

IMPLEMENTING A GLOBAL ANTI-DOS SERVICE BASED ON RANDOM

OVERLAY NETWORK

By

WEN-CHUAN SHEN

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2004

Copyright 2004

by

WEN-CHUAN SHEN

To my family and friends who supported me with their patience and love.

TABLE OF CONTENTS

 page

LIST OF TABLES... viii

LIST OF FIGURES ... ix

ABSTRACT... xi

CHAPTER

1 INTRODUCTION ..1

What Is Distributed Denial of Service (DDoS) Attack ..1
Related Work ..2

Ingress Filtering Proposed by Ferguson and Senie...2
Route-Based Packet Filtering Proposed by Park and Lee.....................................2
SYN-Dog Proposed by Wang, Zhang and Shin ...2

Self-Complete Defense Systems...2

2 AID SYSTEM OVERVIEW ..4

Fundamental Ideas ..4
Who Is Protected?..4
What Is Random Overlay Network (RON) for?..5
How Does AID Defense System Work? ...5

Implementation Issues ..6
Packets Intercepting Modules..8
Handling Queued Packets in Userspace ..8
Showing Statistics ...9

3 AID LAYER...10

AID Layer for TCP Traffic...10
AID Layer for UDP Traffic ..12

PUSH Message..12
PULL Message ..13
PULLANS Message ..13
CTRLT Message ...14

Implementation Issues ..15

iv

4 CLIENT END...16

Module ClientFilter.o ...16
Program Client..17

Packets from NF_IP_PRE_ROUTING ...17
Packets from NF_IP_LOCALOUT...18
Packets from NF_IP_POST_ROUTING...18

Implementation Issues ..20
What Is ServList? ..20
Why Changes a Packet's Destination in Hook NF_IP_LOCAL_OUT?20
How Is the Registration Done?..20
Not Perfectly Isolated from Higher-Level Applications21
The Maximum Transmission Unit (MTU) Problems..21

5 SERVER END..23

Module ServerFilter.o...23
Program Server ...24

Packets from NF_IP_PRE_ROUTING ...24
Packets from NF_IP_POST_ROUTING...26

Implementation Issues ..26
No Threads ..26
Important Variables ...27

PCKBUFSIZET ...27
PCKBUFSIZEN ...27
IPQREADTIME...27
READINTERVAL ...27
SENDPCKBUFNO ..28
AVGINTERVAL ...28
TOTALCAP ...28
RESERVEDTIMES ...29

How the Registration Is Done ...29
Not Perfectly Isolated from Higher-Level Applications29
Program Alert ..31

6 AID STATION ...32

AID Tunnel Tree...32
Push Phase ...32
Pull Phase ..34
Routing ..34
Why Does a Tunnel Tree Try to Include Every AID Station?35
Variables k and q ...36
Advantages of Random Overlay Network (RON) ..38

Distributed Virtual-Clock Packet Scheduling ..39
Basic Idea ..39
How to Adjust T ..40

v

Programs for an AID Station ..40
Module AIDFilter.o...40
Program AID..41

TCP packets from NF_IP_PRE_ROUTING..41
UDP packets from NF_IP_PRE_ROUTING ...42
TCP packets from NF_IP_POST_ROUTING ...42
UDP packets from NF_IP_POST_ROUTING...43

Implementation Issues ..43
No Threads ..43
Registration for Clients and Servers..44
Important Variables ...44

PCKBUFSIZE..44
IPQREADTIME...44
READINTERVAL ...44
SENDPCKBUFNO ..45
NEARBYAID ..45
SNEDTINTERVAL ...45
SENDPULLINVAL ...45
DECREASERATIO ...45
MAXVCTSEXCEED...45

Adding New AID Stations...46
Diameter of a Tunnel Tree ..46
Forwarding Packets ...47

7 TESTING RESULTS AND ANALYSIS...49

Important Issues about Testing...49
Testing Elements ..50

Program TestClient ..50
Program TestServer ...51
Setting of the AID System...51

Case 1..51
Case 2..54
Case 3..56
Case 4..58
Case 5..60

8 FUTURE WORK AND CONCLUSION ...64

Limitations and Future Work..64
Conclusion ..65

APPENDIX

A HOW TO RUN...66

B FILE GLOBAL.H...68

vi

LIST OF REFERENCES...70

BIOGRAPHICAL SKETCH ...72

vii

LIST OF TABLES

Table page

7-1. List of important factors of AID system for testing ..51

7-2. Case 1 packets statistics in the AID station...52

7-3. Case 2 packets statistics in the AID station...54

7-4. Case 3 packets statistics in the AID station...56

7-5. Case 4 packets statistics in the AID station...59

7-6. Case 5 packets statistics in the AID station...62

viii

LIST OF FIGURES

Figure page

2-1. AID system architecture ..4

2-2. Netfilter hooks ...7

3-1. AID layer header for TCP packets ..11

3-2. PUSH message ..13

3-3. PULL message...13

3-4. PULLANS message...14

3-5. CTRLT message ..14

4-1. Inserting an AID layer header to a packet that enters AID tunnels...........................19

4-2. Inserting an AID layer header to a packet not entering AID tunnels19

5-1. Removing the AID layer header in server end ..25

6-1. Tunnel tree created in push phase..33

6-2. Four possibilities a packet can be routed...47

7-1. Distribution of incoming packets in case 1 at the AID station..................................53

7-2. How did T and arrival rate interact with each other in case 153

7-3. Distribution of incoming packets in case 2 at the AID station..................................55

7-4. How did T and arrival rate interact with each other in case 255

7-5. Distribution of incoming packets in case 3 at the AID station..................................57

7-6. How did T and arrival rate interact with each other in case 358

7-7. Distribution of incoming packets in case 4 at the AID station..................................59

7-8. How did T and arrival rate interact with each other in case 460

ix

7-9. Distribution of incoming packets in case 5 at the AID station..................................62

7-10. How did T and arrival rate interact with each other in case 5.63

x

Abstract of Thesis Presented to the Graduate School

of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

IMPLEMENTING A GLOBAL ANTI-DOS SERVICE BASED ON RANDOM
OVERLAY NETWORK

By

Wen-Chuan Shen

December 2004

Chair: Shigang Chen
Major Department: Computer and Information of Science and Engineering

Distributed denial of service (DDoS) is a major threat to the Internet nowadays.

Legitimate users have a hard time accessing the servers that are under DDoS attacks.

What makes it worse is that the attacking tools are easy to get. Even people without

enough professional knowledge can launch a DDoS attack. Obviously, automated anti-

DDoS systems become more and more important.

Many current available solutions to DDoS attacks require universal installation and

configuration across different administrative realms, which are impossible or very

difficult to do in many situations. This thesis studied and provided another solution to

DDoS attacks. An anti-DoS service (called AID) is presented in this thesis, and no global

deployment is required. The AID service protects general TCP traffic. It guarantees all

registered clients can access a registered server fairly even when the server is under

DDoS attacks. A domain, like a school or company, can get immediate protection after

having the AID service.

xi

Two primary parts of the AID service are the random overlay network (RON) and

the distributed virtual-clock packet scheduling algorithm. The former forms tunnel trees,

which connect registered clients to a registered server. Packets from registered clients go

through the tree to the server when the server is under DDoS attacks. It is adapted and

easy to manage. The latter is a packet scheduling algorithm to simulate client puzzles. It

confines the amount of data a registered client can send to a server through RON to

achieve fairness.

xii

CHAPTER 1
INTRODUCTION

What Is Distributed Denial of Service (DDoS) Attack

A DoS attack intends to make a server out of its resource, which could be

bandwidth, buffers, CPU time, etc. Attackers can send a lot of requests to exhaust a

server's bandwidth. Other legitimate users will be unable to access the server. Another

example is SYN flooding attack [1-2]. To establish a connection, a client sends a SYN

packet at first. The server is going to keep this information in a buffer for a period T in

order to recognize the following incoming packets. If attackers send enough SYN

packets to make the buffer overflow, the server has no way to process requests from other

users. In some cases, like route table updating or software’s bugs, a simple request can

make the server do a considerable amount of computation. In this case, normal users

cannot access the server. The basic idea of DoS attacks is simple, using a small amount

of resources to overwhelm the server.

What makes a DDoS attack different from a traditional DoS attack? In a DDoS

attack, the clients launching the attack might be victims as well. Hackers compromise

and install DDoS attacking programs on these hosts first. Then, hackers can remotely

control these victims to attack the servers cooperatively. With DDoS attacks, it is

possible to flood a big commercial server in a brute-force way. Besides, it becomes very

difficult to trace back the attacker because the compromised hosts are not the real

attackers. Usually, there are hundreds or thousands of compromised hosts and they are

1

2

around the whole world. It makes attackers feel safe to do this. Today, how to protect

hosts against DDoS attacks is very important.

