the tree construction: The client has no idea whether the key information sent

back from the server is correct or not. Those EK values may have been corrupted or

tampered intentionally by an intruder. So the client needs a mechanism to verify the

integrity and correctness of the key information from the server.

The Merkle hash tree [43] has been widely used for integrity verification. However,

we cannot directly combine the Merkle tree with our RERK because the former cannot

49

verify index information: When a client wants to delete ki , the server may send back

the node sequence from another leaf node wj to the root, which will pass the Merkle

hash check and thus be able to trick the client to delete kj instead. To address this

problem, we adopt the rank idea [26] — which was originally applied to skip lists — into

the Merkle tree construction.

Besides the EK value, each node wx in the RERK carries two more values: a rank

r(wx) and a tag t(wx). The rank is defined as the number of leaf nodes in the subtree

rooted at wx . For example, in Figure 2-8, r(w1) is 1, r(wb) is 3, and r(wa) is 5. The tag

of a leaf node wi is computed by hashing EK(wi) and r(wi), where a collision resistant

hash function should be used. The tag of an internal node wx is computed by hashing

the concatenation of EK(wx), r(wx), and the tags of two child nodes. More specifically,

let wl and wr be the child nodes of wx , and we define

t(wx) = h(EK(wx)||r(wx)||t (wx)), (2–14)

where || is the concatenation operator and

t (wx) =

 NULL if w is a leaf node

h(t(wl)||t(wr)) otherwise
(2–15)

Clearly, the tags are designed to implement the Merkle tree for integrity check of EK

values and rank values. The ranks are designed to ensure that correct key information

is returned from the server. The client outsources the ranks and tags of all nodes in the

RERK to the cloud, while storing only the tag of the root.

After the client receives the node sequence from wi to the root as well as their

siblings, it verifies the integrity of the EK and rank information received from the server

by re-computing the tags of the node sequence from wi to the root. The client compares

the re-computed tag of the root with the stored value. If they match, it confirms the

50

integrity of the received EK and rank information, i.e., the EK and rank values are not

tampered after being outsourced.

Next, from the rank values, the client can find out the number of leaves before wi

in the inorder traversal of RERK as follows: Initialize a variable v to zero. Walk through

the node sequence (received from the server) backward from the root to wi . When

moving to a right child, add the rank of the left sibling to v . When moving to a left child,

do nothing. After the walk-through is completed, v is the number of leaves before wi in

the inorder traversal of RERK. If v is equal to i − 1, the client knows that the received wi

is the correct one; otherwise, the server has cheated.

We have shown above how to compute the index position of any data key in K by

using the ranks of the left sibling nodes along the path from the root to the leaf in RERK.

When we delete a leaf wi , the ranks of the nodes on the path must be decreased by one,

which automatically decreases the index position of all leaves after wi by one. Similarly,

when we insert a leaf node, the ranks of the nodes on the path to the root are increased

by one, which automatically increases the index position of all leaves after the inserted

one.

Efficiency. As the RERK is a red-black tree, two new values are defined for each

node wx in the RERK: a color col(wx) and a red-children counter red(wx). The color

col(wx) is 1 if wx is a red node, and it is 0 if wx is a black node. The counter red(wx) is 0

(1 or 2) if wx has no (one or two) red children. These values are set by the client during

the tree operations but stored at the server. In order to ensure their integrity, they must

be included in the tag computation together with the EK and rank values. We give the

new tag definition as follows:

t(wx) = h(EK(wx)||r(wx)||t (wx)||col(wx)||red(wx)). (2–16)

When nodes are inserted or deleted, RERK may become imbalanced. Then it will

need rotation and color changing to re-balance the tree before the client re-computes

51

and sends back the new EK values. The operations of red-black tree are highly efficient.

It is easy to prove that re-balancing will only involve O(log n) nodes, and we will discuss

the overhead issue after the key operations below.

Depend on different application scenarios, we can choose different self-balancing

data structure to store EK values. Therefore, the red-black tree can be replaced by an

AVL tree or a splay tree. In this work, we assume that clients require frequent insertion

and deletion. So according to the performance comparison in [49], we choose the

red-black tree.

2.5.3 Proof of Re-Balancing Complexity

In this section, we will prove that in order to finish the re-balancing, the client only

needs to look up the server at most two times to retrieve O(log n) nodes.

Theorem 2.3. For each update operation, e.g., insertion and deletion, the client can

re-balance the RERK, and re-compute the metadata by looking up the server for at most

two times and retrieving O(log n) nodes.

Suppose a client has outsourced the RERK to a server. When the client looks up

for a key, it can construct a partial RERK based on the node sequence returned from the

server. Assume that wi , vk , vk−1, ..., v1 is the node sequence from the i th leaf node wi to

the root v1 and wj , v
′
k ..., v

′
2 are their siblings. For each node v in the partial RERK, the

client can acquire a set of values: Iv = {kv , EK(v), r(v), col(v), t (v), t(v), red(v)}.

We first show that the client can perform the following three basic operations on the

partial RERK.

• Color changing: The client can change the color of any node in the partial RERK
and re-compute its tag.

• Rotation: For any three nodes in the partial RERK, the client can make two of them
as the children of the third one and re-compute the tags of these three nodes.

• Index computation: For any internal node (except the root) in the partial RERK, if
the internal node is a left (or right) child of its parent, the client can compute the
smallest (or largest) index of the leaf node that belongs to the subtree whose root
is the sibling of the internal node.

52

The above operations can be performed as follows:

• Color changing: If the client wants to change color of a node v , it can re-compute
the new tag according to Equation 2–15 by changing col(v) and re-computing the
hash.

• Rotation: If the client tries to make two nodes vl and vr as the children of the third
node v , it will first compute t (v). Then it can compute the new tag of v based on
t (v).

• Index computation: Suppose the internal node is vj , where j ∈ [2, k] and the
index of wi is i . If vj is the left (or right) child, the client can compute the smallest
(or largest) index of the leaf node that belongs to the subtree whose root is v ′

j by
traversing the nodes from wi to vj , adding (or subtracting) the rank of their left
siblings. Algorithm 1 describes the process.

Input: Iwi
, Ivk , Ivk−1

, ..., I (vj), Iwj
, Iv ′

k
, ..., Iv ′

j

Output: smallest (or largest) index in subtree rooted at vj ’s right (or left) sibling
index = i

if vj is the left child then
index = index + 1
foreach x from k to j − 1 do

if d(vx) = 1 then
index = index + r(v ′

x)
end

end
end
else

index = index − 1
foreach x from k to j − 1 do

if d(vj) = 0 then
index = index − r(v ′

x)
end

end
end
return index

Algorithm 1: Index computation

Next, we show that re-balancing after insertion and deletion only involves O(log n)

nodes.

Insert a key: If the client tries to insert a key by adding a new leaf node w ′
i at

position i , where i ∈ [1, n]. The client will first look up for the key wi and construct a

53

partial RERK. According to the red-black insertion algorithms in [19], the client will

generate a new red internal node vk+1 and make w ′
i and wi as its left child and right

child. However, if vk is also a red node, then the insertion will make the RERK tree

become imbalanced.

There are 8 types of imbalance: LLr, LRr, RLr, RRr, LLb, LRb, RLb, RRb. The first

letter L or R encodes the relationship between vk+1 and vk . The second letter L or R

shows the relationship between vk and vk−1 and the last r or b stands for the color of v ′
k .

For example, if vk+1 is the left child of vk , vk is the left child of vk−1 and v ′
k is a red node,

then the imbalance type is LLr.

Imbalances of the type XYr (X and Y may be L or R) can be handled by color

changing. If color changing causes further imbalance because vk−2 is also red,

re-balancing will continue. If color changing does not cause further imbalance, we

finish here.

Figure 2-9 shows the color changes performed for LLr and LRr imbalances. If vk−1

is the root, we do not change the color of vk−1. Notice that the red color will show up as

grey in black-n-white print in this and other figures.

Rotation and color changing can eliminate the imbalances of types XYb (X and

Y may be L or R). Figure 2-10 shows the rotation and color changes for LLb and LRb

imbalances. As rotation and color changing only involve the nodes in the partial RERK,

the client does not need other information except for the partial RERK to perform the

rotation.

Accordingly, imbalances caused by insertion can be eliminated by rotation and

color changing. The client can perform the insertion by only one lookup which involves

O(log n) nodes.

Delete a key: If the client tries to delete a key ki by deleting a leaf node wi from the

RERK, the client will first look up for the key ki , and construct a partial RERK. According

to the red-black deletion algorithm [19], if the leaf node wi is deleted, its parent vk will

54

Figure 2-9. LLr and LRr color change

Figure 2-10. LLb and LRb rotation and color change

be deleted and replaced by its sibling wj . As vk is deleted, the subtree whose root is wj

becomes deficient. We denote the root of the deficient subtree as y ; see Figure 2-11 for

illustration.

55

Figure 2-11. y is the root of the deficient subtree

The imbalance types can be categorized as the following five cases.

• Case 1: if y is a red node, changing the color of y can eliminate the imbalance. If
y is the root, then the entire tree becomes deficient. No further work needs to be
done.

• Case 2: y and v ′
k are both black, and v ′

k has no red child.
If vk−1 is black, the client will need to change the color of v ′

k and vk−1 becomes y .
Re-balancing will continue. If vk−1 is red, changing color of vk−1 will eliminate the
imbalance. Figure 2-12 illustrates this case.

Figure 2-12. Case 2. y and v ′
k are both black. v ′

k has two black children.

• Case 3: If y and v ′
k are both black, and v ′

k has only one red child, then the client
will need color changing and rotation to eliminate imbalance. Figure 2-13 illustrates
this case. However, in this case, The client does not have enough node values
to finish the re-balancing. For example, in the upper plot, it does not have the
values of a and b. In the lower plot, it does not have the values of a, b, c and
v ′′. Therefore, In order to get enough values, it will first compute an index using

56

Algorithm 1 by setting vj = y . Then it looks up another key with the computed
index. After acquiring enough node values, the client can perform rotation and
color changing.

Figure 2-13. Case 3. y and v ′
k are both black. v ′

k has only one red child. Dotted line
and cycle indicate that the client cannot acquire the values of the node
based on this lookup.

• Case 4: If y and v ′
k are both black, and v ′

k has two red children. This case is similar
to the lower plot of case 3 in Figure 2-13. The client will need to look up for a key
again to eliminate the imbalance.

Figure 2-14. Case 4: y and v ′
k are both black, and v ′

k has two red child

• Case 5: If y is black but v ′
k is red, there are totally four types of imbalances (See

Figure 2-15). Similar to case 4, we need another lookup to finish the re-balancing.

57

Figure 2-15. Case 5. y is black but v ′
k is red

After the first lookup, if the deficient can be handled by case 1, the re-balancing
involves O(log n) nodes. If the deficient can be solved by cases 3, 4 and 5,

58

then another lookup is needed. So the re-balancing involves O(log n). If the
re-balancing will continue in case 2, the deficiency will finally be solved by another
case. So obviously, The client can perform deletion with at most two lookups which
involve O(log n) nodes.

2.5.4 Key Deletion and Insertion

We present the deletion algorithm first. The confidentiality and integrity protection

mechanisms embedded in RERK (Section 2.5.2-2.5.2) ensure the correctness of this

algorithm, as our security analysis will show. The red-black tree embedded in RERK

(Section 2.5.2) ensures its logarithmic worst-case overhead bound.

Key Deletion: Suppose the client wants to delete a data key ki . It performs the

following operations:

1. The client looks up for the i th key and the server returns the node sequence in
RERK from the i th leaf node wi to the root and their siblings. The client constructs
a partial RERK using these nodes and verifies their integrity and correctness
through the embedded Merkle tree with rank information. After that, using the
metakey k∗, it recursively decrypts all keys in the partial RERK.

2. The client removes the node wi and replaces wi ’s parent with its sibling node wj . In
the resulting partial RERK, it generates a new key for each node on the path from
wj ’s parent to the root. The tree will become imbalanced if a black node is removed
(in our case, if wi ’s parent is black), which triggers the standard algorithm for
red-black tree re-balancing [19] in cooperation with the server. (Because the client
only has a partial RERK, it may need to lookup another leaf node and retrieve
O(log n) additional nodes from the server.) It is easy to prove that the red-black
tree deletion only involves O(log n) nodes.

3. The client replaces the old metakey k∗ with a new metakey k ′
∗. It re-computes the

new EK values in its partial RERK using the new keys.

4. The client sends new values in its partial RERK back to the server and only keeps
the new metakey k ′

∗.

An example is given in Figure 2-16, where k4 (thus data item m4) is deleted from

the RERK in Figure 2-8. The left-top plot in Figure 2-16 is the partial RERK sent from

the server to the client. After replacing wd with w5 and generating a new key for wa, the

RERK becomes imbalanced, as illustrated by the right-top plot. Following the standard

re-balancing algorithm, the client needs to look up the key k3 and fetch additional nodes

59

Figure 2-16. Example for key deletion in the RERK. Double-boxes in the left top
represent the node sequence from the leaf node to the root, and other
nodes are their siblings.

wc and w3, as illustrated by the right-bottom plot. The result of re-balancing is shown by

the left-bottom plot.

With k∗ being permanently deleted by the client, even if the cloud server does not

remove the EK value for ki , there is no way for anyone to decrypt it for ki . With ki being

unrecoverable, the corresponding data item mi becomes unrecoverable even if the

server does not remove the ciphertext ci from its storage.

Key Insertion: While the RERK is designed to support assured deletion, we also

need the insertion algorithm for completeness. Suppose the client wants to insert a data

key k ′
i at the i th position. It performs the following operations:

1. The client looks up for the i th key and the server returns the node sequence in
RERK from the i th leaf node wi to the root and their siblings. The client constructs
a partial RERK using these nodes and verifies their integrity and correctness. After
that, using the metakey k∗, it recursively decrypts all keys in the partial RERK.

2. The client creates a new leaf node w ′
i for k ′

i . Then it replaces the node wi with a
new internal node wnew whose auxiliary key knew is randomly selected. It assigns
w ′
i and wi as the left and the right children of wnew . If the new node’s parent

60

Figure 2-17. Example for key insertion in the RERK

(i.e., wi ’s previous parent) is a red node, the tree will become imbalanced, which
triggers the standard algorithm for red-black tree re-balancing [19]. Different from
deletion, the partial RERK already contains all nodes for re-balancing.

3. The client re-computes the new EK values in its partial RERK using the new keys.

4. The client sends new values in its partial RERK back to the server.

An example is given in Figure 2-17, where a new key k ′
2 is inserted at the 2nd

position of the RERK in Figure 2-8. The left-top plot in Figure 2-16 is the partial

RERK sent from the server to the client. After inserting the new internal node wnew ,

the partial RERK becomes imbalanced, as illustrated by the right-top plot. Based on the

standard re-balancing algorithm, the client re-balance the partial RERK and the result of

re-balancing is shown by the bottom plot.

2.5.5 Security Analysis

Security definition. Consider a data item D that is deleted by a client at time T

from a cloud server. We adopt the worst-case adversary model that gives attackers the

61

following capabilities: (1) they may have full control of the server at all time and (2) they

may compromise the client’s host after time T .

The first attacking capability reflects the possibility that the server may be

compromised before T . Hence, the attackers have access to everything on the server,

and they are able to control the actions of the server in response to the client’s requests.

The second attacking capability reflects the possibility that the client’s host may be

compromised after T . In this case, the attackers have access to everything stored on

the client side, including any key materials remained on the client.

We want to make sure that, under the above model, the attackers are unable to

figure out the deleted data. However, if the attackers manage to compromise the client’s

host before T , they will know the data, which has not been deleted yet.

Security proofs.

Theorem 2.4. If there exist (1) a collision-resistant hash function which is used in the

RERK construction and (2) an IND-CPA secure encryption solution which is used to

encrypt the outsourced data items, then the proposed assured deletion solution is

secure, i.e., for an arbitrary time T all data that have been deleted before time T will be

unrecoverable in polynomial time even when the adversary is able to gain full control of

servers before T and full control of clients after T .

Proof. We prove the theorem in two steps. First, we show that outsourcing the RERK

tree is as good as keeping it locally because the probability for a compromised server to

return an forged invalid proof (containing a required partial RERK tree) and successfully

pass the verification algorithm VerifyUpdateProof is negligibly small. Second, we show

that if the adversary can recover the deleted text, it can break the encryption solution

used in the assured deletion solution.

The partial RERK tree returned from a compromised server includes the node

sequence from the root to the leaf wi , as well as their sibling nodes. Refer to (2–16) and

(2–15). Because the above Merkle tree construction is adopted to create parent-child

62

hashing dependency by including the tags of child nodes in the hash input of any parent

node, all nodal information must be truthful — the difficulty for the server to provide false

nodal information without being detected is the same as breaking the security of the

hash function used in Merkle tree. In other words, the probability for an invalid proof to

pass the verification algorithm VerifyUpdateProof is no greater than the probability of

finding different input to produce the given hash output in the required partial RERK tree,

which is negligibly small when a collision-resistent hash function is used. Moreover, as

proved in [26], the rank value can uniquely determine the index of each key. Hence, the

compromised server cannot cheat the client by returning another key in CMHT to pass

the verification.

Next, given that the client has access to valid RERK, we show that a deleted data

mi will be unrecoverable by the adversary. Let ki be the data key of mi and ci be the

ciphertext. We consider three time phases. The first phase is from the creation of the

data item to the beginning of the deletion. During this phase, the compromised server

has the complete information about RERK. To know the data key, the compromised

server needs to know the auxiliary key of the parent node in RERK. Recursively applying

the same token, the compromised server needs to know the metakey in order to decrypt

the root node of RERK. The metakey is however only known to the client (that is not

compromised yet). Hence, the difficulty of acquiring ki is the same as the difficulty of

breaking the IND-CPA secure encryption solution that RERK uses to recursively encrypt

the auxiliary keys and the data items.

The second phase is from the beginning of the deletion to the accomplishment

of deletion. We argue that if the client successfully deletes one key in RERK, the

compromised server cannot recover the key even if it acquires the newest metakey after

deletion. According to the deletion algorithm described in Section 2.5.4, the client first

deletes the key, then replaces all auxiliary keys of nodes on the path from the parent

of the deleted key to the root and the metakey. Next it re-balance the partial RERK

63

tree and encrypt all keys in the partial RERK tree transitively by using a new metakey

k ′
∗, and permanently delete the old metakey. Here, the important point is that the key

sequence from the deleted key to the old metakey is not in the reconstructed partial

RERK, and therefore ki is never transitively encrypted by the new metakey k ′
∗ through

a sequence of intermediate auxiliary keys. After the partial RERK is sent back to the

server, since the partial tree does not carry any information about ki , and all keys are

randomly generated, no new information about ki is revealed to the compromised server.

The third phase starts after the client has finished the deletion. The compromised

server acquires k ′
∗, but not the original meta k∗, which has already been permanently

deleted by the client. The compromised server only has the original ciphertexts of ki

transitively encrypted by k∗. The knowledge of k ′
∗, which has no relation with k∗, does not

provide any help in decryption. Even the auxiliary keys used in the transitive encryption

of ki are totally replaced when k ′
∗ is introduced in the second phase. Hence, if all keys

in RERK are randomly generated, k ′
∗ is useless to the decryption of any node in the

sequence from the root to wi and wj in the original RERK before deletion.

Now suppose the adversary has a way to recover the deleted data item mi with

non-negligible probability. Based on the above analysis, A has no knowledge about

the data key ki that encrypts mi , nor does it know the corresponding meta key k∗ or any

auxiliary key that leads to ki . It only has the knowledge of ciphertext ci . This means

that the adversary can break the encryption solution, which is against the theorem

assumption that the adopted encryption solution is IND-CPA secure.

2.5.6 Evaluation

We implement a cloud storage server on Amazon Elastic Compute Cloud (Amazon

EC2) system. By purchasing an “instance” from Amazon EC2, we can completely

control the remote resources and run the server programs on the instance.

We evaluate our solution in terms of communication and computation overhead.

When a client performs deletion, lookup and insertion on a key, the server will send

64

back O(log n) nodes in the RERK, where n is the total number of data items. Hence, the

communication overhead is O(log n). It takes a constant time for the client to process

each node. In addition, the red-black tree rotation has a complexity of O(log n). Hence,

the overall computation overhead is also O(log n).

Experimental setting. Our experiments are performed between two parties: the

client and the server. We implement cloud storage servers on Amazon EC2. Each

server instance has the following parameters: 2 virtual cores, each with 2 Compute

Units; 7.5 GB RAM; 850 GB instance storage; Microsoft Windows Server 2008 R2 Base

64-bit. Note that although Amazon S3 provides cloud storage services, developers

cannot directly run programs on Amazon S3. We use an ordinary desktop computer in

our lab for the client, with the following configuration: Intel Core i7-3770 3.40 GHz, 8 GB

RAM, 1 TB driver, and Windows 8 Professional 64-bit.

We use Secure Hash Algorithm-1 (SHA-1) [12] in the RERK. SHA-1 produces

a 160-bit message digest. We choose Advanced Encryption Standard (AES) [21] to

encrypt each data item and each key. AES has a key size of 128, 192, or 256 bits. In our

implementation, we use 128-bit keys.

Communication overhead. We measure the communication overhead between

the client and the server through experiments, and the results are shown in Figure 2-18.

The x-axis shows the total number of data items stored in the cloud in logarithmic scale.

The y-axis shows the average communication overhead in KB. To measure the average

communication overhead of deleting a data key, we tries to delete each data key in the

RERK and count the number of bytes in the client message and the number of bytes in

the server messages that carry the nodes involved. Similarly, we perform insertion and

lookup on each data key and measure the average communication overhead among all

keys.

Clearly, all measured communication overheads increase logarithmically with

respect to the number of data items, demonstrating good scalability. For a data set of

65

 0

 1

 2

 3

 4

 5

 6

101 102 103 104 105 106 107

A
ve

ra
ge

 c
om

m
. o

ve
rh

ea
d(

K
B

)

Total number of data blocks

Delete a data key
Insert a data key

Look up a data key

Figure 2-18. Average communication overhead between the client and the server. The
x-axis shows the total number of data items in logarithmic scale. The y-axis
shows the average communication overhead in KB.

106 items, the communication overhead can fit in a few IP packets of 1500 bytes each in

most cases.

Computation overhead. Next, we measure the computation overhead of the

server and the client separately. On the server side, the main computation overhead

is to construct server messages and send relevant nodes in the RERK to the client in

these messages. The set of nodes to be sent only depends on the data key, regardless

of what operation it is. On the client side, upon receiving the nodes from the server, it

computes tags to verify the integrity of the information carried by the nodes, and uses

ranks to determine if correct nodes are received. After that, the client performs the

intended operation, whether it is deletion, insertion or lookup. It performs tree rotation

if needed. Finally, it sends new information back to server. The client’s computation

overhead varies for different operations. Hence, we measure them separately.

Client Computation

Figure 2-19 shows the computation overhead of the client. We perform the

experiments on the desktop computer mentioned above. The most costly operation

is deletion, which is followed by modification, then insertion, and finally lookup (query).

66

The difference is due to (1) re-computation of nodal information such as EK and tag and

(2) re-balancing of the tree. Deletion requires significant overhead on both, whereas

lookup requires neither. All overheads scale logarithmically with respect to the number

of data items. When there are 107 items, it takes the client about 1.2ms to delete a key.

 0

 0.5

 1

 1.5

 2

101 102 103 104 105 106 107

A
ve

ra
ge

 c
om

p.
 o

ve
rh

ea
d

(m
s)

Total number of data blocks

Delete a data key
Insert a data key

Look up a data key

Figure 2-19. Client computation overhead. The x-axis shows the number of data items in
logarithmic scale. The y-axis shows the average computational time of the
client.

Server Computation

We perform lookups on all keys. Figure 2-20 shows the average time it takes

the server to process each lookup; the time for the server to handle other operations

(deletion / insertion) is the same. Clearly, the computation overhead of the server

increases logarithmically with respect to the total number of data items. When the

number of data items is 107, it takes about 0.4ms to process a request. Our EC2 server

has limited capacity. In real world, the cloud servers are expected to be much more

powerful and should be able to process requests at much higher rates.

2.6 Summary

This work presents two two-party fine-grained solution for protecting the privacy

of deleted data that has previously been outsourced by clients to the cloud. The

main challenge is how to avoid burdening clients with a large number of keys, yet

67

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4 8 16 32 64 128 256 512

C
om

pu
ta

tio
na

l t
im

e
(m

s)

Data item size (KB)

Figure 2-20. Server computation overhead. The x-axis shows the number of data items
in logarithmic scale. The y-axis represents the average time for the server
to process a client request.

allowing them to perform deletion on any data item in any file without causing significant

overhead. Our solutions are based on a novel key modulation function and a recursively

encrypted key tree. We prove their correctness and security, and implement it on the

Amazon EC2 system.

68

CHAPTER 3
DATA INTEGRITY PROBLEM IN CLOUD COMPUTING

3.1 System Model

As shown in Figure 3-1, Our system model consists of two parties: (1) The clients

are individual users or companies. They have a large amount of data to be stored,

but do not want to maintain their own storage systems. By outsourcing their data to

the cloud and deleting the local copies, they are freed from the burden of storage

management. (2) The cloud servers have a huge amount of storage space and

computing power. They offer resources to clients on a pay-as-you-go manner.

After putting data on cloud servers, the clients lose direct control of their data. They

access, update and check the integrity of their data by sending requests to the servers.

Due to possible external/internal compromises, the clients cannot fully trust the servers.

Hence, it is important for the cloud-system design to have built-in mechanisms that

guard the security of clients’ data against any misbehavior of the servers.

3.2 Related Work

Most existing solutions can be categorized along two research threads: Proof

of Retrievability (PoR) [11, 34, 52, 58] and Provable Data Possession (PDP) [5, 6].

The first PoR solution is proposed by Juels and Kaliski in [34]. The first PDP solution

is proposed by Ateniese et al. [5]. Both categories allow users to verify if the cloud

correctly possesses their data. That is, by keeping some local meta data and verifying

the proof returned from the cloud, users can (probabilistically) determine whether

Clients Cloud Servers

Figure 3-1. A cloud system.

69

their data are intact. The above solutions have two limitations: First, they either do not

support dynamic data update or do so with significant overhead, particularly in terms of

worst-case complexities. Second, they protect users from the cloud’s misbehavior, but

do not protect the cloud from the users’ misbehavior. This work expands data integrity

protection by covering an important complementary problem: When a user claims a

data loss, how can we be sure that the user is correct and honest about the loss? If a

user tries to blackmail the cloud by lying about data loss, how can the cloud prove its

innocence?

Ateniese et al . [5] propose the first provable data possession (PDP) model to check

the integrity of outsourced data. But their solution does not support data update. A

followup work by Ateniese et al . [6] introduces a dynamic version of PDP. Unfortunately,

it cannot support all types of data update operations.

Juels and Kaliski formalizes a solution called Proofs of Retrievability (PoR) to verify

data integrity through “sentinel” blocks [34], but it does not support data update, either.

Shacham et al . introduce an improved version of PoR called Compact PoR [52]. But still

their solution is not designed to efficiently support dynamic data updates.

Following the work of [52], Erway et al . [25] propose a dynamic provable data

possession solution (DPDP). Using a rank-based skiplist, their solution supports

dynamic data update. However, the updating algorithm in their solution is not accurate.