Related Work

Ingress Filtering Proposed by Ferguson and Senie

In ingress filtering [3], before a packet is transmitted into another domain, the

router checks the packet’s source address. If it does not match the ingress filter rule,

probably a spoofed source address, the packet will be dropped. Ingress filtering helps to

trace back the attacker, while it cannot prevent an attack originating from a valid source

address.

Route-Based Packet Filtering Proposed by Park and Lee

With partial deployment (about 18% in Internet AS topologies) [4], spoofed IP

packets can be prevented from reaching their intended targets effectively.

SYN-Dog Proposed by Wang, Zhang and Shin

SYN-dog [5] is a software agent which can be installed at leaf routers of stub

networks. It is stateless and light-weighted. Therefore, SYN-dog itself is immune to any

flooding attacks. It detects SYN flooding attack by monitoring behavior of SYN-

SYN/ACK packets. SYN-dog can also trace back the attacking source.

Self-Complete Defense Systems

There are a huge number of hosts on the Internet. It is almost impossible to make

every host join a specific defense system. Here comes the problem. If a server has the

defense system installed, can it resist the DDoS attack from clients that do not participate

in the same defense system? The answer is no for most existing DDoS defense systems.

Suppose we have a networked system of S + C. C is a set of client networks, and S is a

set of server networks. C' is a subset of C and S' is a subset of S. C' + S' has a defense

3

system installed. A defense system is self-complete if any client in C' can still access any

host in S' even when under DDoS attacks, as long as the client itself does not participate

the attack. It does not care if the attack is from C or C – C'. In other words, a self-

complete defense system should be able to defeat attacks from either inside area C' or

outside area C - C'. A self-complete defense system makes itself a clean area in the

Internet. The area does not have to cover the entire Internet, and hosts in it are protected.

Let us review the DDoS defense systems mentioned above.

• Ingress filtering: Source addresses of packets from C - C' can be spoofed, because
C - C' do not check them. Therefore, DDoS attacks can be launched against the S'
from C - C'. In this case, clients in C' have difficulty to access S' even though C'
and S' both join the defense system. Therefore, Ingress filtering is not self-
complete.

• Route-Based Packet Filtering: Packets with spoofed source are prevented from
reaching their intended targets effectively as long as 18% of Internet AS's join the
defense system. However 18% of Internet AS's is a huge number. It is not self-
complete until C' is as large as 18% of Internet AS's.

• SYN-dog: Attackers can still do SYN-flooding to S' from C - C', because C - C' is
not under protection. Similar to ingress filtering, unless C' is as big as C, attackers
from C - C' can make S' not accessible to C'. In consequence, SYN-dog is not self-
complete.

The benefits of a self-complete system are apparent. It suits normal companies,

schools and organizations. They can set up a self-complete defense system in their realm

and become under protection immediately, independent of others. A working self-

complete defense system (called AID), the detail of its structure and how it was

implemented are presented in the thesis. The AID system’s overview is in chapter 2.

CHAPTER 2
AID SYSTEM OVERVIEW

Fundamental Ideas

The idea of the anti-DoS system (called AID) is from Chen et al [6]. The AID

system contains clients, servers and AID stations physically. Another two important

parts in the AID system are random overlay network (RON) and distributed virtual-clock

packet scheduling algorithm [6]. Random overlay network is formed on AID stations.

We did not draw a clear line between DoS attacks and DDoS attacks in the thesis.

Whenever a server senses an attack, like flooding packets beyond its capacity or unusual

requests from clients, the AID defense system will be triggered. The AID system's

architecture is shown in Fig. 2-1.

Figure 2-1. AID system architecture. The AID circle and AID tunnels symbolize RON,

which is composed by AID stations. A client point can mean a client network,
not just a client host. Likewise, a server point can be a server network behind
a router.

Who Is Protected?

Register clients and servers that we want to protect at their nearby AID stations.

The registration brings a shared secret key between the AID station and the registered

4

5

host. The secret key is used in AID tunnels for integrity checking when under DDoS

attacks. Everyone can join the AID service by registering at an AID station.

What Is Random Overlay Network (RON) for?

RON consists of all AID stations. When a registered server is under DoS attacks

and other registered clients try to access the server, packets from these clients will go

through the RON instead of the Internet. We say that these packets are entering AID

tunnels, which are tree structure. They go through AID tunnels all the way to the

attacked server. Other packets from unregistered clients will reach the server via the

Internet. AID tunnels are one-way path for packets from registered clients to attacked

registered servers. We do not allow traffic from registered servers to registered clients

entering RON to minimize the load of AID stations. It is transmitted via the Internet. Of

course, traffic related to unregistered clients or unregistered servers cannot enter AID

tunnels.

How Does AID Defense System Work?

When under attacks, packets from registered clients go through RON but packets

from unregistered clients go through the Internet. We make packets from AID tunnels

have higher priority. Servers process them first. Hence, the external traffic (from

unregistered clients) cannot influence the internal traffic (from registered clients). How

about if a registered client is an attacker itself? Well, that is why we have distributed

virtual-clock packet scheduling algorithm, which simulates client puzzles [7-10]. Every

AID station manages a virtual clock for every tunnel hooking on a client network. If a

client has behavior of flooding a registered server, its virtual clock will run fast. When

virtual clock's value is too big, packets from that client will be dropped. By doing this, we

can separate the attacking traffic out and block it.

6

Traffic in AID tunnels has integrity protection. Remember the secret key a client

or server got after registering at an AID station? The secret key and other important data

in a packet are put together and digested by MD5 algorithm. The 128-bit-long packet

digest is used for integrity checking. As a result, alteration of packets in AID tunnels will

be detected. Because the third party cannot forge the packets, integrity checking is also

authenticity checking, verifying that the packets are really from the hosts as they claimed.

Now we know how AID stations interact with clients and servers. We also know

what random overlay network and distributed virtual-clock packet scheduling algorithm

are for. More details of the AID system and how it was implemented were revealed in

the following chapters.

Implementation Issues

We chose Linux as our developing platform and our programs only work on IPv4.

As mentioned in the section "How Does AID Defense System Work," a registered client

should send it packets via RON instead of the Internet. Meanwhile, the attacked server

should be able to tell where a packet is from and give the one from AID tunnels higher

priority. We do not want people to recompile their Linux kernels or rewrite application

codes if possible. So, we introduced another layer between application layer and

transport layer, called AID layer. Extra information is added into a packet as an AID

layer header for the AID service. Higher application layer programs should not notice

the existing of AID programs.

Netfilter is one tool we used in our AID system to intercept and modify packets. It

was included in Linux 2.4. It supports five different hooks and they are

NF_IP_PRE_ROUTING, NF_IP_LOCAL_IN, NF_IP_FORWARD,

7

NF_IP_LOCAL_OUT and NF_IP_POST_ROUTING. Fig. 2-2 shows how a packet goes

through these hooks.

Figure 2-2. Netfilter hooks. Hook 1 is NF_IP_PRE_ROUTING, hook 2 is

NF_IP_LOCAL_IN, hook 3 is NF_IP_FORWARD, hook 4 is
NF_IP_POST_ROUTING and hook 5 is NF_IP_LOCAL_OUT.

NF_IP_PRE_ROUTING: A packet hits the hook after reaching the host and sanity

checks but before the routing decision.

NF_IP_LOCAL_IN: A packet hits the hook after the routing decision and the

packet's destination is this host.

NF_IP_FORWARD: A packet hits the hook after the routing decision if the

packet's destination is another interface.

NF_IP_LOCAL_OUT: A packet hits the hook when going down the kernel after a

process creates and sends out the packet.

NF_IP_POST_ROUTING: A packet hits the hook right before it is put on the wire.

We can inject our handling functions into any of these hooks. When a packet goes

through hooks, their handling functions will be executed. That is where and how we can

modify the packet.

8

Packets Intercepting Modules

Our first step is to write modules to intercept interested packets in proper hook

positions. The interested packets are queued into userspace. Doing in this way may

cause some performance penalty because of switching between kernelspace and

userspace. However, there are also some advantages. First, it is easier to debug a

program running in userspace. Second, we have more libraries handy. Third,

misbehavior, if any, of a program will not crash the whole system. Three modules

totally, clientFilter.o takes care of packets in/out clients. Likewise, AIDFilter.o is for

AID stations, and serverFilter.o is for servers. After loading an appropriate module on

the host, interested packets will be queued to userspace. To stop it, just unload the loaded

module. These queued packets will be inspected or modified later.

Handling Queued Packets in Userspace

To deal with the queued packets in userspace we need the library libipq developed

by James Morris. It can be found easily on the Internet and simple to install. With the

library, we can grab one packet out of the queue every time. We can drop the packet, do

nothing, or modify and send it back to the kernel. One thing should be noticed is that

checksums in TCP/UDP and IP headers need to be recalculated if the packet is altered.