According to their solution, the cloud user only needs to query the server one time to

finish the updating. Unfortunately, after each deletion, the user needs to reconstruct the

skiplist. As the skiplist is stored on the server, querying once may not provide enough

information for the user to finish the deletion. Accordingly, maintaining the sequential

order among nodes at the bottom level of a skiplist makes updating (such as deletion)

complicated. Moreover, the skiplist is a probabilistic data structure, whose worst-case

overhead complexity is O(n) [50], where n is the number of blocks.

70

Wang et al . [58] define a dynamic version of PoR based on the BLS signature and

a sequenced Merkle Hash Tree (MHT) [42]. They use a modified BLS signature and a

classical MHT construction to realize data-possession verification in cloud storage. After

inserting or deleting data blocks, the tree will become unbalanced. Particularly, if the

client keeps appending blocks at the end of the file, the height of the tree will increase

linearly. As a result, the worst-case complexities for searching and updating are O(n).

Zhang and Blanton take a different approach [62] that requires the client to locally

record information about update history, using a balanced update tree whose size is

O(M), where M is the number of updates. Even though sequential indices are explicitly

bound with blocks through MACs, the update tree allows the client to translate indexing

information without having to re-computing MACs. The above approach however puts

significant storage burden on the client. This work will follow the path of the prior work

[5, 25, 34, 58] whose client storage requirement is a constant. See table 4-1 for a

summary of the existing work.

Table 3-1. Summary of existing work
Features Ateniese J&K [34] Shacham

[52]
Wang [58] Erway [25]

Dynamic
updates

NO NO NO YES YES

Public
verification

NO NO YES YES YES

Worst
comm.
complexity

O(1) O(1) O(1) O(n) O(n)

Worst
comp.
complexity

O(1) O(1) O(1) O(n) O(n)

Average
comm.
complexity

O(1) O(1) O(1) O(log n) O(log n)

Average
comp.
complexity

O(1) O(1) O(1) O(log n) O(log n)

71

3.3 Data Possession Verification and Basic Approach

Consider an arbitrary client and an arbitrary file F that the client outsources to

the cloud. Suppose F consists of n data blocks, {m1,m2, ...,mn}. Each block may

contain a data key (ID) to allow lookup and access of a specific block of interest (for

example, the record of a particularly employee indexed by the employee ID in a payroll

file). The blocks do not necessarily have the same size. The problem is to design a

data-possession verification solution that allows the client to (1) detect whether some

of the blocks have been lost or corrupted at the cloud server, and (2) in the meantime

make sure that the cloud can fend off false claims of client data loss.

Much existing work focuses on addressing the first part of the above problem

based on a common basic approach [25, 52, 58]: The client randomly selects a subset

of k blocks and queries the cloud for a proof, demonstrating that it possesses these

blocks. After receiving the proof, the client verifies the proof using the meta data it has

pre-computed and kept locally. If the received proof does not match what’s expected

from the meta data, the client claims that the cloud has lost some of its data. It is known

that if the cloud loses k ′ data blocks, the probability of being detected after a single client

query of k blocks is 1 − (n−k′
k

)

(n
k
)

[5]. As an example, if 1% blocks are lost by the server,

the client can achieve 99% detection probability by querying 460 blocks. If the above

approach is performed periodically for l times, each time on an independent subset of

460 blocks, the detection probability will become 1− (1− 99%)l = 1− 10−2l .

3.4 Enabling Efficient Dynamic Updating in Cloud Computing

Though Wang et al . propose a dynamic version of PoR model in [58] and Erway

et al . present a dynamic PDP model in [25], unfortunately, the performance of their

solutions are not tightly bounded. Accordingly, we design a new Cloud Merkle B+

Tree (CMBT) to assist the verification procedure, whose worst-case computation

and communication overhead for inserting/deleting/updating a data block is O(log n),

comparing with O(n) worst-case overhead in [25, 58].

72

3.4.1 Cloud Merkle B+ Tree Based Design

BLS signature. Suppose the encoded file F is divided into n blocks: m1,m2, ...,mn.

For a bilinear map e : G × G → GT , the private key and the public key are defined as

x ∈ Zp and z = gx ∈ G separately, where g is a generator of G . For each block mi ,

where i ∈ [1, n], we define the signature on the block mi as σi = [H(mi)u
mi]x . H(mi) is

called the block tag, and u is another generator of G . We denote the set of signature as

� = {σi}, where 1 ≤ i ≤ n.

CMBT construction. A merkle hash tree [42] has been widely used in checking

memory integrity [30, 59] and certificate revocation [36, 46] because it is easy to realize

and has O(logn) complexity in both the worst case and the average case. However,

directly using the classic merkle tree in cloud storage may cause an efficiency problem.

So we develop an authenticated data structure based on a B+ tree and a merkle hash

tree. We call it Cloud Merkle B+ tree (CMBT). In our construction, we choose a B+

tree of order three1 and require that each data node can store three elements at most.

We treat the sequence of block tags H(m1), H(m2),..., H(mn) as elements and

insert them into a B+ tree sequentially, then we can get a B+ tree (see Figure 3-2), we

will construct the CMBT based on it.

For each node w in CMBT , we store six values:

1 The B+ tree [33] is different from the B tree in following three aspects: 1. A B+ tree
has two types of nodes - index nodes and data nodes. Index nodes store keys while
data nodes store elements. But a B tree has only one type of node - data nodes 2. All
data nodes in a B+ tree are linked together by a doubly linked list, but data nodes in a B
tree are not linked. 3. The capacity of data nodes and index nodes can be different in a
B+ tree, while the capacity of nodes in a B tree should be the same. For example, a B+
tree of order n means that the index nodes (except for the root node) can hold n − 1 keys
at most and hold ⌈n/2 − 1⌉ keys at least. But each data node can contain c elements
at most and ⌈c/2⌉ elements at least. c and n can be different. The root node can hold n

children at most and two children at least.

73

Figure 3-2. The cloud merkle B+ tree

• left(w), middle(w) and right(w): For an index node, these three variables
represent its left child, middle child and right child. If this node has only two
children, then right(w) will be NIL. For a data node, these three variants represent
the elements it stores from left to right. If corresponding position has no element,
NIL will be set.

• rank(w): Rank of the node. For an index node w , rank(w) stores the number of
elements1 that belong to the subtree whose root is w . For a data node w , rank(w)
stores the number of elements that belong to w . In Figure 3-2, we show the rank
value for each node on the left side of each node. For example, the rank of node d1
is 2 because from d1 we can visit two elements H(m1) and H(m2).

• t(w): We do not store keys in index node because we do not need to search the
CMBT . Instead, we store the type of the node as t(w). The definition of t(w)
shows as follows.
For a node w in the tree:
Definition 1.

t(w) =

{
0 if w has 2 children or contains 2 elements
1 if w has 3 children or contains 3 elements

We also show the type value of each node in Figure 3-2.

• v(w): The value of node. v(w) is defined as follows:
Definition 2.

v(w) = h(v(left(w))||v(middle(w))||v(right(w))||t(w)||rank(w))

where || means concatenation.
Also for each element e that contains a block tag H(m), we define the value of the
element as follows:
Definition 3.

v(e) = h(H(m))

74

With above definitions, the client can construct a CMBT and get the value of
the root R. Then the client will sign the root value v(R) using its private key:
sigsk(v(R)) ← (v(R))sk . Next the client will outsources the encoded file F , the
block signature set �, the CMBT and the root signature sigsk(v(R)) to the server.

3.4.2 Compact Merkle Hash Tree Based Design

Although CMBT can tightly bind the worst case communication/computational

overhead but performing tree rotation remotely requires significant information exchange

between the client and the server. Our experiments reveal that its average update

overhead is considerably higher than DPDP [25]. Accordingly, we present a new design

based Compact Merkle Hash Tree to further optimize the performance.

Tag and signature.

For each data block, we define two auxiliary values needed by our data-possession

verification solution. These values will be stored at the cloud server. Only the meta data

for the whole file (defined later) will be kept by the client.

Block tag: For each block mi ∈ F , we define its tag as ti = H(mi), where H is a

collision-resistant hash function, which will be discussed shortly. A tag is a fixed length

representation of a data block (whose length may be arbitrarily set) in the data structure

of CMHT.

Homomorphic Signature: The client chooses N = pq where p and q are two large

primes and g is an element of high order in Z∗
N . The client keeps p and q, and sends N

and g to the server. The signature for block mi is defined as

σi = ti · gmi mod N,

where ti is the tag of mi . Note that it is possible for our solution to use other homomorphic

signatures such as BLS [10].

Tree construction. The client first constructs a red-black tree with n leaves. For

convenience, we denote the n leaves from left to right as w1, w2, ..., wn. The leaf node wi

represents the data block mi .

75

Figure 3-3. A Coordinate Merkle Hash Tree (CMHT) constructed for 5 blocks

Figure 3-4. The partial CMHT from the root to w3

Let wx be an arbitrary node in the tree, where x may be a number (for leaf) or a

letter (for internal node). To support the integrity verification, each node wx in the CMHT

needs to carry four values: a rank r(wx), a color col(wx), a red-children counter red(wx)

and a label l(wx). The rank is defined as the number of leaf nodes in the subtree rooted

at wx . For example, in Figure 3-3, r(w1) is 1, r(wb) is 2, and r(wr) is 3. The color col(wx)

is 1 if wx is a red node, and it is 0 if wx is a black node. The counter red(wx) is 0 (1 or 2)

if wx has no (one or two) red children.

For the label value: As the leaf node of a red-black tree is always a black node

with rank 1, if wx is a leaf node representing a block mi , its label is simply the tag ti of

the block; if wx is an internal node whose two children are wleft and wright , its label is

computed by hashing the concatenation of the labels of the children.

l(wx) =

 H(l(wleft)||l(wright)||r(wx)||col(wx)||red(wx)) if wx is an internal node

tj if wx is a leaf node for block mj

Use of coordinates. Interestingly, the client does not need to keep track of the

exact coordinate of each data block because it is not used in data access. The only

purpose of introducing coordinates is to help the client detect data loss, which is

76

performed in a random-sampling way: Since the client knows n from its meta data, it

knows the exact shape of the complete binary tree CMHT and thus knows the set of

valid coordinates. The client challenges the server with a randomly selected subset of

valid coordinates {ci}, which corresponds to a subset of data blocks {mi} to be verified,

where mi is the block currently assigned with ci . We stress that the whole purpose of

designing CMHT is to make sure that the server will return the correct tags {H(mi)||ci}

that match the client’s current meta data, more specifically, the root’s label l(wr), using

the standard Merkle tree operations (which prevent the server from cheating). After that,

the server is required to produce a compact proof of its knowledge of blocks {mi} that

match the blocks’ fingerprint {H(mi)||ci}.

All current data blocks must be represented in the CMHT, but their specific

coordinates (e.g., locations in the tree) are not important to data-possession verification

because coordinates are randomly sampled and each block (its coordinate) has equal

chance to be sampled.

3.5 Enabling Non-Repudiable Property in Cloud Computing

In order to realize non-repudiation, we need to design a new metadata. After the

client constructs the CMHT, it sends the tree to the cloud server, together with F and �.

The server verifies the labels on the tree. Let T be the current time stamp. We define

the meta data as follows:

M = {l(wr),T , n,σM},

which includes the root’s label l(wr), the time stamp T , the total number n of blocks, and

a digital signature [35], σM = Signsks (Signskc (l(wr)||T ||n)), jointly signed by the client and

the server using their private keys, skc and sks . The meta data is stored by the client and

the server separately asMc andMs . Both sides can use the other’s public key to verify

the signature on the meta data, which enforces authenticity and consistency between

the two sides. Compared to the meta data in [52, 58], our meta data has the following

two security properties.

77

Unforgeability: As the meta data includes the signature signed by both the client

and the server, neither the client nor the server can forge the meta data.

Distinguishability: After each update of the tree, the client and the server will

agree on a new time stamp and update the signature. As the time stamp T increases

monotonically, if the two sides have dispute over which meta data is current, it is easy to

resolve the dispute by authenticating the signatures with their public keys and comparing

the time stamps.

The client only stores the meta dataMc . Everything else, including CMHT, F and

�, is outsourced to the server. The server needs to maintain an internal data structure

to map between data blocks and their corresponding nodes in the CMHT. When the

server stores the CMHT, it keeps a location field in each leaf node, specifying where the

corresponding data block is stored. The server also keeps track of each data block’s size

and its coordinate in the CMHT, allowing flexible access of the node in the tree for any

given data block.

3.6 Efficient Dynamic Data Possession Verification Solution with Non-repudiable
Property

3.6.1 Problem Statement

Our objective is to design a non-repudiable integrity verification solution for cloud

storage systems. It supervises not only the servers but also the clients. On the one side,

the server cannot cheat the clients about data loss. On the other, clients cannot falsely

claim that their data is lost. The cryptographic evidence produced by our solution should

be non-repudiable by either the client side or the server side, when it is presented to the

judicator.

In addition, we propose to replace indices with more flexible coordinates using a

new data structure called coordinate Merkle hash tree that optimizes both worst-case

and average-case performance for data updates and integrity verification.

78

Even though the presentation of our integrity verification solution will be based on

a file F , the notation F can be generalized to be a single file, a part of a large file, a set

of files, a data stream, or a segment of a data stream. Using key-based authenticated

dictionaries, the proposed solution for a file can be extended for a file system consisting

of many files with a directory structure in a similar way as in [25].

3.6.2 Threat Model

Server: We define the following semi-trust model for the server. In normal cases,

the server will perform operations correctly, and will not deliberately delete or modify

clients’ data. But because of management errors, Byzantine failures or external

intrusions, the server may lose or corrupt the hosted data inadvertently. When these

errors happen, the service provider may try to hide the truth of data loss.

Client: We also define a semi-trust model for the client. We assume that most

clients are honest but some may behave untruthfully. For example, some clients may

falsely claim data loss in order to damage the reputation of a cloud service provider

(possibly backed by competitors) or to blackmail the provider.

Judicator: We assume that the judicator is a honest third party which is trusted by

both the client and the server.

3.6.3 Interaction Between Client and Server

Before we present the implementation of our solution, we give an overview of the

interaction between the client and the server in the form of thirteen basic algorithms.

• Gen(1k) −→ (pk , sk) is the algorithm in the digital signature solution � defined by
[35]. Gen is executed by both the client and the server to produce a pair of public
and private keys. The client stores its private key skc and sends the public key pkc
to the server. The server stores its private key sks and sends the public key pks to
the client.

• Signsk(m) −→ σ is the algorithm in the digital signature solution �. It takes the
private key sk and a message m as input, and outputs a signature σ on the
message using the private key. In our solution, the client and the server apply this
algorithm to jointly produce the signature σM of the meta data.

79

• VerifySignpk(m,σ) −→ (TRUE ,FALSE) is the algorithm in the digital signature
solution �. It takes as input the message and the signature. It verifies the
correctness of the signature using the public key and outputs the result of the
verification. It is used by both the client and the server to verify the authenticity of
the meta data.

• Prepare(skc ,F) −→ (�,CMHT ,Signskc (l(wr)||T ||n)) is an algorithm run by the client.
It takes as input the client’s private key skc and a data file F = {mi}. The output
contains (1) a set of block signatures, � = {σi}, (2) a CMHT constructed based on
the block tags {ti}, where ti = H(mi)||ci , and (3) a digital signature on the meta
data, Signskc (l(wr)||T ||n). The client sends the output and F to the server.

• GenMeta(sks , pkc , sigskc (l(wr)||T ||n)) −→ Ms is executed by the server. After
verifying the correctness of the signature Signskc (l(wr)||T ||n) using pkc , the server
signs the signature using its private key sks : σM = Signsks (Signskc (l(wr)||T ||n)).
Then the server sends the meta dataMs = {l(wr),T , n,σM} to the client.

• Contract(pkc , pks ,Ms , l(wr)||T ||n) −→ Mc is an algorithm run by the client. After
verifying the correctness of the signature σM using pks and pkc , the client deletes
all local copies of data and only stores a copy of meta dataMc , identical toMs .

• GenChallenge(n) −→ Rk is an algorithm executed by the client. It takes n as input,
and outputs a request Rk which contains a set of k randomly-selected coordinates
as well as k randomly-selected constants. The client sends Rk to the server and
asks the server to return a proof that it has the blocks whose coordinates are in
Rk .

• GenProof (Rk ,CMHT ,F , �) −→ P is executed by the server after receiving Rk . The
input contains the request Rk , the CMHT, the file F , and the block signatures �.
The server returns a proof P that allows the client whether it indeed has the blocks
in the Rk .

• VerifyProof (Rk ,P,Mc) −→ (TRUE ,FALSE) is an algorithm executed by the
client. After receiving the proof P, the client can verify if the server possesses the
blocks in Rk based on its meta data. It outputs TRUE if the proof P passes the
verification. Otherwise, it returns FALSE .

• Judge(pks , pkc , Ec , Es) −→ (ClientWin,ServerWin) is an algorithm executed by a
judge during litigation after the client detects data loss but the server disputes that.
It takes as input the public keys of the server and the client, the evidence from the
client, Ec = {Rk ,Mc}, and the evidence from the server, Es = {P,Rk ,Ms}. The
requests Rk in both Ec and Es must be the same. It decides whether the client wins
or the server wins.

• UpdateRequest() −→ RU is an algorithm executed by the client. It outputs an update
request RU which contains an update Order ∈ {Modify , Insert,Delete} and a block

80

Location in form of data key or byte offset. If the Order is Modify or Insert, RU

should contain a new block m∗ and its signature σ∗.

• Update(F , �,CMHT ,RU) −→ Pupdate is an algorithm run by the server. After
receiving the update request RU from the client, the server takes F , �, and the
CMHT as input. It performs the update, outputs a proof Pupdate , and sends the
proof back to the client.

• VerifyUpdate(Pupdate) −→ (TRUE ,FALSE) is executed by the client. It takes the
proof Pupdate as input and outputs TRUE if the the proof passes the verification.
Otherwise, the client will return FALSE .

3.6.4 Solution Details

Our solution has three components. 1) Preprocessing: Before outsourcing a file

to the server, the client generates the meta data that it keeps locally as well as the

information that it outsources to the server together with the file. 2) Data-possession

Verification: After outsourcing, the client will periodically check the integrity of its

remotely-stored data.

Preprocessing. It includes four algorithms: Gen, Prepare, GenMeta and Contract.

Before outsourcing data to the server, the client generates the set � of block signatures

and the CMHT. It agrees on a time stamp T with the server, and produces the meta

data. Then, it outsources F , �, and the CMHT to the server, only keeping the meta data

locally.

Client Server
Gen(1k) −→ (pkc , skc)

pkc−−→
pks←−− Gen(1k) −→ (pks , sks)

Prepare(skc ,F)
F ,�,CMHT ,sigskc (l(R)||T ||n)
−−−−−−−−−−−−−−−−−→
Ms=sigsks (sigskc (l(R)||T ||n))
←−−−−−−−−−−−−−−−−− GenMeta(sks , pkc , sigskc (l(R)||T ||n))

Contract(pkc , pks ,Ms) −→Mc

Figure 3-5. The procedure of preprocessing

Data-possession verification. It is performed periodically, including four

algorithms: GenChallenge, GenProof , VerifyProof and optionally Judge. The client

queries the server with a randomly-choosing subset of coordinates, and the server

81

generates a proof in response. After verifying the proof, the client will return TRUE or

FALSE .

Figure 3-8 shows the procedure of data-possession verification.

Client Server
GenChallenge(n)

Rk−−→
P←− GenProof (Rk ,CMHT ,F , �)

VerifyProof (Rk ,P,Mc)
TRUE ,FALSE−−−−−−−−→

Figure 3-6. The procedure of data-possession verification

• Generate a Request: Knowing the value of n, the client knows the exact shape
of the complete tree of CMHT. Hence, it knows all valid coordinates for leaf
nodes. The client randomly selects k(<< n) leaf nodes, whose coordinates are
denoted as {ci1, ci2, ..., cik}, for data blocks {mi1,mi2, ...,mik} that are represented
by the selected leaf nodes. For convenience, we let
 = {i1, i2, ..., ik}, and the
set of selected coordinates is {ci | i ∈
}. The corresponding data blocks are
{mi | i ∈
}. The client generates a request Rk = {(ci , vi) | i ∈
}, where vi is a
constant. It sends Rk to the server.

• Generate a Proof: After receiving the request, the server generates a proof P. It
computes

µ =
∑
i∈

vimi , σ =
∏
i∈

σi
vi mod N,

where σi is the block signature of mi .
The proof P sent to the client consists of µ, σ, and a partial CMHT, denoted as �,
consisting of the leaf nodes wj with the selected coordinates ci and the siblings
of the nodes on the paths from the root to wj . For each node in �, the server
only needs to send the label of the node. If a node is a leaf, the label is simply
the tag of the block represented by the leaf. Hence, the tags ti of blocks with
coordinates ci are carried by �. For each coordinate ci , the client produces a
message Mi = {ti , γi}, where ti = H(mi) is the block tag whose coordinate is ci ,
and {γi} is the set of labels or block tags of the node siblings on the path from the
leaf to the root. Note that if the sibling is a leaf node, γi is the block tag. Otherwise,
γi is the label. For example, in Figure 3-3, if ci = c1 = 001, the message will be
M1 = {t1, γ1}, where γ1 = {t2, t5, l(wc)}.
Then the server sends the block tag set S = {H(mi) : i ∈ I} to the client, and
generates a sequence of messages for each block tag H(mi) in S to prove its
index number. Suppose {w1,w2,w3, ...,wh,wh+1} denotes the path from the root
node to the element H(mi), where i ∈ [i1, ik], h is the height of the CMHT and the
node wj is the parent of wj+1. For each node wj , j ∈ [1, h], the server will provide a
message Mj . With this message, the client can easily compute the value of wj and
eventually, the client can compute the value of the root node w1.

82

• Verify: After receiving the proof P, the client will run the algorithm VerifyProof to
check the correctness of the proof. The client first verifies the integrity of the partial
CMHT by the standard Merkle tree operations, which ensures the correctness
of the tags ti carried by the leaf nodes of �. The client then checks whether the
following equation holds:

σ = (
∏
i∈

ti
vi) · gµ mod N. (3–1)

Then the client will verify the correctness of the tags by checking the relationship
between the tags and their coordinate values. As the CMHT is a complete binary
tree, and the client stores the total number of blocks, n, it is easy for the client to
determine the shape of the CMHT. For each coordinate value, the client can also
uniquely determine a partial CMHT from the root to the leaf. Accordingly, based on
each message, the client can compute the label values from the leaf to the root.
If the label of the root is consistent with the l(wr) inMc , the coordinate is correct.
Otherwise, the client will generate an evidence Ec and apply a judgment to the
judicator.

• Judge: If the client detects data loss through VerifyProof but the server disputes
it, they may present their evidences to a court where Judge is executed. After
receiving the evidence Ec = {Rk ,Mc} from the client and the evidence Es =
{P,Ms} from the server, the judge first verifies the correctness of the proof P
through VerifyProof based on information from the client. Then it checks the
signatures inMc andMs . If both signatures are correct, it compares the time
stamps to determine whose evidence is valid. Depending on whose time stamp is
more recent, the judge decides the winner based on the algorithm in Fig. 3-7.

Updating. If the client wants to update a block, it first runs algorithm UpdateRequest() −→

RU to generate an update request and send the request to the server. Upon receiving

the request, the server will update the block and execute the algorithm Update(F , �,CMHT ,RU)

to generate a proof Pupdate . The client will use the algorithm VerifyUpdate(Pupdate) to

verify the update. If the update is correct, the client and the server will agree on a new

meta data using algorithms GenMeta and Contract.

• Modification: Suppose a client wants to change a data block mi to m∗. It generates
an update request RU = {Modify ,Location,m∗}, and sends it to the server,
which will replace the old data mi with the new one m∗. Let ci be the coordinate
of mi . The server constructs a partial CMHT (denoted as �) to the leaf node wj at
coordinate ci , updates wj with a new label H(m∗)||ci , and recomputes the labels of
the nodes on the path from wj to the root. Let l(wr ′) be the new label of the root.

83

Input: pkc , pks , Ec = {Rk ,Mc},Mc = {lc(wr),Tc , nc ,σMc
},

Es = {P,Ms},Ms = {ls(wr),Ts , ns ,σMs
}

1. if (VerifyProof (Rk ,P,Mc) = TRUE)
2. return server as the winner;
3. else
4. if (VerifySignpks ,pkc (σMc

, lc(wr)||Tc ||nc) = FALSE)
5. return server as the winner;
6. if (VerifySignpks ,pkc (σMs

, ls(wr)||Ts ||ns) = FALSE)
7. return client as the winner;
8. else
9. if (σMc

= σMs
)

10. return client as the winner;
11. else if (Ts > Tc)
13. return server as the winner;
14. else
15. return client as the winner;

Figure 3-7. Algorithm for Judge

Client Server
UpdateRequest()

RU−−→
Pupdate←−−−− Update(F , �,CMHT ,RU)

VerifyUpdate(Pupdate)

If TRUE
Signskc (l(wr′)||T

′||n′)
−−−−−−−−−−−−−→

M′
s←−−− GenMeta(sks , pkc ,Signskc (l(wr ′)||T ′||n′))

Contract(pkc , pks ,M′
s) −→M′

c

Figure 3-8. The procedure of data-possession verification

After that, the server generates a proof Pupdate = {�, ci , l(wr ′)}, where � is the
partial CMHT to wj before modification.
To ensure that � has the correct leaf node wj for mi , the client checks whether the
received label of wj (before modification) contains H(mi) and verifies the labels
of the partial CMHT using the Merkle tree operations. Then it performs what the
server does: replacing the label of wj with H(m∗)||ci and re-computing the labels
of nodes on the path to the root, whose new label is denoted as lc(wr ′′). The
modification is successful only if lc(wr ′′) is equal to the received value of l(wr ′). In
this case, the client will send the new homomorphic signature σ∗ to the server and
generate a new meta data with the server, where σ∗ = H(m∗)||ci · gm

∗
mod N.

• Insertion: Suppose a client wants to insert a new block m∗. It will inform the server
to insert m∗ into the file at a specified offset location, insert a corresponding leaf
node w ∗ into the CMHT, and update the meta data. The location in the CMHT
where w ∗ will be inserted is determined by finding the coordinate c of the leftmost
leaf node wi with minimum level, where the level of a node is defined as the length
of the path from the node to the root. We call wi the split node; its location is where

84

Figure 3-9. Insert a new leaf node w ∗ into the CMHT, where w3 is the split node

we will insert w ∗. See the left plot of Figure 3-9 for an example. Both the server
and the client can independently determine c . Recall that the client knows the
shape of the complete binary tree based on the value of n.
The client generates an update request RU = {Insert,Location,m∗,σ∗}, and send
it to the server. After receiving the request, the server will insert the block into the
file, constructs a partial CMHT (denoted as �) to the split node wi at coordinate c ,
and then inserts a leaf node w ∗ as follows: replacing wi with a new internal node
wd , and making wi and w ∗ to be the left and right children of wd , respectively. (See
Figure 3-9 for a simple, illustrative example.) The server adds m∗ and w ∗ into its
data structure that maps between data blocks and their leaf nodes in the CMHT.
Finally, it updates the labels of all nodes on the path from w ∗ to the root. Let l(wr ′)
be the new label of the root.
The server generates a proof Pupdate = {�, l(wr ′)} and sends it to the client, where
� is the partial CMHT to the split node before insertion. For each node in the
partial CMHT, the server only needs to send its label. Recall that the client can
independently determine c and thus know the exact shape of this partial CMHT.
Using the labels of the nodes and following the standard Merkle tree operations,
the client can verify the integrity of the partial CMHT. Next, the client re-performs
the same insertion as the server does, and re-computes the label of the root l(wr ′′)
based on the partial CMHT after insertion. The insertion is successful only if l(wr ′)
equals to l(wr ′′). In this case, the client will agree on a new time stamp T ′ with the
server, and together they will generate a new meta data with the new root label
l(wr ′).