In the client end, all outgoing TCP packets are queued to userspace. If a packet's

destination server is under attacks, its destination IP will be converted to an AID station's

IP. The AID station is the one this client registered at. The AID station will notify the

registered client if a registered server is currently under attack. If no attacks, packets are

routed as usual. A registered client executes the program client.

In AID stations, AID tunnel trees are built up to route packets to their destination

servers. Assume a server registered at an AID station named As. When the server is

9

under DoS attacks, an AID tunnel tree rooted at As is formed. Packets from registered

client to this server are routed from tree leaves to the root As and finally to the server.

Besides routing, virtual clocks for every client are maintained by AID stations as well.

An AID station executes the program AID.

In the server end, packets from the Internet and AID tunnels are separated. Process

the latter first. If under attacks, a server will send alert messages to its registering AID

stations, As. Then, this AID stations broadcasts alert messages to other AID stations.

AID tunnel trees are constructed. A server executes the program server.

Showing Statistics

Programs client, server and AID, all record statistic information of TCP traffic.

Users can know how many packets got through or were dropped and the reasons of

dropping. They all have a while loop in main() whose condition is always true. To keep

programs simple, we did not use threads or fork a child process. Then how can the

programs interact with users when they want to see the statistics of traffic? The answer is

signal. The reaction of the signal SIGINT was redefined in these three programs. When

Ctrl-c is typed, programs will not be terminated. Instead, statistic information is printed

out. We can type Ctrl-\ to send the signal SIGQUIT to stop the programs.

CHAPTER 3
AID LAYER

AID layer is added between application layer and transport layer. In this chapter,

we defined AID layer headers, which are inserted between TCP/UDP headers and

application layer data in a packet. Since we do not want AID service users to recompile

their Linux kernels, Linux kernels have no idea of this new layer. AID layer headers are

treated as application data actually by Linux kernels. In clients, the program client adds

an AID layer header before a packet is sent out. In servers, the program server takes the

AID layer header off. Only the AID system can recognize AID layer headers. As for

AID stations, AID layer headers contain data needed for routing, constructing AID tunnel

trees, and etc. Consequently, application programs in the client end or server end do not

know they are already in the AID service and protected. Currently, only TCP traffic is

protected in the AID system because TCP’s congestion control feature is needed.

When a packet enters RON, if it is a TCP packet, it belongs to traffic from a

registered client to a registered server. If it is a UDP packet, such as a PULL message, or

PUSH message, the packet is used to control the AID system. We explained what these

UDP messages are later in this chapter. We have different AID layer headers for TCP and

UDP packets. Both TCP and UDP traffic have integrity guard.

AID Layer for TCP Traffic

We have two kinds of AID layer headers for TCP packets. One is for packets

transmitted via the Internet and the other is for packets transmitted via the RON (AID

tunnels). Fig. 3-1 shows the contents of the headers and where they are inserted.

10

11

A

B

Figure 3-1. AID layer header for TCP packets. A) For normal TCP packets that do not

enter AID tunnels. Recognizing field is 0. B) For TCP packets to attacked
servers that enters AID tunnels. Notice that recognizing field in the first
figure is at the same position as server IP in the second figure.

Server IP field is used to save the IP address of destination server. To travel

through AID tunnels, a packet’s destination is changed to the AID station where it is

routed next. However, the final destination is still the server, so we need to keep this

information. Md5 digest field is used to check integrity. If checking fails, the packet will

be dropped. Virtual clock timestamp field is used in distributed virtual-clock packet

scheduling algorithm.

Why do we need recognizing field even in normal packets? The problem is that

when a server gets a packet, it has no way to know if the packet is from the Internet or

AID tunnels. Recognizing field of normal packets is at the same location as server IP

field of packets to an attacked server, right after the TCP header. When a packet arrives,

the server checks this location. If it is 0, the packet is from the Internet; otherwise, the

packet is from the AID tunnels. We assume server IP cannot be 0.0.0.0, so no conflicts.

What information is under integrity protection?

• Source IP (4 bytes) and destination IP (4 bytes) addresses in the IP header: Source
IP is always a client's IP address. However, destination IP could be the destination

12

server’s IP address if transmitted via the Internet or an AID station's IP address if in
the AID tunnels.

• Source port (2 bytes) and destination port (2 bytes) in the TCP header: Unlike
destination IP, a packet’s destination port is not changed when entering AID
tunnels.

• Sequence number (4 bytes) and acknowledgement number (4 bytes) in the TCP
header.

• (a) Recognizing field (4 bytes) in the AID layer header.
(b) Server IP (4 bytes) in the AID layer header.
(a) and (b) are in the same position and have the same size. Its value is 0 for
normal packets, or destination server’s IP for packets entering RON.

• Virtual clock timestamp in the AID layer: Only packets go through AID tunnels
have this field.

• Whole application layer data.

AID Layer for UDP Traffic

There are several different UDP messages used to control the AID system. They

are distinguished by the packet type field in the AID layer header. All of these messages

are integrity-protected.

PUSH Message

PUSH messages notify other AID stations a server is currently under attacks. Fig.

3-2 shows the content of a PUSH message. An AID station or registered server can send

PUSH messages. Md5 digest is for integrity protection. Packet type is set to 2 for PUSH

messages (defined in global.h). AIDNO means AID station number, which records how

many AID stations a packet will pass before reaching the server. It is essential for

establishing AID tunnels. More details are explained in later chapters. Service port and

server IP are the attacked server’s IP address and port number.

13

Figure 3-2. PUSH message. The AID layer header is inserted between the UDP header

and application layer data.

PULL Message

PULL messages ask other AID stations what servers are currently under attacks.

Figure 3-3. PULL message. There is no application layer data in a PULL message.

Fig. 3-3 shows the content of a PULL message. There is nothing behind the AID

layer header. Md5 digest is for integrity protection. Packet type is set to 0 here (defined

in global.h).

PULLANS Message

When an AID station gets a PULL message from another AID station, the former

will return information of all currently attacked servers it knows to the latter. Sending

PULLANS messages does it. Fig. 3-4 shows the content of a PULLANS message.

Packet type is set to 1 for PULLANS messages (defined in globa.h). Every AID station

maintains a service list, which stores information of attacked servers. Each attacked

server is a service list node.

If an AID station has information of N attacked servers, there will be N nodes in the

service list to be sent out. In a service list node, Distance says that from this AID station

14

how many AID stations a packet still needs to pass to achieve the server, excluding the

first AID station. The distance information helps to construct AID tunnel trees.

A

B

Figure 3-4. PULLANS message. A) The content of a PULLANS message. B) The

structure of the service list node. It contains IP and port of an attacked server.

CTRLT Message

T, the waiting interval, is for adjusting the speed of a virtual clock. When the

arrival rate is larger than a server's capacity, a bigger T will be sent to AID stations to

accelerate virtual clocks.

Figure 3-5. CTRLT message.

15

Packet type is set to 3 (defined as in global.h). A CTRLT message is for a specific

tunnel tree of the attacked server with server IP. T field contains the new value of T for

that specific tunnel tree. After getting a CTRLT message, an AID station updates its T.

Most of UDP messages are related to RON maintenance and distributed virtual-

clock packet scheduling. We have not talked about them so far. They would be pointed

out in later chapters.

What fields are under integrity protection?

• Source IP (4 bytes) and destination IP (4 bytes) addresses in the IP header.

• Source port (2 bytes) and destination port (2 bytes) in the UDP header.

• Packet type (1 byte) in AID layer header.

• Whole application layer data.

Implementation Issues

Most UDP messages in our AID system have fixed size, except for the PULLANS

message. Its size depends on how many nodes in the service list. If there are many

nodes, the message packet will be too big to be sent out. In the circumstance, it should be

divided into two or more PULLANS messages. How big is too big? We defined a

constant, UDPMAXSIZE, in global.h. When a UDP message is bigger than

UDPMAXSIZE, it will be chopped up into several packets.

CHAPTER 4
CLIENT END

On the client end, we need to filter incoming and outgoing packets. For example,

when a TCP packet is leaving the client end, its destination needs to be checked. If the

destination server is under attacks, the packet will enter AID tunnels; otherwise, it is

routed as usual.

ClientFilter.c and client.c are two main source files for client ends. ClientFilter.c is

compiled as a module, queuing interested packets into userspace. Then, client.c takes

queued packets out and does whatever is necessary. After a client registers at an AID

station, Ac, it can get a secret key. The key is used to verify that the third party did not

modify the communication between the client and Ac. The client also keeps Ac's IP

address. If it tries to access an attacked registered server, its packet will be forwarded to

Ac.

When an AID station is informed that a server is attacked, it will send PUSH

messages to its registered clients. For instance, the client gets PUSH messages from Ac,

which is the AID station it registered at. All UDP messages in the AID system are sent to

port 4369. However, there is no program in application level listening on this port. UDP

packets to port 4369 are handled by the program client.