• Deletion: Suppose a client wants to delete a data block mi . It sends an update
request RU = {Delete,Location} to the server, which deletes mi from the file,
reconstructs a partial CMHT (denoted as �) to a leaf node wj which represents mi

at a certain coordinate ci , and deletes wj using the following algorithm: Let wk be
wj ’s sibling node. There are two cases. (1) If wj or wk is the rightmost leaf node
at the highest level, the server deletes wj and replaces wj ’s parent with wk . (2)
Otherwise, it finds the rightmost leaf node w ′ at the highest level, and expands �
to that node. In this expanded partial CMHT that covers both wi and w ′, the server
replaces the parent of w ′ with its sibling and then moves w ′ to the location of wj

85

Figure 3-10. Delete the leaf node w4 from the CMHT
after removing wj from the tree. Hence, we call w ′ the replacement node. (See
Figure 3-10 for a deletion example.) The server re-computes the labels in the
partial CMHT from leaf(s) to the root. Let l(wr ′) be the new root value.
Next, the server generates a proof Pupdate = {�, l(wr ′)}, where � is the partial
CMHT to wj (possibly also to w ′) before deletion. Knowing the shape of the CMHT
based on the value of n, the client can independently determine the coordinate
of the replacement node for case (2) of the deletion algorithm. After receiving
the proof, the client first verifies whether the label of wj contains H(mi), verifies if
the coordinate of the replacement node (if there is one in �) is correct, and then
verifies the integrity of � through the Merkle tree operations. Finally, it performs the
same deletion algorithm as the server does. Let lc(wr ′′) be the new label of the root
that the client computes. The deletion is successful only if lc(wr ′) equals to l(wr ′′).
In this case, the client will generates a new meta data with the server.

3.6.5 Client Caching

To improve the client’s performance, we may cache the upper levels of the tree on

the client side. Due to the nature of a complete binary tree structure, the upper levels

account for a very small fraction of the whole tree, but it can significantly reduce the

amount of computation and communication between the client and the server. For a

file of 106 data blocks, if we cache the top 10 levels of CMHT at the client side (which

accounts for less than 0.1% of the whole CMHT tree), we can reduce the communication

overhead by half.

3.6.6 Security Analysis

Security definition. The proposed solution achieves the following security

properties.

• Storage Integrity : with Theorem 3.1, we prove that our solution can detect loss of
clients’ data stored on the cloud. That is, if the cloud server loses data blocks and
the client’s request includes any of those blocks, with almost certainty the client will
detect the loss by observing the proof from the server fails the verification.

• Non-repudiable evidence against the client’s false claim: with Theorem 3.2, we
prove that our solution can also supervise the behavior of the client. That is, if a

86

client makes false claim about data loss, the server can produce non-repudiable
evidence that causes the Judge algorithm by the judicator to always declare the
server is the winner, regardless of what evidence the client provides.

Security proofs.

Theorem 3.1. Suppose factoring N = pq is polynomially infeasible for two sufficiently

large primes p and q. Given a client request Rk , if the server does not possess one or

more data blocks whose coordinates belong to Rk (due to data loss or corruption), the

probability for a proof P produced by the server in polynomial time to pass the client’s

integrity check VerifyProof (Rk ,P,Mc) is negligibly small.

Proof. We prove the theorem by contradiction. Recall that Rk = {(ci , vi) | i ∈
},

and we use mi to denote the data block that is represented by a leaf node in CMHT

whose coordinate is ci . Assume (1) the server does not possess one or more blocks in

{mi | i ∈
}, and yet (2) it has a polynomial method to produce a proof P = (µ,σ, �) that

can pass the client’s integrity check with non-negligible probability,

σ = (
∏
i∈

ti
vi) · gµ mod N, (3–2)

where ti = H(mi)||ci . The integrity of the tags ti is protected by the Merkle tree

operations performed on �. Hence, unless the server has a way to break the collision-resistant

hash function used by the CMHT, the correct tags for blocks in {mi | i ∈
} must be

used in (3–2). This prevents the server from using other blocks not in {mi | i ∈
} and

their tags to produce a proof that would make (3–2) hold.

Recall that µ is supposed to be set to
∑

i∈
 vimi . But because the server does not

have one or more of these blocks, it does not know the value of
∑

i∈
 vimi . Hence, the

probability for a chosen value µ to equal
∑

i∈
 vimi will be negligibly small if the data

blocks are sufficiently large. In other words, with high probability,

µ ̸=
∑
i∈

vimi . (3–3)

87

By definition, σ =
∏

i∈
 σi
vi mod N, and σi = ti · gmi mod N. Applying them to (3–2), we

have ∏
i∈

(ti · gmi)vi = (
∏
i∈

ti
vi) · gµ mod N

∏
i∈

gvimi = gµ mod N

g
∑

i∈
 vimi = gµ mod N.

That, together with (3–3), means we have found µ −
∑

i∈
 vimi ̸= 0 such that

gµ−
∑

i∈
 vimi = 1 mod N. Therefore, µ −
∑

i∈
 vimi can be used to factor N, following

Miller’s Lemma [44].

The above analysis shows that if the server has a polynomial method to produce a

proof that passes integrity check with non-negligible probability, then that method can

factor N with non-negligible probability, which contradicts the theorem assumption that

factoring a large integer N is polynomially infeasible.

Theorem 3.2. If the client makes false claim about data loss, the server is able to

provide non-repudiable evidence that the client have lied.

Proof. Let the client request be Rk = {(ci , vi) | i ∈
}, and we use mi to denote the data

block that is represented by a leaf node in CMHT whose coordinate is ci . If the server

possesses all blocks in {mi | i ∈
}, it can correctly calculate µ =
∑

i∈
 vimi . The server

can also correctly compute σ =
∏

i∈
 σi
vi mod N. Note that the correctness of the tags

ti = H(mi)||ci and the signatures σi = ti · gmi mod N is verifiable by the server based on

mi . Hence, we have

σ =
∏
i∈

σi
vi = (

∏
i∈

ti
vi) · g

∑
i∈
 vimi = (

∏
i∈

ti
vi) · gµ mod N.

Moreover, the correctness of the CMHT is also completely verifiable by the server

through hashing. The server will not sign the meta data at any time when it finds that

88

the CMHT fails the integrity check based on its meta dataMs . Hence, the partial tree �

produced by the server will also pass the Merkle-tree operations.

In order for the client to make a successful false claim, it has to make sure that

Judge(pks , pkc , Ec , Es) does not execute Line 2, 5 or 13 in Figure 3-7 because otherwise

the server will be declared as the winner. To avoid Line 2, the client must provide a false

meta dataMc , which is different fromMs , because the latter (together with the proof P

also provided by the server) will pass the data-possession verification in Line 1 as we

have argued previously. Hence,Mc ̸=Ms .

To avoid Line 5, the client must provideMc that was signed by the server such that

the signature verification in Line 5 can pass.

The server has signed bothMs andMc . Because the server always keeps the

latest meta data asMs ,Mc must have been signed earlier with a smaller timestamp.

In this case, Line 13 will be executed, which still declares the server as the winner.

Therefore, the evidence provided by the server, Es = {P,Rk ,Ms}, will non-repudiably

result in the judicator declaring the server as the winner when the client makes false

claim, regardless of what evidence the client will provide.

3.6.7 Evaluation

We evaluate the performance of our solution in two parts. First, we evaluate the

performance of our solution without client-side cache. Compared with the DPDP in

[25]1 , we show that our solution has better performance in both the communication

overhead and the computational overhead. Then, we add client-side cache into our

solution. Comparing with the result without the client-side cache, we show that the

1 We don’t compare our solution with MHT in [58] because as we mentioned in
Section 3.2, MHT in [58] is an unbalanced binary tree while the CMHT is a complete
binary tree. So the performance of CMHT will definitely be better than that of MHT.

89

client-side cache can reduce communication and computational overhead with small

storage space requirement.

Note that we don’t compare CMHT with CMBT in [45] and the MHT in [58] because:

on the one side, the performance of DPDP is better than that of the CMBT. On the other

side, as the MHT in is an unbalanced binary tree while the CMHT is a complete binary

tree. So the performance of CMHT will definitely be better than the MHT.

Our experiments are performed on a desktop computer with Intel Core i7-3770

@3.40 GHz, 8 GB RAM, and a 2TB hard driver. Algorithms are implemented using

C++. We implement the block signature and the hash function using the crypto library of

OpenSSL version 1.0.1 [1].

The size of the file used in our experiments is 1GB. After dividing the file into blocks,

we measure the communication and computational overhead incurred at the client side

and the server side for performing data-possession verification and update operations.

We evaluate the performance of our solution and compare it with DPDP under different

block sizes. We let the client cache the upper half of the levels in the CMHT or in the

skiplist of DPDP. The cached data is about 0.1% of the tree (or skiplist). For CMHT,

when the block size is 1024KB, the total cached data is just 1.25KB; when the block

size is 2KB, the total cashed data is 80KB, which is still very small comparing with the

file size of 1GB. For DPDP, the amount of cached data is larger because each node in

skiplist needs to store an extra rank number.

Note that DPDP does not address false client claims as our solution does. This is a

qualitative difference not included in the quantitative comparison below.

Communication overhead. We first compare our solution and DPDP in terms

of communication overhead for data-possession verification over a request Rk for

k data blocks. As proved in [5], detecting a 1% file corruption with 99% confidence

needs querying a constant number of 460 blocks. So we set k = 460. The dominating

overhead is the proof sent from the server to the client. It is not affected by the number

90

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 200 400 600 800 1000

A
ve

ra
ge

 p
ro

of
 s

iz
e

(K
B

)

Block size (KB)

DPDP
Our scheme

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 200 400 600 800 1000M
ax

im
um

 p
ro

of
 s

iz
e

(K
B

)

Block size (KB)

DPDP
Our scheme

Figure 3-11. Comparing our solution (CMHT) and DPDP in terms of average or
maximum communication overhead for data-possession verification with
client cache

of corrupted blocks at the server. We measure both average overhead and maximum

overhead. The former is the average over 100 independent runs, each run verifying 460

random selected blocks. The latter is the overhead for the case where Rk contains 460

leaf nodes with highest levels.

We present the experimental result in Figure 3-11. The x-axis shows the block size

in KB. The y-axis shows the communication overhead in KB. The left plot presents the

average overhead, and the right plot presents the maximum overhead. The overhead of

our solution is consistently less than half of the overhead in DPDP. More specifically, our

average overhead is 31% ∼ 50% of DPDP’s in the left plot, and our maximum overhead

is 13% ∼ 46% of DPDP’s in the right plot. When the block size is 2KB, our solution

reduces the average (maximum) overhead by 69% (87%) when comparing with DPDP.

Next, we measure the communication overhead between the client and the server

for updating a data block. It includes all information sent by UpdateRequest, Update,

and VerifyUpdate. We perform query, insert, delete, and modify once for every data

block of the file to measure the average communication overhead. For all operations,

when we work on one block, all other data blocks of the file are assumed to be present

in the server, and so does their corresponding leaf nodes in CMHT. (Using deletion as

an example, we will delete one block at a time. Before we delete the next block, we put

91

back the previously deleted one.) For insertion and modification, we do not account the

transmission of the new block as overhead.

The experimental results are shown in Figure 3-12. The x-axis is the block size

in logarithmic scale. The y-axis is the communication overhead in KB. The average

overhead of our solution is significantly lower than that of DPDP — less than one third

of it when the block sizes are relatively small. The gap for the maximum communication

overhead is even larger, which we omit due to space limitation.

 0

 0.2

 0.4

 0.6

 0.8

 1

2 22 23 24 25 26 27 28 29 210C
om

m
. o

ve
rh

ea
d

(K
B

)

Block size (KB)

Query a block

DPDP
Our scheme

 0

 0.2

 0.4

 0.6

 0.8

 1

2 22 23 24 25 26 27 28 29 210C
om

m
. o

ve
rh

ea
d

(K
B

)

Block size (KB)

Insert a block

DPDP
Our scheme

 0

 0.2

 0.4

 0.6

 0.8

 1

2 22 23 24 25 26 27 28 29 210C
om

m
. o

ve
rh

ea
d

(K
B

)

Block size (KB)

Modify a block

DPDP
Our scheme

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

2 22 23 24 25 26 27 28 29 210C
om

m
. o

ve
rh

ea
d

(K
B

)

Block size (KB)

Delete a block

DPDP
Our scheme

Figure 3-12. Comparing our solution and DPDP in terms of average communication
overhead for updating a block with client cache

Computational overhead.

We measure the computational overhead for a client to verify a proof returned from

the server for data-possession verification, including both the verification of (3–1) and

the Merkle tree operations on the partial CMHT tree. We make 100 randomly-generated

data possession verification requests and measure the average and maximum

computational overhead per request. The results are presented in Figure 3-13. The

92

 5

 10

 15

 20

 25

 30

 35

 40

2 22 23 24 25 26 27 28 29 210

C
om

p.
 o

ve
rh

ea
d

(m
s)

Block size (KB)

Our scheme
DPDP

 20

 40

 60

 80

 100

 120

 140

2 22 23 24 25 26 27 28 29 210

C
om

p.
 o

ve
rh

ea
d

(m
s)

Block size (KB)

Our scheme
DPDP

Figure 3-13. Average and maximum computational overheads by a client to verify a
proof with client cache

x-axis shows the block size in logarithmic scale. The y-axis shows the computational

overhead in second. Again, our solution performs better in the average case as well as

the maximum case. More specifically, our solution reduces the average computational

overhead by up to 58.5% and the maximum computational overhead by up to 78.7%,

when comparing with DPDP.

3.7 Summary

The development of cloud storage systems brings a number of security problems.

This work proposes a non-repudiable data possession verification solution that protects

both the client and the server. The new solution makes sure that the server cannot cheat

the client by lying about data loss, and the client cannot untruthfully claim data loss.

We also design a new data structure named Coordinate Merkle Hash Tree (CMHT) to

optimize the communication and computational overhead. We compare our solution with

previous work through experiments, and the result shows that our solution has better

performance.

93

CHAPTER 4
MEASUREMENT-BASED ANOMALY DETECTION IN CLOUD COMPUTING

4.1 Motivation

As the Internet moves into the era of big network data, it presents both opportunities

and technical challenges for data flow measurement at both the core and the edge of the

networks. This work focuses on a particular measurement function, counting the number

of distinct elements in each flow, which is traditionally referred to as flow cardinality

or flow spread. Flows and elements can be flexibly defined depending on application

context. A few examples are given below.

• For scan detection, we can define each flow as all packets from the same source
address and its elements as the destination addresses in the headers of the
packets. The flow from a scanner has a large cardinality because it sends packets
to many different destination addresses.

• For the gateway of a network to automatically identify its internal servers (possibly
for resource alignment), it may regard all inbound packets to each internal address
as a flow and the source addresses in the headers of the packets as elements.
The flow to a server tends to have a larger cardinality than flows to other hosts
because more clients communicate with the server. Moreover, as the gateway
measures the cardinality of each flow periodically, it can detect potential DDoS
attacks to a server if it finds the cardinality of the flow to the server jumps far
beyond the normal value.

• In other applications, the flows do not have to be network traffic. For example, an
online retailer may want to count the number of different customers that purchase
one product after purchasing another one. These two products form a purchase
association. We logically interpret all customers making the two purchases as a
flow. Identifying purchase associations with large cardinalities help the retailer
make effective followup suggestions to customers after they make their first
purchases.

However, exact count for each flow will cause large memory and computation

overhead. Because we count the number of distinct elements, in order to remove

duplicates, the data structures may have to keep the elements that have been seen

[63], which is costly. Note that counting the number of elements in each flow without

removing duplicates is a related but different problem [39–41]. Fortunately, it is often

94

not necessary for applications such as those listed above. As an example, for scan

detection, suppose the cardinalities of the flows from normal sources are in tens or

fewer. If the cardinality of the flow from a scanner is in thousands, even with some

estimation error, we can still separate it from the normal ones based on the estimated

cardinality. Various methods have been proposed for estimating the cardinalities of flows

[8, 27, 37, 57, 61]. One important thread of research in this area is based on sketches.

The representative work includes the FM sketches [29], the LogLog sketches [24],

and the HyperLogLog sketches [28], which have been implemented in real systems.

In a typical implementation, a LogLog or HyperLogLog sketch uses 5 bits, and an FM

sketch uses more. Multiple sketches (in hundreds) are needed for each flow to ensure

estimation accuracy.

There are practical needs for reducing per-flow memory overhead in cardinality

estimation. If the cardinality estimation function is implemented on a network processor

chip, because the on-chip memory is typically small and the number of flows in

modern networks can be very large, we will have to minimize per-flow overhead in

order to accommodate more flows. In the previous application example of purchase

associations, if there are hundreds of thousands of different products, the number of

possible purchase associations (flows) can in tens of billions. For such a large number

of flows, memory overhead may become a problem.

4.2 Related Work

This work is motivated from the famous FM sketches and probabilistic counting

with stochastic averaging [29], which are designed to estimate the number of distinct

elements in a multiset (or a flow in the context of this work). For each flow, the data

structures consist of s FM sketches, denoted as S [j], 0 ≤ j < s, each of which is a

bitmap of l bits, denoted as S [j][i], 0 ≤ i < l .

To record an element of the flow, we first perform a uniformly distributed hash

function on the element to select one of the sketches. Without loss of generality,

95

we denote the selected sketch as S [j]. We then perform a geometrically distributed

hash function on the element such that the probability for the output to be i is 2−(i+1),

0 ≤ i < l . Let v be the output. We set the bit S [j][v] to one. Duplicate elements will set

the same bit and thus automatically removed since they have no impact on the values of

the sketches.

After recording all elements of the flow, we can estimate the flow cardinality from

the sketches as follows: Let k be the true cardinality of the flow, k̂ be the estimated

cardinality, and f (S [j]) be the number of leading ones in sketch S([j]). For example, if

S [j] is 1111010...0, then f (S [j]) = 4. A functional relation can be developed between k

and the expected number of leading zeros in each sketch. Replacing the expected value

with the measured average of
∑s−1

j=0 f (S[j])

s
, the following estimation formula is derived in

[29]:

k̂ =
s2

∑s−1
j=0

f (S[j])

s

θ
, (4–1)

where θ = 0.77 when k is sufficiently large. To ensure estimation accuracy, hundreds of

sketches are often needed.

Instead of using the number of leading ones, the LogLog and HyperLogLog

sketches [24, 28] develop their estimation formulas based on the highest index of

any bit that is set to one in each sketch. Only log2 l bits per sketch is needed to keep

track of this index value. However, even though each sketch is smaller, hundreds of

them are still needed to ensure accuracy.

We reduces per-flow memory usage in two ways. First, we develop virtual sketches,

each of which uses no more than 2 bits on average. Second, we develop virtual sketch

vectors, which are logically-separated but physically-shared data structures for a large

number of different flows. Together, they can drive the memory usage down to the realm

of one bit per flow.

96

Figure 4-1. An illustrative example of constructing virtual sketches from the bit arrays
with l = 3 and m = 8. The first bit in each bit array is shown in bold text. To
construct virtual sketches, the bits in the arrays except for B[0] must be
reused. The figure shows that the bits in B[2] are each used four times in the
virtual sketches, and the bits in B[1] are each used twice.

4.3 Virtual Sketches

4.3.1 Virtual Sketches

The available physical memory B is divided into l bit arrays, denoted as B[i],

0 ≤ i < l , with the size of B[i + 1] being half of the size of B[i]. Let m be the number

of bits in B[0]. The number of bits in B[i] is m
2i . The total number of bits in all bit arrays is∑l−1

i=0m2−i < 2m.

The j th bit in B[i] is denoted as B[i][j], 0 ≤ j < m
2i . With each bit B[0][j], we

construct a virtual sketch V [j] of l bits, denoted as V [j][i], 0 ≤ i < l , by taking one bit

from every other array:

V [j][i] = B[i][j mod
m

2i
]. (4–2)

Because there are fewer bits in other arrays, their bits must be reused in multiple

sketches. Figure 4-1 shows an example with l = 3 and m = 8. For instance, V [0]

consists of three bits, B[0][0], B[1][0] and B[2][0], while V [6] consists of three bits,

B[0][6], B[1][2] and B[2][0]. They share B[2][0].

97

In total, we construct m virtual sketches from fewer than 2m bits, using space fewer

than 2 bits per sketch, more efficient than the existing sketches [24, 28, 29]. The m

virtual sketches form a sketch pool, denoted as V .

4.3.2 Virtual Sketch Vector

For an arbitrary flow f , we select a number s of virtual sketches pseudo-randomly

from the pool V to form a virtual sketch vector Vf for the flow, where s is a system

parameter. For convenience, the sketches in the vector are also denoted as Vf [j],

0 ≤ j < s, which will be used to record the elements in flow f .

There are different ways of selecting sketches from V to form Vf . One possible

approach is described as follows: Let R be an array of s different constants that are

randomly chosen. To select Vf [j], we perform XOR on f and R[j], and hash the result

for an index to a sketch in V , where H is a hash function and f is the flow label. If the

hash function requires a specific length of input and f has a different length, we can

pad f or divide f into segments and XOR the segments such that the resulting length is

appropriate. For simplicity, the formulas in the work assume that the hash function can

take input in the length of f . Hence,

V [H(f ⊕ R[j])]→ Vf [j], 0 ≤ j < s, (4–3)

where ⊕ is the XOR operator and→ means “is selected for.” An example of constructing

virtual sketch vectors for two flows is given in Figure 4-2.

In (4–3), V [H(f ⊕ R[j])] should be V [H(f ⊕ R[j]) mod m]. We omit “mod m” to

simplify the notation. We will use Vf [j][i] for the i th bit of Vf [j], 0 ≤ i < l .

In theory, we can construct an arbitrary number of virtual sketch vectors from the

same pool V to support an arbitrary number of flows. The vectors for different flows

will share sketches in V . Sharing causes noise. As the elements of flow f are recorded

by the sketches in vector Vf , because those sketches are also used by the vectors of

other flows, it introduces noise into other vectors. The more the number of flows is, the

98

Figure 4-2. An illustrative example of constructing virtual sketch vectors from the
common pool V with s = 3. Consider two flows, f and f ′. Three sketches
are randomly drawn from V to form Vf . The same happens for Vf ′. The
virtual sketch V [2] is used in both vectors.

more the sharing of sketches will be, and the greater the noise will be. We will use the

maximum likelihood method to remove the noise in each vector caused by other flows

through sketch sharing.

4.4 Counting Distinct Elements in Network Flows

4.4.1 Online Operation

Consider a device processing an incoming stream of data from a large number

of flows. The device may be a router processing the arrival packets which belong

to different flows. A measurement function implemented on the router can provide

estimations of flow cardinalities during each measurement period. The device may also

be a server processing sale records and estimate the number of occurrences for each

purchase association. See the introduction for application examples.

When processing the incoming data stream, the device extracts a sequence of

flow/element pairs. We introduce a recording probability β, i.e., each flow/element pair

has a probability of β to be recorded. To implement the recording probability, each

flow/element pair is first sampled with a probability of β
1−2−l ; its reason will become clear

shortly. Consider an arbitrary flow/element pair which is sampled. Let f be the flow label

99

and e be the element (which belongs to f). To record the element, the device does the

following.

First, it pseudo-randomly selects a sketch from Vf . More specifically, it performs a

hash H(f ⊕ e) in the range of [0, s) and selects Vf [H(f ⊕ e)]. If f and e have different

lengths, we may pad e or divide e into segments and perform XOR on the segments

such that its length is equal to that of f .

Second, the device chooses a bit from the selected sketch. To do so, it performs

another hash H ′(f ⊕ e). Let z be the number of leading zeros in H ′(f ⊕ e). If z ≥ l , e is

not recorded. If z < l , the bit Vf [H(f ⊕ e)][z] is chosen and set to one for recording e.

That is,

Vf [H(f ⊕ e)][z] := 1, (4–4)

where := is the assignment operator. By (4–3), it becomes

V [H(f ⊕ R[H(f ⊕ e)])][z] := 1. (4–5)

By (4–2), it becomes

B[z][H(f ⊕ R[H(f ⊕ e)]) mod
m

2i
] := 1. (4–6)

Clearly, multiple occurrences of the same flow/element pair will cause the same bit to be

set, Therefore, duplicate elements in a flow are filtered out automatically. Only distinct

elements may be recorded by different bits. It is also possible that two distinct elements

set the same bit. Such collision is considered in our later development of estimation

formula.

We stress that V and Vf are logical concepts that will help us derive a formula for

estimating the flow cardinalities. They are not physically constructed during the phase

of online operation. The only physical data structures that the device maintain are B[i],

0 ≤ i < l . The only operation per flow/element pair is sampling and then possibly

assignment in (4–6). In the assignment, m
2i can be pre-computed. If m is chosen to be a

100

power of 2, the modulo can be accomplished by a right-shift operation. The two hashes,

H(f ⊕ e) and H ′(f ⊕ e), can be combined into one: Suppose the hash output of H(f ⊕ e)

has 32 bits, s = 256, and l = 8. The first eight bits of H(f ⊕ e) will be sufficient for

selecting a sketch from Vf . The remaining 24 bits can substitute H ′(f ⊕ e) for selecting

a bit from the sketch; in fact, only 7 bits are needed since l = 8. In summary, the

computation of (4–6) requires two hashes and one memory access, plus some simple

operations such as XOR and shift.

The probability for z = i , ∀i ≥ 0, is 2−(i+1). The probability for z ≥ l is 2−l .

Hence, the probability for e to be recorded is the sampling probability β
1−2−l multiplied by

(1− 2−l), which gives β.

The probability for e to set the i th bit of a particular sketch, denoted as pi , is

pi =
β

1− 2−l
× 1

s
× 2−(i+1), (4–7)

where 0 ≤ i < l . The reason is that e has a probability of β
1−2−l to be sampled, a

probability of 1
s

to select the sketch, and finally a probability of 2−(i+1) to select the i th bit.

The value of pi decreases exponentially with respect to i .

4.4.2 Offline Estimation Based on Maximum Likelihood Method

After processing an incoming data stream, the online device offloads the bit arrays

to a server for long-term storage and offline query. It will then reset its arrays for the next

data stream.

The server can estimate the number ni of flow/element pairs recorded in Bi ,

∀i ∈ [0, l). This may be done through probabilistic counting [?]:

ni ≈ −
m

2i
lnVi , (4–8)

where Vi is the fraction of bits in Bi that are zeros.