Module ClientFilter.o

By compiling clientFilter.c, we can get the module clientFilter.o. It hooks on

handling functions at hooks NF_IP_PRE_ROUTING, NF_IP_LOCAL_OUT and

NF_IP_POST_ROUTING. At NF_IP_PRE_ROUTING, only UDP packets to the port

16

17

4369 are queued. Other incoming traffic is not related to the AID system. At

NF_IP_LOCAL_OUT, all outgoing TCP packets are queued, except for the local traffic.

Local traffic goes from loopback interface, 127.0.0.1, to loopback interface. At

NF_IP_POST_ROUTING, all outgoing TCP packets are queued, except for the local

traffic.

Only outgoing TCP packets are queued since currently only TCP traffic is

protected. When the module clientFilter.o is loaded in a host, the host must run the

program client as well. Otherwise interested packets keep getting into the queue, but no

programs take them out of the queue. The traffic is blocked if this happens. A host

should load the module clientFilter.o and run the program client at the same time. It is

meaningless to do just one of them.

Program Client

By compiling client.c and linking other relative source files, we can get the

executable program client. It has a while loop in main() whose condition is always true.

The program client deals with packets queued at different hooks by the module

clientFilter.o. Now, we discuss what the program client does to packets from different

hooks.

Packets from NF_IP_PRE_ROUTING

All packets in the queue grabbed at the hook NF_IP_PRE_ROUTING are UDP

traffic to port 4369. For a client, the only UDP message of the AID system (to the port

4369) is PUSH. PUSH messages are sent by Ac to inform the client what servers are

attacked. Every client has a servList recording attacked servers (servList.h/servList.c).

When getting PUSH messages, the client is going to update its servList. PUSH messages

have md5 digest in it, for integrity checking. Others cannot pretend Ac to send PUSH

18

messages or pretend the client to send packets into AID tunnels as long as they do not

know the secret key shared between Ac and the client. These UDP packets do not go

further from here in the kernel. We mentioned no application level programs listening on

port 4369 earlier. The program client tells the kernel just drop them after it gets the

information of PUSH messages.

Packets from NF_IP_LOCALOUT

The program client processes all TCP packets leaving the client host. First, it

examines a packet's destination IP. If it finds a match in the servList (the destination

service is under attacks), it changes the packet’s destination IP to Ac's IP and copy the

packet with new destination IP back to the kernel. The destination port is not compared

when searching a match in the servList. It is not necessary to distinguish different service

ports on an attacked server. With Ac's IP as destination, the packet is going to enter an

AID tunnel tree. If no match in servList, the program client just tells the kernel it did not

do anything to the packet and the kernel can continue passing on the packet.

Packets from NF_IP_POST_ROUTING

All TCP packets come here after passing the hook NF_IP_LOCAL_OUT. The

program client inserts a bunch of data into every packet as AID layer header. If a

packet's original destination is an attacked server, its destination IP we can see here is Ac's

IP. It was modified in the hook NF_IP_LOCAL_OUT. If the server is not under attacks,

we can see the server's IP as the packet's destination IP.

The program client inserts different AID layer headers into packets. If destination

IP was changed into Ac's IP, it means the packets are going to enter AID tunnels. As

shown in Fig. 4-1, application layer data is moved back 28 bytes, and an AID layer

header is put into that 28 bytes space. Virtual clock timestamp is initialized to the client's

19

local time. Md5 digest ensures Ac that the packets are really from the client and not

altered.

Figure 4-1. Inserting an AID layer header to a packet that enters AID tunnels. A 28-

byte-long AID layer header is injected.

For packets not entering AID tunnels, their destination IP is still the server's IP.

These packets do not need md5 digest and virtual clock timestamp. Nevertheless, they do

need the 4-byte-long recognizing field. Fig. 4-2 shows how this sort of packets is dealt

with. Recognizing field is an unsigned integer with value 0. We explained why we need

it clearly in the chapter AID LAYER.

Figure 4-2. Inserting an AID layer header to a packet not entering AID tunnels. A 4-

byte-long AID layer header is injected.

Either packets going to AID tunnels or not, this hook is the final chance we can

modify them. After copying the modified contents back to the kernel, these packets are

sent out right away.

20

Implementation Issues

What Is ServList?

ServList is a simple list structure. It uses sequential search going through every list

node to find a match. A servList node contains an attacked server's IP and port, but

currently the port is not checked for a match in our AID system. A servList is updated by

PUSH messages from Ac.

Why Changes a Packet's Destination in Hook NF_IP_LOCAL_OUT?

The program client used to change a packet's destination IP in the hook

NF_IP_POST_ROUTING, but it did not work as we expected sometimes. For example,

we have a server, an AID station and a client. Their IP addresses are 192.168.1.100,

192.168.1.101 and 192.168.1.103 respectively. Assume the server is under attacks, and

the client sends a packet to the server. Before getting in the hook

NF_IP_POST_ROUTING, the packet's destination IP is server's IP, 192.168.1.100. After

leaving the hook but before really sent out, the packet's destination IP is the AID station's

IP, 192.168.1.101. Then the packet leaves the client. Unexpected things happen here.

The AID station does not get the packet, but the server gets it. If the server has

FORWARD chain in iptables set well, the packet may be forwarded to the AID station.

Anyway, it is not what we want. The packet should go to the AID station directly since

we changed the packet's destination IP. We concluded that we should not change the

packet's destination IP right before it leaves the host. We should do this in the hook

NF_IP_LOCAL_OUT instead, and everything goes well.

How Is the Registration Done?

It is lots of work and difficult to make a complete secure system. Registration may

be a secure hole in the system. In our AID system, clients get the secret key shared with

21

Ac by registration. We just took the easiest step here. The shared key was pre-configured

in both the client and AID station, Ac. If users want to change the key, they need to

redefine it in both sides, with the same value. Then recompile the codes. It is not hard.

We wrote a makefile compiling and linking object files to generate the program client. It

can be done by just one command. Clients also need Ac's IP address. It is not pre-defined

in the codes. It is given as a command argument when users run the program client. It is

possible to introduce public key system here, a better but complex way. We do not

consider it currently.

Not Perfectly Isolated from Higher-Level Applications

Our goal is to make the AID system completely independent of higher-level

applications. It means application level programs do not observe the existence of the

AID service. Unfortunately, considering AID layer is not handled in the kernel and it is

treated like application layer data, our AID system cannot be perfectly isolated from

higher-level application. All outgoing TCP packets are inserted an AID layer header.

When servers, which did not join the AID service, get these packets, their application

programs will find extra junk data, the AID layer header we appending. Network

communication follows protocols. The AID layer header is useless to the application

programs. Protocols may be violated and the communication will fail. Before

connecting servers that did not join the AID service, the module clientFilter.o should be

unloaded first.

The Maximum Transmission Unit (MTU) Problems

Akin to the last issue, some more problems are caused by inserting an AID layer

header that is not handled by kernel. We add 28 bytes into packets entering the AID

tunnels and 4 bytes into the other packets. Is it harmless to enlarge a packet like this?

22

The answer is not always true. Usually, the OS tries to buffer enough data to form big

packets to avoid small size packets by Nagle algorithm. Every packet has headers, if

only a few data inside, the ratio of headers in a packet goes high and it is inefficient.

If we telnet or ssh a server, it may be fine. If we ftp or sftp a server, the kernel will

try to buffer as many data as possible. Usually, a packet's size is as large as MTU. If we

add an AID layer header in a packet in this case, the packet's size will be larger than

MTU. The packet will be just dropped. We noticed this problem when testing ftp service

in the AID system. There are two ways to solve the problem. One is to disable the Nagle

algorithm, and the other is to strict the size of packets from higher-level applications.

After opening a TCP socket, we have a chance to set socket options by calling the

function setsockopt() in C library. We can pass in the option TCP_NODELAY to disable

the Nagle algorithm or the option TCP_MAXSEG to change the maximum segment size

for outgoing TCP packets. We chose the second way to keep the efficiency brought by

the Nagle algorithm.

It is another cause that the AID system is not totally isolated from higher-level

applications. Most application programs do not strict the size of outgoing TCP packets.

They fully take the advantage of Nagle algorithm. If programs tend to buffer data used in

the AID system, ftp clients for example, most of packets cannot be sent out because of

the huge size. It is easy to fix by setting the socket option TCP_MAXSEG. However,

the application programs need to be recompiled. It can be fixed as well if we handle the

AID layer in the kernel, but we need to recompile kernel though.

CHAPTER 5
SERVER END

On the server end, it needs to tell where packets come from, the Internet or AID

tunnels. The server end also has to alert AID stations if it is attacked.

ServerFilter.c and server.c are two main source files for server ends. ServerFilter.c

is compiled as a module, queuing interested packets into userspace. Then, server.c takes

queued packets out and does whatever is necessary. After a server registers at an AID

station, As, it can get a secret key. The key is used to verify the communication between

the server and As are not modified by the third party. The server also keeps As's IP

address. If it is under attacks, As will be informed.