Given a flow label f under query, the server estimates its cardinality based on the

stored bit arrays Bi . In this offline operation, the server first constructs the virtual sketch

101

vector Vf from the bit arrays. Combining (4–2) and (4–3), for 0 ≤ j < s, 0 ≤ i < l , we

have

Vf [j][i] = B[i][H(f ⊕ R[j]) mod
m

2i
]. (4–9)

Let k be the true cardinality of flow f . Consider an arbitrary bit Vf [j][i]. We derive

the probability for the bit to be zero, which happens when (1) none of the k elements

from f causes the bit to be set as one, and (2) none of the elements from other flows

causes the bit to be set. Each element of f has a probability pi in (4–7) to set Vf [j][i] as

one. The probability for none of the k elements from f to set it as one is (1− pi)
k .

Vf [j][i] is a bit in B[i]. From (4–8), there are approximately ni elements from all flows

that set bits in B[i]. Among them, the number from flow f is approximately

k × β

1− 2−l
× 2−(i+1) =

kβ2−(i+1)

1− 2−l

because each element has a probability of β
1−2−l to be sampled and, regardless of which

sketch is selected, it has a probability of 2−(i+1) to set the i th bit in the sketch (which is

a bit in B[i]). Hence, the number of elements from flows other than f , denoted as n′i , is

approximately

n′i ≈ ni −
kβ2−(i+1)

1− 2−l
. (4–10)

For an arbitrary element from another flow, the chance for Vf [j] to happen to be a sketch

in the vector of that flow and be selected for recording the element is s
m
× 1

s
= 1

m
. Hence,

the probability for none of the n′i elements from other flows to set Vf [j][i] is (1 − 1
m
)n

′
i .

Summarizing the above analysis, we have the following formula for the probability of

Vf [j][i] being zero:

ϕi = (1− pi)
k(1− 1

m
)n

′
i . (4–11)

102

Let ui = s −
∑s

j=0 Vf [j][i], which is the number of zeros at the i th bits of all sketches in

Vf . The likelihood function of observing {ui | 0 ≤ i < l} with respect to k is

L(k) =

l−1∏
i=0

(
s

ui

)
× ϕui

i (1− ϕi)
s−ui . (4–12)

We find an estimated cardinality k̂ for flow f that maximizes L(k). That is,

k̂ = max
0≤k≤K

{L(k)}, (4–13)

where K is the maximum flow size of interest. We may solve (4–13) numerically through

exhaustive search, which is however computationally costly. In our experiments, we

adopt a bi-section search method, producing the same results as the exhaustive search:

Denote the search range as [r1, r2]. Initially set r1 = 0 and r2 = K . Let r3 = ⌊ r1+r2
2
⌋.

Compute L(r3) and L(r3 + 1). If L(r3) is greater than L(r3 + 1), set r2 = r3; if L(r3 + 1) is

greater, set r1 = r3. Repeat the above procedure until r2 − r1 ≤ 1. Finally, set k̂ to be the

one among r1 and r2 that produces a larger value of the likelihood function.

4.5 Differentiated Estimation Accuracy

Consider an online monitoring application where a gateway keeps track of the

external scanning activities by measuring how many distinct destination addresses that

each external source has contacted during each measurement period. All packets from

the same source address constitute a flow, and the elements are destination addresses

in the packet headers. The gateway may have access to a list of potentially malicious

external hosts based on the past results from firewalls and other intrusion detection

systems. Naturally, it is desirable to improve the accuracy in flow cardinality estimation

for these flows over the background of other flows from addresses not in the list.

We introduce the problem of cardinality estimation with differentiated accuracy. Let

F = {F0,F1, ...,Fg−1} be the set of flows to be measured, which is divided into g subsets.

Assume most flows belong to the base subset F0. Their estimation accuracy serves

as a baseline. Other subsets, Fv , 0 < v < g, have increasingly higher requirements

103

on estimation accuracy. Each Fv is assigned an integer priority number av such that

a0 = 1 and av > av−1. The differentiated accuracy requirement is that the variance of the

cardinality estimation k̂ for a flow f in Fv should be only 1
av

of the variance if the same

flow had belonged to the base subset F0.

To meet the differentiated accuracy requirement, we propose to measure the

cardinality of flow f independently for av times. That is, we assign av virtual sketch

vectors to f , and every element from f is probabilistically recorded for av times, each

time by a different vector. Each vector will give an estimation with a baseline accuracy

comparable to similar flows in F0, which have a single vector per flow. When we average

the av estimations for flow f , the variance of the average is 1
av

of the variance for each

individual estimation. More details are given below.

We assume that the device performing online operation is able to classify the

incoming sequence of flow/element pairs into the correct subsets such that each

flow/element pair, f and e, is associated with a priority number a. The classification

is beyond the scope of this work. As an example, network traffic may be classified by

pre-set ACLs or address lists.

If a > 1, we logically assign multiple virtual vectors to flow f , denoted as V v
f ,

0 ≤ v < a, which are constructed as follows:

V [H(f ⊕ R[v × a + j])]→ V v
f [j], 0 ≤ v < a, 0 ≤ j < s, (4–14)

where R is an array of s × ag−1 different constants. To record e, one bit from each V v
f

will be chosen and set to one. To do so, we need another array R ′ of ag−1 different

constants. The two hash functions for selecting a bit in V v
f are H(f ⊕ e ⊕ R ′[v]) and

H ′(f ⊕ e ⊕R ′[v]). Following a process similar to that in Section 4.4.1, to record e, we can

show that the device should set the following bits:

B[za][H(f ⊕ R[H(f ⊕ e ⊕ R ′[v])]) mod
m

2i
] := 1, 0 ≤ v < a, (4–15)

104

where za is the number of leading zeros in H ′(f ⊕ e ⊕ R ′[v]).

During offline estimation, given a flow label f and its priority number a, we

reconstruct the sketch vectors V v
f , 0 ≤ v < a, from (4–14), compute an estimate k̂v

from each V v
f , and return the average estimate:

k̂ =

∑a−1
v=0 k̂v

a
. (4–16)

4.6 Experiments

4.6.1 Experiment Setup

We evaluate the proposed virtual maximum likelihood sketches (VMLS) through

experiments based on real traffic traces. We obtained inbound packet header traces that

were collected through Cisco’s NetFlow from the main gateway at University of Florida

for five days. The source address in the packet header is used as flow label, and the

measurement period is one day. Hence, each flow consists of all packets from the same

source address during a day. The destination address in the packet header is used as

element. For each flow, its cardinality is the number of distinct destination addresses

that the source has sent packets to. One application for such per-flow measurement is

scan detection as explained in the introduction.

Table 4-1. Traffic trace
flows flow/element pairs avg cardinality

Day 1 3,558,510 10,048,129 2.82
Day 2 6,468,158 11,886,945 1.84
Day 3 5,189,371 11,858,928 2.29
Day 4 3,582,938 9,978,131 2.78
Day 5 4,007,256 10,702,677 2.67

Some statistics of the five-day traces are shown in Table 4-1. We use one day’s

trace as an example: It has 5,189,371 distinct source IP addresses, meaning that there

are 5,189,371 flows. It has 11,858,928 distinct source/destination pairs (flow/element

pairs). Hence, the average cardinality per flow is 2.29.

105

We implement the online operation module and the offline estimation module of the

proposed VMLS. The online operation uses a default memory space of one bit per flow,

i.e., the total number of bits in all bit arrays B[i], 0 ≤ i < l , is equal to the number of

flows in the trace. The existing FM, LogLog, hyperLogLog sketches cannot work under

such a tight memory space.

Unless specified otherwise, the parameters of VMLS are set as follows: l = 4,

s = 250, and the sampling probability is 50%. Increasing l to a larger value will extend

the estimation range without adding much space overhead due to the exponentially

decreasing nature of additional bit arrays. However, our traces do not have many large

flows, and l = 4 is sufficient for the experiments.

4.6.2 Estimation Accuracy

The first experiment evaluates the estimation accuracy of VMLS with a single

priority group, i.e., g = 1. For each one-day trace, we first apply the online operation

module to record the elements of the flows. We then use the offline estimation module

to compute an estimated cardinality for each flow. We then plot the five-day results in

Figure 4-3. Each point in the figure represents a flow. Its x coordinate is the flow’s true

cardinality, k . Its y coordinate is the flow’s estimated cardinality, k̂ . The closer a point

is to the equality line y = x , the better the estimation accuracy will be. From the figure,

we can see that the points cluster around the equality line, indicating reasonably good

estimation accuracy even under a tight space of one bit per flow.

Figure 4-4 shows the relative standard error of the estimations. Because there

are too few flows for some cardinality values, we compute the relative standard error

by dividing the horizontal axis into measurement bins. In each bin, we compute the

difference between the true cardinality and the estimated value for each flow, divide

it by the true cardinality, square the result, add these squares for all flows, divide it by

the number of flows minus one, and then take the squareroot. The figure shows that

the relative standard error is large for small flows, but relatively small for large flows.

106

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000
E

st
im

at
ed

 f
lo

w
 c

ar
di

na
lit

y

True flow cardinality

Figure 4-3. Estimation accuracy of virtual maximum likelihood sketches with a single
priority in memory of 1 bit per flow

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

 0 500 1000 1500 2000 2500 3000

R
el

at
iv

e
st

an
da

rd
 e

rr
or

True flow cardinality

Figure 4-4. Relative standard error of the estimations with a single priority in memory of
1 bit per flow

It is below 10% for flows whose cardinalities are beyond 2,000. Even for small flows,

although the relative standard error is large, the absolute error is still limited, which is

evident from Figure 4-3, making it easy to separate large flows from small ones.

4.6.3 Differentiated Estimation Accuracy

The second experiment evaluates the differentiated estimation accuracy of VMLS

with two priority groups, where g = 2, a0 = 1 and a1 = 4. 10% of all flows are randomly

selected for the higher priority, and the remaining flows belong to the base priority.

Figure 4-5 shows the estimation results of high-priority flows, and Figure 4-6 shows the

results of base-priority flows. It can be seen that the estimation accuracy of the former is

107

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

E
st

im
at

ed
 f

lo
w

 c
ar

di
na

lit
y

True flow cardinality

Figure 4-5. Estimation accuracy of higher priority flows with g1 = 4 in memory of 1 bit
per flow

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

E
st

im
at

ed
 f

lo
w

 c
ar

di
na

lit
y

True flow cardinality

Figure 4-6. Estimation accuracy of base priority flows with g0 = 1 in memory of 1 bit per
flow

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

 0 500 1000 1500 2000 2500 3000

R
el

at
iv

e
st

an
da

rd
 e

rr
or

True flow cardinality

High priority flows
Base priority flows

Figure 4-7. Relative standard error of the estimations with two priorities in memory of 1
bit per flow

108

much better than that of the latter; the points representing high-priority flows are much

closer to the equality line.

A more direct comparison is given in Figure 4-7, which shows that the standard

errors for high-priority flows are about half of the errors for the base-priority flows when

the flow cardinalities are beyond 500. This conforms to the accuracy requirement

specified by a1 = 4: the variance of high-priority flows is 1
4

of the variance of base-priority

flows. Hence, the standard deviation (or error) of the former should be half of the latter.

4.6.4 Varied Memory Availability

The third experiment evaluates the performance of VMLS with two priority groups

under different memory availability. Figure 4-8-4-10 shows the results when the memory

of the online operation module is 0.5 bit per flow. Comparing with Figure 4-5-4-7, the

estimation errors are considerably larger, indicating that the practical value of VMLS will

begin to diminish when the available memory is too small for the online module.

Figure 4-8-4-10 shows the results when the memory of the online operation module

is 3 bits per flow. Comparing with Figure 4-5-4-7, the estimation errors are measurably

better. For example, for flows of cardinalities around 2,000, the relative standard error of

the base priority is 9.6% under memory of 1 bit per flow, and it is lowered to 6.3% under

memory of 3 bits per flow. This result indicates that better estimation accuracy can be

achieved through memory increase for the online module.

4.7 Summary

This chapter proposes a new solution of virtual maximum likelihood sketches for

cardinality estimation. It has four technical contributions: virtual sketches, virtual sketch

vectors, a maximum likelihood method for cardinality estimation based on per-flow

virtual sketch vectors, and a method to achieve differentiated estimation accuracy

among multiple subsets of flows with different priorities. The experimental results based

on real traffic traces demonstrate that the new solution produces cardinality estimations

with reasonable accuracy in very tight memory space.

109

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

E
st

im
at

ed
 f

lo
w

 c
ar

di
na

lit
y

True flow cardinality

Figure 4-8. Estimation accuracy of higher priority flows with g1 = 4 in memory of 0.5 bit
per flow

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

E
st

im
at

ed
 f

lo
w

 c
ar

di
na

lit
y

True flow cardinality

Figure 4-9. Estimation accuracy of base priority flows with g0 = 1 in memory of 0.5 bit
per flow

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

 0 500 1000 1500 2000 2500 3000

R
el

at
iv

e
st

an
da

rd
 e

rr
or

True flow cardinality

High priority flows
Base priority flows

Figure 4-10. Relative standard error of the estimations with two priorities in memory of
0.5 bits per flow

110

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

E
st

im
at

ed
 f

lo
w

 c
ar

di
na

lit
y

True flow cardinality

Figure 4-11. Estimation accuracy of higher priority flows with g1 = 4 in memory of 3 bits
per flow

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

E
st

im
at

ed
 f

lo
w

 c
ar

di
na

lit
y

True flow cardinality

Figure 4-12. Estimation accuracy of base priority flows with g0 = 1 in memory of 3 bits
per flow

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

 0 500 1000 1500 2000 2500 3000

R
el

at
iv

e
st

an
da

rd
 e

rr
or

True flow cardinality

High priority flows
Base priority flows

Figure 4-13. Relative standard error of the estimations with two priorities in memory of 3
bits per flow

111

REFERENCES

[1] “OPENSSL 1.0.1.” http://www.openssl.org/ (2013).

[2] Akl, S. and Taylor, P. “Cryptographic Solution to A Problem of Access Control in A
Hierarchy.” ACM Transaction on Computer Systems (1983).

[3] Arora, C. and Turuani, M. “Adding Integrity to the Ephemerizer’s Protocol.” Proc. of
AVoCS (2006).

[4] ———. “Validating Integrity for the Ephemerizers Protocol with CL-Atse.” Formal to
Practical Security (2009).

[5] Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., and
Song, D. “Provable Data Possession at Untrusted Stores.” Proc. of CCS (2007).

[6] Ateniese, G., Pietro, R. Di, Mancini, L. V, and Tsudik, G. “Scalable and Efficient
Provable Data Possession.” Proc. of SecureComm (2008).

[7] Ateniese, G., Santis, A. De, Ferrara, A., and Masucci, B. “Provably-secure
Time-bound Hierarchical Key Assignment Schemes.” Proc. of CCS (2006).

[8] Bar-yossef, Ziv, Jayram, T. S., Kumar, Ravi, Sivakumar, D., Trevisan, Luca, and
Luca. “Counting Distinct Elements in a Data Stream.” Proc. of RANDOM: Workshop
on Randomization and Approximation (2002).

[9] Birget, J., Zou, X., Noubir, G., and Ramamurthy, B. “Hierarchy-Based Access
Control In Distributed Environments.” Proc. of ICC (2001).

[10] Boneh, D., Lynn, B., and Shacham, H. “Short Signatures from the Weil Pairing.”
Proc. of ASIACRYPT (2001).

[11] Bowers, K. D, Juels, A., and Oprea, A. “Proofs of Retrievability: Theory and
Implementation.” Proc. of ACM CCSW (2009).

[12] Burrows, J. “Secure Hash Standard.” Tech. rep., DTIC Document, 1995.

[13] Castelluccia, C., Cristofaro, E. De, Francillon, A., and Kaafar, M. “EphPub: Toward
Robust Ephemeral Publishing.” Proc. of ICNP (2011).

[14] Chang, C., Kao, C., and Lin, C. “Efficient and Scalable Hierarchical Key Assignment
Scheme.” Proc. of ACOS (2006).

[15] Chang, C., Lin, I., Tsai, H., and Wang, H. “A Key Assignment Scheme for
Controlling Access in Partially Ordered User Hierarchies.” Proc. of AINA (2004).

[16] Chen, T., Chung, Y., and Tian, C. “A Novel Key Management Scheme for Dynamic
Access Control in a User Hierarchy.” Proc. of COMPSAC (2004).

112

[17] Chien, H. and ke Jan, J. “New Hierarchical Assignment without Public Key
cryptography.” Computers and Security (2003).

[18] Chou, J., Lin, C., and Lee, T. “A Novel Hierarchical Key Management Scheme
based on Quadratic Residues.” Proc. of ISPA (2004).

[19] Cormen, T. H., Leiserson, C. E., and Rivest, R. L. “Introduction to Algorithms.” The
MIT Press, ISBN 0-262-03141-8, McGraw-Hill, ISBN 0-07-013143-0 (1986).

[20] Crispo, B., Dashti, M., Nair, S., and Tanenbaum, A. “A Hybrid PKI-IBC Based
Ephemerizer System.” Proc. of EuroPKI (2009).

[21] Daemen, J. and Rijmen, V. “The Design of Rijndael: AES–the Advanced Encryption
Standard.” Springer-Verlag, ISBN 3-540-42580-2, New York (2002).

[22] Das, A., Paul, N., and Tripathy, L. “Cryptanalysis and Improvement of An Access
Control in User Hierarchy based on Elliptic Curve Cryptosystem.” Information
Sciences (2012).

[23] Douceur, J. “The Sybil Attack.” Proc. of IPTPS (2002).

[24] Durand, Marianne and Flajolet, Philippe. “Loglog Counting of Large Cardinalities.”
ESA: European Symposia on Algorithms (2003): 605–617.

[25] Erway, C., Küpçü, A., Papamanthou, C., and Tamassia, R. “Dynamic Provable Data
Possession.” Proc. of ACM CCS (2009).

[26] Erway, C., Küpçü, A., Papamanthou, C., and Tamassia, R. “Dynamic Provable Data
Possession.” Proc. of CCS (2009).

[27] Estan, C., Varghese, G., and Fish, M. “Bitmap Algorithms for Counting Active Flows
on High-Speed Links.” IEEE/ACM Transactions on Networking (TON) (2006).

[28] Flajolet, Philippe, Fusy, Eric, Gandouet, Olivier, and Meunier., Frdric.
“HyperLogLog: The Analysis of a Near-optimal Cardinality Estimation Algorithm.”
Proc. of AOFA: International Conference on Analysis Of Algorithms (2007).

[29] Flajolet, Philippe and Martin, G. Nigel. “Probabilistic Counting Algorithms for
Database Applications.” J. Comput. Syst. Sci. (1985).

[30] Gassend, B., Suh, G., Clarke, D., Dijk, M. Van, and Devadas, S. “Caches and hash
trees for efficient memory integrity verification.” High-Performance Computer Archi-
tecture, 2003. HPCA-9 2003. Proceedings. The Ninth International Symposium on
(2003).

[31] Geambasu, R., Kohno, T., Levy, A., and Levy, H. “Vanish: Increasing Data Privacy
with Self-destructing Data.” Proc. of USENIX (2009).

[32] Grolimund, D., Meisser, L., Schmid, S., and Wattenhofer, R. “Cryptree: A Folder
Tree Structure for Cryptographic File Systems.” Proc. of SRDS (2006).

113

[33] Horowitz, E. and Sahni, S. Fundamentals of data structures. Computer science
press, 1983.

[34] Juels, A. and Jr, B. Kaliski. “PORs: Proofs of Retrievability for Large Files.” Proc. of
CCS (2007).

[35] Katz, J. and Lindell, Y. Introduction to Modern Cryptography. 2007.

[36] Kikuchi, H., Abe, K., and Nakanishi, S. “Online certification status verification with a
red-black hash tree.” IPSJ Digital Courier (2006).

[37] Kumar, A., Xu, J., Wang, J., Spatschek, O., and Li, L. “Space-Code Bloom Filter for
Efficient Per-Flow Traffic Measurement.” Proc. of IEEE INFOCOM (2004, A journal
version was published in IEEE JSAC, 24(12):2327-2339, December 2006).

[38] Lamport, L. “Password Authentication with Insecure Communication.” Communica-
tions of the ACM (1981).

[39] Li, T., Chen, S., and Ling, Y. “Fast and Compact Per-Flow Traffic Measurement
through Randomized Counter Sharing.” Proc. of IEEE INFOCOM (2011).

[40] Lieven, P. and Scheuermann, B. “High-Speed Per-Flow Traffic Measurement with
Probabilistic Multiplicity Counting.” Proc. of IEEE INFOCOM (2010).

[41] Lu, Y., Montanari, A., Prabhakar, B., Dharmapurikar, S., and Kabbani, A. “Counter
Braids: A Novel Counter Architecture for Per-Flow Measurement.” Proc. of ACM
SIGMETRICS (2008).

[42] Merkle, R. “A Digital Signature Based on a Conventional Encryption Function.”
Journal of CRYPTO (1987).

[43] ———. “A digital signature based on a conventional encryption function.” Advances
in Cryptology (CRYPTO) (1988).

[44] Miller, G. “Riemann’s Hypothesis and Tests for Primality.” Proc. of ACM STOC
(1975).

[45] Mo, Z., Zhou, Y., and Chen, S. “A Dynamic Proof of Retrievability (PoR) Scheme
with O(logn) Complexity.” Proc. of IEEE ICC (2012).

[46] Naor, M. and Nissim, K. “Certificate revocation and certificate update.” Selected
Areas in Communications, IEEE Journal on (2000).

[47] Perlman, R. “File System Design with Assured Delete.” Proc. of SISW (2005).

[48] ———. “The Ephemerizer: Making Data Disappear.” Information System Security
(2005).

[49] Pfaff, B. “Performance Analysis of BSTs in System Software.” Proc. of SIGMET-
RICS (2004).

114

[50] Pugh, W. “Skip lists: A Probabilistic Alternative to Balanced Trees.” Communica-
tions of the ACM (1990).

[51] Santis, A., Ferrara, A., and Masucci, B. “Efficient Provably-secure Hierarchical Key
Assignment Schemes.” Theoretical Computer Science (2011).

[52] Shacham, H. and Waters, B. “Compact Proofs of Retrievability.” Proc. of ASI-
ACRYPT (2008).

[53] Shamir, A. “How to share a secret.” Communications of the ACM (1979).

[54] Stoica, I., Morris, R., Karger, D., Kaashoek, M., and Balakrishnan, H. “Chord: A
scalable Peer-to-peer Lookup Service for Internet Applications.” Proc. of SIGCOMM
(2001).

[55] Tang, Q. “From Ephemerizer to Timed-Ephemerizer: Achieve Assured Lifecycle
Enforcement for Sensitive Data.” Technical Report TR-CTIT-10-01 (2010).

[56] Tang, Y., Lee, P., Lui, J., and Perlman, R. “FADE: Secure Overlay Cloud Storage
with File Assured Deletion.” Proc. of SecureComm (2010).

[57] Venkatataman, S., Song, D., Gibbons, P., and Blum, A. “New Streaming Algorithms
for Fast Detection of Superspreaders.” Proc. of NDSS (2005).

[58] Wang, Q., Wang, C., Li, J., Ren, K., and Lou, W. “Enabling Public Verifiability and
Data Dynamics for Storage Security in Cloud Computing.” Proc. of ESORICS
(2009).

[59] Williams, D. and Sirer, E. “Optimal parameter selection for efficient memory
integrity verification using merkle hash trees.” Network Computing and Applications,
2004.(NCA 2004). Proceedings. Third IEEE International Symposium on (2004).

[60] Wolchok, S., Hofmann, O., Heninger, N., Felten, E., Halderman, J., Rossbach, C.,
Waters, B., and Witchel, E. “Defeating Vanish with Low-cost Sybil Attacks against
Large DHTs.” Proc. of NDSS (2010).

[61] Yoon, Myungkeun, Li, Tao, Chen, Shigang, and Peir, Jih-Kwon. “Fit a Compact
Spread Estimator in Small High-Speed Memory.” IEEE/ACM Transactions on
Networking (2011).

[62] Zhang, Y. and Blanton, M. “Efficient Dynamic Provable Possession of Remote Data
via Balanced Update Trees.” AsiaCCS (2013).

[63] Zhao, Q., Xu, J., and Kumar, A. “Detection of Super Sources and Destinations
in High-Speed Networks: Algorithms, Analysis and Evaluation.” IEEE JASC 24
(2006).10: 1840–1852.

[64] Zheng, Y., Hardjono, T., and Seberry, J. “New Solutions to the Problem of Access
Control in A Hierarchy.” Technical Report (1993).

115

BIOGRAPHICAL SKETCH

Zhen Mo earned his Bachelor of Engineering degree in information security

engineering from Shanghai Jiaotong University in 2007. He received his Master of

Engineering degree in theory and new technology of electrical in 2010 from Shanghai

Jiaotong University. In 2010 he joined the doctoral program in Computer Engineering at

University of Florida. He received his Ph.D. from the University of Florida in the spring of

2015.

116

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 INTRODUCTION
	1.1 Motivation
	1.2 Overview of The Dissertation

	2 ASSURED DELETION PROBLEM IN CLOUD COMPUTING
	2.1 System Model
	2.2 Related Work
	2.2.1 File Assured Deletion
	2.2.2 Key Management in Hierarchical Access Control

	2.3 Straightforward Two-party Solutions
	2.3.1 Master-Key Solution
	2.3.2 Individual-Key Solution

	2.4 Key Modulation Based Solution
	2.4.1 Threat Model
	2.4.2 Key Modulation Function
	2.4.3 Access Modification and Insertion
	2.4.4 Managing Master Keys for Large File Systems
	2.4.5 Security Analysis
	2.4.6 Experimental Results

	2.5 Recursively Encrypted Red-black Key Tree Based Solution
	2.5.1 Threat Model
	2.5.2 Recursively Encrypted Red-black Key tree
	2.5.3 Proof of Re-Balancing Complexity
	2.5.4 Key Deletion and Insertion
	2.5.5 Security Analysis
	2.5.6 Evaluation

	2.6 Summary

	3 DATA INTEGRITY PROBLEM IN CLOUD COMPUTING
	3.1 System Model
	3.2 Related Work
	3.3 Data Possession Verification and Basic Approach
	3.4 Enabling Efficient Dynamic Updating in Cloud Computing
	3.4.1 Cloud Merkle B+ Tree Based Design
	3.4.2 Compact Merkle Hash Tree Based Design

	3.5 Enabling Non-Repudiable Property in Cloud Computing
	3.6 Efficient Dynamic Data Possession Verification Solution with Non-repudiable Property
	3.6.1 Problem Statement
	3.6.2 Threat Model
	3.6.3 Interaction Between Client and Server
	3.6.4 Solution Details
	3.6.5 Client Caching
	3.6.6 Security Analysis
	3.6.7 Evaluation

	3.7 Summary

	4 MEASUREMENT-BASED ANOMALY DETECTION IN CLOUD COMPUTING
	4.1 Motivation
	4.2 Related Work
	4.3 Virtual Sketches
	4.3.1 Virtual Sketches
	4.3.2 Virtual Sketch Vector

	4.4 Counting Distinct Elements in Network Flows
	4.4.1 Online Operation
	4.4.2 Offline Estimation Based on Maximum Likelihood Method

	4.5 Differentiated Estimation Accuracy
	4.6 Experiments
	4.6.1 Experiment Setup
	4.6.2 Estimation Accuracy
	4.6.3 Differentiated Estimation Accuracy
	4.6.4 Varied Memory Availability

	4.7 Summary

	REFERENCES
	BIOGRAPHICAL SKETCH