When a registered server is attacked, it will send PUSH messages to the AID

station, which the server registered at. This AID station called As. All UDP messages in

the AID system are sent to port 4369. However, there is no program listening on this

port. UDP packets to port 4369 are handled by the program server. We can characterize

occurrences of DoS attacks in several ways. In our AID system, we use arrival rates,

average incoming bytes per second, to determine if a server is attacked. Each server has

its capacity, 10000 bytes per second for example. When the arrival rate is higher than its

capacity, the server is under attacks. We can include other definitions of DoS attacks into

the AID system easily in our implementation.

Module ServerFilter.o

By compiling serverFilter.c, we can get the module serverFilter.o. It hooks on

handling functions at NF_IP_PRE_ROUTING, and NF_IP_POST_ROUTING. At

23

24

NF_IP_PRE_ROUTING, all incoming TCP packets are queued, except for the local

traffic. Local traffic goes from loopback interface, 127.0.0.1, to loopback interface. At

NF_IP_POST_ROUTING, only UDP packets to the port 4369 are queued. Other

outgoing traffic is not related to the AID system.

Only incoming TCP packets are queued since currently only TCP traffic is

protected. When the module serverFilter.o is loaded in a host, the host must run the

program server as well. Otherwise interested packets keep getting into the queue, but no

program takes them out of the queue. The traffic is blocked if this happens. A host

should load the module serverFilter.o and run the program server at the same time. It is

meaningless to do just one of them.

Program Server

By compiling server.c and linking other relative source files, we can get the

executable program server. It has a while loop in main() whose condition is always true.

The program server has two packet buffers, one for packets from the Internet and the

other for packets from AID tunnels. The former is called bufferN and the latter is called

bufferT. Because packets from AID tunnels have higher priority, the program server

intends to handle packets in bufferT first. Let us see what the program server does to

packets from different hooks.

Packets from NF_IP_PRE_ROUTING

In this hook, the program server has to remove the AID layer header from every

queued packet. Before doing this, program server needs to know if the packet is from the

Internet or AID tunnels. The program server inspects the recognizing field. If it is 0, the

packet is from the Internet. If it is the server's IP (IP of the host runs the program server),

25

the packet is from the AID tunnels. If neither 0 nor the server's IP, the packet has wrong

contents and is dropped.

If the packet is from the Internet, it is put into the bufferN. It is dropped if bufferN

is full. The 4-byte-long recognizing field is removed from the packet.

If the packet is from AID tunnels, the whole AID layer header is 28 bytes long,

including the recognizing field, md5 digest and virtual clock timestamp. First, the

program server inspects the packet's integrity with md5 digest. If failing, drops the

packet. Then, the packet is put into the bufferT. Drops the packet if bufferT is full.

Similarly, the whole 28-byte-long AID layer header is removed from the packet in the

program server. Fig. 5-1 shows how an AID layer header is removed for an incoming

TCP packet.

A

B

Figure 5-1. Removing the AID layer header in server end. A) All incoming TCP packets

should have an AID layer header. Other parts of a packet are not tainted. B)
A packet from AID tunnels has a 28-byte-long AID layer header; otherwise its
AID layer header is 4 bytes long.

26

The program server does exactly contrary things to what the program client dose to

packets from hook NF_IP_POST_ROUTING. The program client adds AID layer

headers on packets, and they are ripped out here. As a result, higher-level applications

have no idea of the existence of AID layer. When they get a packet, they see no data of

an AID layer header.

Packets from NF_IP_POST_ROUTING

All packets in the queue grabbed at hook NF_IP_POST_ROUTING are UDP

traffic to port 4369. The only UDP message belongs the AID system (to the port 4369)

that would be sent out by a server end is PUSH. PUSH messages are sent to As to say the

server is attacked. Before leaving a server, these queued packets will be appended 16-

byte-long md5 digest. It prevents the third party from forging PUSH messages and send

them to As.

Implementation Issues

No Threads

In the chapter AID System Overview, we pointed out no threads or child processes

in programs client, server and AID for printing out statistic information under users'

requests. Unlike the program client, the program server has one more thing to handle,

sending packets in bufferN and bufferT to higher-level applications. The program server

also has a while loop with a consistent true condition in main(). In every iteration, the

while loop examines two things. First, sees if there are packets in bufferT and bufferN.

A part of them are passed to higher-level applications. Second, sees if any packet was

queued by the module serverFilter.o and read in one packet. Each of them takes only

little time, so they look like running simultaneously. Threads make a program harder to

27

maintain and may cause serious problems like resource competition and deadlocks, if not

used very carefully.

Important Variables

There are some important variables defined in the source file server.c. They decide

the way the program server works. To make the program server work properly, they

need to be assigned reasonable values. We discuss them below.

PCKBUFSIZET

BufferT's size, if too small, packets from AID tunnels will be dropped frequently

with heavy incoming traffic. BufferT stores packets from AID tunnels.

PCKBUFSIZEN

BufferN's size, if too small, packets from the Internet will be dropped frequently

with heavy incoming traffic. BufferN stores packets from the Internet.

IPQREADTIME

In the section No Threads, we said two things are done every iteration in the while

loop of main(). One of them is to read in a packet queued by the module serverFilter.o if

the queue is not empty. If the queue is empty, the program server is blocked until a

packet is put into queue by the module serverFilter.o. If blocked, the packets in the

bufferN and bufferT cannot be sent to their destination, higher-level applications.

Consequently, we need to constrain the time of this reading behavior. Do not wait more

than IPQREADTIME microseconds if the queue is empty. If it is larger than 500000, the

client side may feel painful lags.

READINTERVAL

BufferT and bufferN are examined every iteration in the while loop of main(), and

some packets in the two buffers are sent to higher level applications. We are not sure

28

how long one iteration may take. We may want packets stay in the buffers longer than

the time of one iteration because we need to balance the traffic from AID tunnels and

from the Internet (packets from AID tunnels have higher priority). It can be done by this

variable. It defines how often packets in the two buffers are sent out. It is in

microseconds, too. It cannot be too small or the program server cannot control the

traffic. If the variable is too big, apparent lags appear.

SENDPCKBUFNO

Every READINTERVAL microseconds, packets in two buffers are taken out, but

how many? The variable is the answer. If it is 10, the 10 packets from the two buffers

can be sent out. Notice it is a total number for packets from both bufferT and bufferN.

Since bufferT has higher priority, if 10 packets are picked up this iteration from bufferT,

packets in bufferN have to wait until next iteration. If it is too small, the two buffers gets

full easily. Packets will be dropped frequently when traffic is heavy.

AVGINTERVAL

The program server calculates the arrival rate every AVGINTERVAL seconds. If

it is too small, the arrival rate may not be representative. If it is too big, the program

server may not be able to detect attacks in real time (not sensitive enough).

TOTALCAP

Capacity of the server end, in our AID system, was defined as how many bytes per

second the server end can handle. Once the arrival rate is higher than TOTALCAP, the

program server alerts the AID system to create a tunnel tree by sending PUSH messages

to As.

29

RESERVEDTIMES

When under attacked, a server has traffic from both the Internet and AID tunnels.

We said the latter has higher priority, but how? The server handles data in bufferT and in

bufferN with the ratio RESERVEDTIMES: 1. For instance, if TOTALCAP is 1000 bytes

per second and RESERVEDTIMES is 4, 1000 × 4/(1+4) = 800 bytes per second is

reserved for the traffic from tunnel trees, and 1000 x 1/(1+4) = 200 bytes per second is

reserved for the traffic from the Internet.

How the Registration Is Done

In our AID system, servers get the secret key shared with As by registration. We

just took the easiest step here. The shared key was pre-configured in both the server and

AID station, As. If users want to change the key, they need to redefine it in both sides,

with the same value. Then recompile the codes. It is not hard. We wrote a makefile

compiling and linking object files to generate the program server. It can be done by just

one command.

Not Perfectly Isolated from Higher-Level Applications

Same as the program client, the program server cannot be totally isolated from

higher-level applications because the Linux kernel does not actually handle AID layer

headers. AID layer headers are viewed as application layer data by the kernel. The

program client inserts an AID layer header into a packet and the program server removes

the AID layer header from the packet. It is a little confusing here. Is the program client

different from other client programs like telnet and ssh? Our program client does not try

to connect the server host. It takes care of queued packets in a client host instead.

Likewise, the program server is not a server daemon program. It does not listen on a

30

port. Its job is taking care of queued packets in a server host. When a client host tries to

connect a server host, there are four possibilities:

• The client host has clientFilter.o loaded and is running the program client, and the
server host has serverFilter.o loaded and is running the program server as well. It
works just fine in this case because both sides can recognize the AID layer headers
inserted in packets.

• The client host has clientFilter.o loaded and is running the program client, but the
server host does not load serverFilter.o. It does not work in this case because the
server host will get packets with AID layer headers from the client host, and the
server host cannot recognize them. AID layer headers are junk data for the server
host, which make communication fail.

• The client host does not load clientFilter.o, but the server host has serverFilter.o
loaded and is running the program server. It does not work in this case either
because the client host sends out packets without AID layer headers. When the
server host gets the TCP packets from the client host, it tries to know if the packets
are from AID tunnels or the Internet by inspecting the recognizing field in AID
layer headers. Of course, these packets do not have the recognizing field and
application layer data is used as recognizing field. Then, communication fails.

• The client host does not load clientFilter.o and the server host does not load
serverFilter.o either. Both sides know nothing about AID layer headers. It works
well. In this case, the AID service has nothing to do with both sides.
Communication just goes as without the AID service protection as before.

In conclusion, if a client host wants to connect a server host that has serverFilter.o

loaded and is running the program server, the client host should load the module

clientFilter.o and run the program client before making a connecting. On the other hand,

if a client host wants to connect a server host that does not load serverFilter.o, the client

host should unload the module clientFilter.o and terminate the program client before

making a connection. The client host should match the server host to make everything go

well.

One thing worth a mention is that loading clientFilter.o and running the program

client do not mean the client host already joined the AID service. It should register at an

AID station to make the AID service effective first. Same thing applies to the server host

31

as well. However, an unregistered client host can still connect to a registered server host

by loading clientFilter.o and running the program client. All packets from that client host

cannot enter AID tunnels because the client has no secret key. They can only be

transmitted via the Internet..

Loading or unloading the module clientFilter.o can be done by one command. A

client host can adapt itself to different server hosts dynamically.

Program Alert

By compiling the source file alert.c and linking other relative source files, we can

get the executable program alert. A server host can send PUSH messages to AID stations

by executing the program alert. We leave the flexibility of defining DDoS attacks to the

users. Users can define the situations of being attacked to meet their need. All they need

to do is to run the program alert when the server host detects attacks. It will send As a

PUSH message to trigger the AID system. Afterward, all packets from registered clients

to that server go through the AID tunnels. The program server inserts Md5 digest into

the PUSH message packets at hook NF_IP_POST_ROUTING.

CHAPTER 6
AID STATION

AID stations are the cores of our AID system [6]. They form an AID tunnel tree

for each attacked registered server. How is a tunnel tree created? How are packets

routed in a tunnel tree? How to resist attacks from registered clients? How was it

implemented? Answers to the above questions are in this chapter.

AID Tunnel Tree

We have seen AID tunnels many times in the previous chapters. We know AID

tunnels are tree structures. Packets from registered clients to the attacked registered

servers would enter AID tunnels. In this section, we explained how an AID tunnel tree is

constructed and how packets are routed inside. The push-n-pull process [6] establishes a

tunnel tree from the registered clients to an attacked server.

Push Phase

Assume a server S is attacked; it sends a PUSH message to As, the AID station that

it registered at. An AID tunnel tree for the server is going to be built up, and the tree's

root node is As. The scenario is as follows.

1. Server S senses an attack and sends PUSH messages to As. As is the root node of
the AID tunnel tree, which called the first level node.

2. As is the only AID station that knows S is under attacks so far. As picks up k other
AID stations randomly, and sends a PUSH message to each of them. Any other
AID station could be selected. Subsequently, k+1 AID stations know S is under
attacks at the end of the step. We call these k AID stations the second level nodes
in the tunnel tree. How big should k be? We have deep discussion about it later.

3. Every second level node randomly picks up k other AID stations, and sends a
PUSH message to each of them. Any other AID stations could be selected except

32

33

for As. So, the k second levels nodes selected k2 nodes totally. We call these k2
nodes the third level nodes in the tunnel tree.

Notice that a node might be picked up more than once in the step 2 and in step 3

because both steps randomly select k AID stations. Fig. 6-1 shows how is a tunnel tree

created in push phase.

Figure 6-1. Tunnel tree created in push phase. Not all third level nodes are shown in the

figure. Arrows from nodes to nodes indicates the direction packets would be
routed. See the broken arrows in the figure. Node A got PUSH messages
from both As and B. A would choose As as its parent node because of shorter
routing path. Similarly, node D got PUSH messages from B and A. D could
pick either of them to be its parent node, but not both. In push phase, there
might be some AID stations not receiving PUSH messages, which are
unconnected nodes in the figure.

Suppose we have N AID stations. We want to notify every AID station when a

server is attacked. In step 1, only As is notified. In step 2, k+1 AID stations are notified.

In step 3, ideally, 1+k+k2 AID stations are notified. If k is the square root of N, we get

1+k+k2 > N, which means the tunnel tree covers every AID station. However, some AID

34

stations picked in step 2 may be picked again in step 3 and some second level nodes may

select the same third level nodes. We cannot guarantee every AID station is included in

the tunnel tree. That is why we need pull phase. In push phase, k(k+1) PUSH messages

are sent out totally, because only the first level node and the second level nodes would

send PUSH messages. If we allow the third level nodes to send PUSH message, push

phase will be expensive. The majority of AID stations can be reached in push phase.

Pull Phase

When a server detects an attack, a tunnel tree rooted at As is built up. Some nodes

might not get the PUSH messages in push phase. These nodes did not connect to the

tunnel tree yet. We try to include them into the tunnel tree in pull phase. In pull phase an

AID station will ask other AID stations by sending PULL messages what servers are

attacked. In push phase, an AID station gets information of attacked server passively.

If an AID station B gets PULL messages from another AID station A, B will send

PULLANS messages back to A. PULLANS messages contain information of all attacked

servers B knows. When A gets these PULLANS messages from B, it will update its

attacked servers recording. Actually, an AID station sends PULL messages to q other

AID stations. Like the variable k in push phase, we should choose a proper q. We will

discuss q and k later. Each AID station sends PULL messages out periodically.

Routing

As is the first AID station that knows the register server S is attacked, and As is also

the root of the tunnel tree for the server S. When an AID station A tells another AID

station B that server S is attacked by either PUSH or PULLANS messages, A becomes B's

parent node in the tunnel tree for the server S. Hence, As is the parent node of the second

level nodes, and the second level nodes are the parent nodes of the third level nodes.

35

The structure of a tunnel tree changes dynamically because of PULLANS messages. In

pull phase, if a third level node gets PULLANS messages from As, the only first level

node, it will switch its parent to As and become the second level node. Then, the routing

path becomes one AID station shorter. As is the root node, all TCP packets to the server S

are routed to As finally.

If an AID station gets a packet whose final destination is server S, where the packet

is routed to next? The AID station routes the packet to its parent node. The third level

nodes route packets to the second level nodes, and the second level nodes route packets

to As. Packets go from leaf nodes to the root node in the tunnel tree. Finally, As forwards

packets to the server S.

An AID station could be a tree node of more than one tunnel trees. If N servers are

attacked, there will be N tunnel trees built up on the random overlay network (RON).

One tree is independent from another.

Why Does a Tunnel Tree Try to Include Every AID Station?

Two reasons here, first, a client is free to register at an arbitrary AID station.

Suppose server S is attacked and client C is trying to connect S. C registered at AID

station Ac. A tunnel tree would be created for server S. If the tunnel tree does not

embrace Ac, Ac does not know S is under attacks. In this case, C would not be informed

by Ac that S is attacked. Thus, client C keeps sending packets to server S via the Internet.

These packets are not protected even though C did register and joined the AID service.

We do not constrain which AID station can have registered clients, so we tries to include

all AID stations.

Second, it is about routing. AID station A routes packets to AID station B if B is

A's parent node in the tunnel tree. A got PUSH or PULLANS messages from B before. B

36

also routes these packets to its parent node. If B crashes and then restores, it will lose

information about its parent node of the tunnel tree. Now, B does not know where to

route the packets from A. B sends PULL messages to others when getting a packet that it

does not know where to route. If one PULLANS message B got contains information it

needs, where to route packets to server S, B hooks on the tunnel tree again. However, it

is possible that all PULLANS messages B got contain nothing about server S. If we

choose right k and q, the chance that this happens is very low.

Variables k and q

Assume we have a set of n AID stations. AID stations A, B and As are elements of

the set. In step 2 of push phase, As sends PUSH messages to other k AID stations. The

probability that A does not get the PUSH message from As is

−
−−
1

1
n

kn . Now, suppose

AID station B got a PUSH message from As and is the second level node. In step 3, B

would not send PUSH messages to As and itself, so B could send PUSH messages to other

k nodes out of (n – 2). The probability that A does not get the PUSH message from B in

step 3 of push phase is

 −
−−
2

2
n

kn

 . Since there are k second level nodes, the probability

that A does not receive any PUSH messages in step 3 of push phase is
k

n
kn

 −
−−
2

2

 . A

does not connect to the tunnel tree right after push phase if it obtained no PSUH message

in step 1, 2 and 3. Finally, we got the probability that A is not covered by the tunnel tree

after push phase is
k

n
kn

n
kn

−
−−×

 −
−−

2
2

1
1

 . So, the probability, called PInTree, that an

arbitrary AID station A could be in the tunnel tree after push phase is

37

k

n
kn

n
kn

−
−−×

−
−−−

2
2

1
11

2>n

. The expectation number of AID stations included in the

tunnel tree after push phase is n P× InTree.

×

×

1+

e
1

e
1

<

<

n

Theorem 1: if and n=k , then PInTree
e
11−> .

Proof:
en

kn
n

kn k 11
2

2
1

1 −>

−
−−

−
−−−1

 ⇐
en

kn
n

kn k 1
2

2
1

1 <

−
−−

−
−−

 ⇐
en

kn k 1
1

1 <

−
−−

 ⇐
n

kn k

<

 −

 ⇐
n
k k

1 <

 −

 ⇐
en

n
n

11

−

 ⇐
en

n
111

 −

n

n

 − 11 is a monotonically-increasing function and is equal to
e
1 when n is

approaching infinity. Hence, if and 2> nk = , PInTree
e
11−> . We use n=k in

our AID system.

Let us talk about variable q now. =∏ s n×PInTree AID stations are expected to be

covered in the AID tunnel tree right after push phase and we know n×PInTree

 −>

e
n 11 by Theorem 1. An AID station sends out PULL messages to q other AID

stations. The probability that at least one of these q AID stations is in the tunnel tree is

38

[]
q

qq
s

en
en

n
n 11

1
1111

1
1

1 −>

−
−−−>

−
∏−−

− (1)

If q = 10, the probability is greater than 0.99995. It is high enough that we can

almost say it will happen. When an unconnected AID station receives PULLANS from

another AID station that is in the tree already, it connects to the tree. With push-n-pull

process, the chance that all AID stations are included in the tree is very high.

Advantages of Random Overlay Network (RON)

First, small diameter and modest nodal degree: A good overlay network topology

should have small diameter and nodal degree. Unfortunately, they conflict with each

other. We made a tradeoff in our RON topology. We have a fixed small diameter that is

three and modest nodal degree that is about the square root of the number of all AID

stations. With small diameter, packets can arrive at servers by passing few AID stations.

With modest nodal degree, we save some resource and keep the availability against node

failure. We explain why the diameter is three in the end of this chapter.

Second, easy to set and maintain: A tunnel tree is established by sending PUSH and

PULL messages. They are sent randomly by an AID station to other AID stations. We

do not need a complicated algorithm to create the tree. Besides, every tree node just has

to know who is its parent to forward packets. Not many things need to be remembered

by an AID station. Capacity of the AID system can be increased by adding more AID

stations.

Third, against node failure: If a tree node, an AID station, is down somehow, its

children nodes are disconnected from the tunnel tree. However, the children nodes can

hook on the tree again in next pull phase. Therefore, we can easily shutdown an AID

station for maintenance without affecting the entire AID system. It is also true for adding

39

an AID station. A new-added AID station can connect the tree in pull phase as well. An

AID station can join and leave the AID service with little damage.

Distributed Virtual-Clock Packet Scheduling

Basic Idea

Assume we have an attacked server S and a tunnel tree for S. Every AID station

maintains a virtual clock VCu [11] (initialized to be the local system time) for every

tunnel u connecting with a client network. When an AID station gets a packet from

tunnel u, VCu is updated as follows [6].

VCu = max {VCu, current_time} + T × L (2)

The AID station then marks the packet's virtual clock timestamp as VCu. All AID

stations’ local clocks should be synchronized. L is the length of the packet. T is called

waiting interval. As broadcasts a new T to all AID stations periodically by sending

CTRLT messages. We use T to control the speed of a virtual clock. Since T can be

changed dynamically, we can adjust a virtual clock’s speed dynamically as well. The

maximum rate a client can send data to server S via RON is 1/T. If an AID station gets a

packet from tunnel u connecting to another AID station, the packet has a timestamp on it

already.

An AID stations puts all incoming TCP packets into a buffer in ascending order

based on their virtual clock timestamps. When the buffer is full, the packet with largest

timestamp will be dropped. We call a packet’s virtual clock timestamp VCTS. If VCTS

– “the AID station’s local time” > α is true for an incoming packet, the packet is just

dropped, not put into the buffer even though the buffer is not full. The value of α can be

configured in the program. If a registered client hosts an attacker, its virtual clock will

run very fast because of huge amount of traffic. Most of packets from the client will be

40

dropped since their virtual clock timestamps are too big. In this way, server's capacity is

shared fairly among all clients.

How to Adjust T

Server S reserves part of its capacity, called Cs, for RON. T is set to 1/ Cs at first

and broadcasted to all AID stations by As. There are two phases to adjust T. In each

phase, new T is broadcasted to every AID station.

• Exponential phase: In this phase, As doubles the value of T to make virtual clocks
run twice faster. When virtual clocks run twice faster, the maximum arrival rate of
server S from RON is cut by half. As keeps in exponential phase until the arrival
rate is below Cs. Then, As enters linear phase.

• Linear phase: Suppose T is changed from I to 2I by the last update of T in
exponential phase. In linear phase, As decrease T by I⋅ε periodically to slowdown
virtual clocks until arrival rate is above Cs. We call the system converges at the
moment. Then, As may enter exponential phase again.

Programs for an AID Station

AID stations route packets from registered clients, form a tunnel tree for an

attacked registered server and control the traffic flows of tunnel trees.

AIDFilter.c and AID.c are two main source files for AID station. AIDFilter.c is

compiled as a module, queuing interested packets into userspace. Then, AID.c takes

queued packets out and does whatever is necessary. An AID station keeps information

about its registered clients and servers. An AID station routes TCP packets in a tunnel

tree, and uses UDP messages to control the AID system.

Module AIDFilter.o

By compiling AIDFilter.c, we can get the module AIDFilter.o. It hooks on

handling functions at NF_IP_PRE_ROUTING, and NF_IP_POST_ROUTING. At

NF_IP_PRE_ROUTING, all incoming TCP packets and UDP packets to port 4369 are

queued, except for the local traffic. Local traffic goes from loopback interface, 127.0.0.1,

41

to loopback interface. At NF_IP_POST_ROUTING, all outgoing TCP packets and UDP

packets to port 4369 are queued, except for the local traffic.

Queued TCP packets are traffic inside tunnel trees. They come from registered

clients and head for registered servers. When the module AIDFilter.o is loaded in a host,

the host must run the program AID as well. Otherwise interested packets keep getting

into the queue, but no program takes them out of the queue. The traffic is blocked if this

happens. A host should load the module AIDFilter.o and run the program AID at the

same time. It is meaningless to do just one of them.

Program AID

By compiling AID.c and linking other relative source files, we can get the

executable program AID. It has a while loop in main() whose condition is always true.

The program AID has a packet buffer, storing incoming TCP packets.

TCP packets from NF_IP_PRE_ROUTING

Every queued incoming TCP packet in an AID station will go through the

following processes.

• Verify the third party did not alter the packet. The packet is dropped if md5 digest
stored in the packet is not equal to the one calculated by the AID station.

• Packet's virtual clock timestamp is refreshed as described in the section Distributed
Virtual-Clock Packet Scheduling.

• Examine the packet's virtual clock timestamp. If VCTS – “the AID station’s local
time” > α , the packet will be dropped. Constant α was defined as
MAXVCTSEXCEED in AID.c. Most of offending packets are filtered out here.

• The AID station look up its routeList to know where to route the packet. Every
AID station has a routeList, which is a list structure. A routeListNode contains
information for a tunnel tree, inclusive of server's IP, distance to As, and the parent
node's IP. An AID station may be embraced in more than one tunnel trees, and its
routeList will contain more than one routeListNode. If The AID station does not
know where to route the packet, no information for the destination server stored in

42

the routeList, the AID station will drop the packet and send PULL messages to
other AID stations.

• If a packet passes all of the above and the packet buffer is not full, it can be put into
the packet buffer. If the packet buffer is full, the packet with maximum virtual
clock timestamp in the packet buffer is selected. The incoming packet and selected
packet are compared in their virtual clock timestamps. If the incoming packet has
smaller timestamp, it can replace the selected packet in the packet buffer;
otherwise, it will be just dropped. The packet's destination IP is modified to the
parent node's IP, since the packet will be routed to the parent node in the tunnel
tree.

UDP packets from NF_IP_PRE_ROUTING

Every queued incoming UDP packet in an AID station will go through the

following process.

• Verify the third party did not alter the packet. The packet is dropped if md5 digest
stored in the packet is not equal to the one calculated by the AID station.

• Recognize what kind of UDP message the packet is. In the chapter AID Layer, we
said there are a couple of different UDP messages in the AID system. We can tell
it by the packet's packet type field in the AID layer header. If it is a PULL
message, the AID station sends whole information of its routeList in PULLANS
messages to the asking AID station. It happens in pull phase. If it is a PULLANS
message, the AID station updates its routeList with the data of the packet. It
happens in pull phase. If it is a PUSH message, the AID station updates its
routeList with the data of the packet and sends PUSH message to other AID
stations. It happens in push phase. If it is a CTRLT message, the AID station
updates the variable T for the specific tunnel tree. A CTRLT message contains IP
of the server that the tunnel tree is for. See the chapter AID Layer for more details
about different UDP messages. A UDP message has md5 digest. It cannot be
forged without knowing the secret key.

TCP packets from NF_IP_POST_ROUTING

The AID station is going to forward every queued packet to its parent node. The

destination IP was changed to the parent node's IP in the hook NF_IP_PRE_ROUTING

already. Here, the program AID recalculates md5 digest because the packet's destination

IP and virtual clock timestamp were changed. Finally, the program AID computes the

checksums in the TCP header and IP header.

43

UDP packets from NF_IP_POST_ROUTING

Every queued UDP packet in this hook heads to port 4369. Md5 digest need to be

calculated and inserted into every queued UDP packet. The checksums in the TCP

header and IP header are recomputed in this hook. Afterward, the packets are ready to

leave the AID station.

Implementation Issues

No Threads

In the chapter AID System Overview, we pointed out no threads or child processes

in programs client, server and AID for printing out statistic information under users'

requests. Besides getting a packet from the queue, the program AID has three more

things to do, sending packets in the packet buffer to higher-level applications, sending out

CTRLT messages and sending out PULL messages. The program AID also has a while

loop with consistent true condition in main(). In every iteration of the while loop, four

things are examined. First, sees if the packet buffer has packets waiting and passes some

packets to higher-level applications. Second, sees if it is time to send out CTRLT

messages. We can define how often an AID station can send out CTRLT messages.

Third, sees if it is time to send out PULL messages. We can also define how often an

AID station can send out PULL messages. Fourth, sees if any packet was queued by the

module AIDFilter.o and read in one packet. Each of them takes only little time, so they

look like running simultaneously. Threads make a program hard to maintain and may

cause serious problems like resource competition and deadlocks, if not used very

carefully.

44

Registration for Clients and Servers

As we said before, the secret keys shared with clients and servers are pre-

configured in the codes. If an AID station wants to register a client, the client's

information needs to be added into AID.c. It is also true for registering a server. The

program AID has to be recompiled after registration, which can be done by one

command.

Important Variables

There are some important variables defined in the source file AID.c. They decide

how the program AID works. To make the program AID work properly, they need to be

assigned reasonable values. We discuss them below.

PCKBUFSIZE

The packet buffer’s size, if too small, incoming TCP packets will be dropped

frequently with heavy traffic.

IPQREADTIME

We mentioned four things are done every iteration in while loop of main(). One is

to read in a queued packet. If the queue is empty, the program might be blocked until a

packet is queued by the module AIDFilter.o. If blocked, the packets in the packet buffer

cannot be got by higher-level applications. Consequently, we need to constrain the time

of this reading behavior. Do not wait more than IPQREADTIME microseconds if the

queue is empty. If it is larger than 500000, the client side may feel painful lags.

READINTERVAL

The packet buffer is examined every iteration in the while loop of main(), and some

packets are sent to higher-level applications. We are not sure how long one iteration may

take. We may want packets stay in the packet buffer longer than the time of one

45

iteration. It can be done by this variable. It defines how often the packet buffer is

checked. It is in microseconds, too.

SENDPCKBUFNO

Every READINTERVAL microseconds, packets in the packet buffer are taken out,

but how many? The variable is the answer. If it is 10, the 10 packets from the packet

buffer can be sent to higher-level applications. If it is too small, packets will be dropped

frequently when heavy traffic.

NEARBYAID

The number of other AID stations that are known by this AID station. PUSH,

PULL, and CTRLT messages are sent to these neighbors.

SNEDTINTERVAL

If the AID station is As, a root node of a tunnel tree, it sends CTRLT messages to

all other AID stations every SENDTINTERVAL seconds.

SENDPULLINVAL

Every SENDPULLINVAL seconds, an AID station sends PULL messages to other

PULLNO (defined in global.h) AID stations. Periodically sending out PULL messages

can make sure every AID station connects tunnel trees.

DECREASERATIO

In linear phase, As decreases T by I⋅ε . DECREASERATIO is ε .

MAXVCTSEXCEED

If a packet's VCTS – “AID station’s local time” > MAXVCTSEXCEED, the packet

is dropped. MAXVCTSEXCEED is the constant α .

46

Adding New AID Stations

A new added AID stations can be included into an AID tunnel tree by sending

PULL messages to others. However, we still need to make the AID station known by all

other AID station. Like handling registrations, an AID station pre-configures its

neighbors in AID.c. When a new AID station is added into the AID system, its

neighbor’s AID.c needs to be updated and recompiled. It can be improved in a better but

complex way.

Diameter of a Tunnel Tree

Remember the AIDNO field of a PUSH message and distance field of a server list

node of a PULLANS message? Actually, they two mean the same thing, the distance to

As of a tunnel tree. We explain why our random overlay network's diameter is three here.

Every tree node, an AID station, records its distance to As. For As itself, the distance is 0.

For the second level nodes, it is 1. For the third level nodes, it is 2. Suppose we have

tree node A with distance of 1, tree node B with distance of 2 and tree node C not

included in the tree yet. C has two ways to join the tunnel tree.

• Another node sends a PUSH message to C. It could be root As or node A. If C gets
PUSH messages from As, C's distance to As is 1. If from A, C's distance to As is 2.
Notice only the root node and the second level nodes can send PUSH messages or
push phase becomes expensive (more than k(k+1) PUSH messages sent out).

• C gets PULLANS messages from another AID station. It could be root node As,
node A or node B. If C gets PUSH messages from As, C's distance to As is 1. If
from A, C's distance to As is 2. If from B, C's distance to As is 3.

Assume we have another node D not included in the tree. D can join the tree by

PUSH or PULLANS from node A or node B, but not node C. D ignores PULLANS

message from the nodes with distance of 3. If D joins the tree by C's messages, C

becomes D's parent node. That means D has distance of 4 to As, which is not allowed.

47

If C's distance is 3 and it gets PULLANS or PUSH messages from A, C will switch

its parent node to A to have smaller distance, 2. C becomes the third level node after

switching. An AID station's distance to As can only go smaller. By doing this, no cycle

appears in a tunnel tree. As a result, distance between As and every other tree nodes is

not larger than 3. Actually, we can reset the diameter by redefining PUSHDEEP in file

global.h. A tunnel tree’s diameter is PUSHDEEP+1. There are four possibilities of a

packet being routed from a registered client to a registered server, shown in Fig. 6-2.

Figure 6-2. Four possibilities a packet can be routed. The numbers are the value of

AIDNO field of PUSH messages or distance field of PULLANS messages
sent by the host. Packets are routed toward As in an AID tunnel tree.

Forwarding Packets

Pay attention to the word “forwarding.” An AID station works like a router

somewhat. Packets in RON are forwarded to As by AID stations. The difference is

normal routers do not adjust md5 digest or virtual clock timestamp of a packet. Usually,

the forwarding function is turned off in a Linux machine by default. It has to be on.

After version 2.4, the tool iptables is available in Linux. We use it to set forwarding rules

in an AID station. To be simple, no sophisticated rules are used. We just allow all kind

of forwarding. Of course, we can set more secure and elaborate forwarding rules. An

48

AID station is not allowed to send out its own TCP packets. It can only forward TCP

packets.

CHAPTER 7
TESTING RESULTS AND ANALYSIS

After going through the previous chapters, we understand how the AID system

works theoretically and practically. In this chapter we talk about how we tested our AID

system and analyze testing results. When an idea is transformed into real programs,

unexpected problems show up always. We already discussed some of them in

Implement Issues sections of previous chapters. The other practical problems are

illustrated in this chapter.

Important Issues about Testing

• The root access is required to load a module. A client host, a server host or an AID
station needs to load clientFilter.o, serverFilter.o and AIDFilter.o respectively. We
do not have enough Linux machines with the root access for tests. As a
consequence, we just tested our AID system on three Linux machines, for a client
host, a server host and an AID station separately. We might not test some
functionality well with such a simple model.

• Since only one Linux machine is for client hosts, we have to simulate n client hosts
on it by running n client processes. The AID station treats TCP packets from
different source ports as they are from different hosts, even though they have the
same source IP.

• A client process uploading a huge file to the server symbolizes an attacker.
However, normal ftp programs cannot be used because of MTU problems. Packets
sent out by a normal ftp client could be as big as MTU. There is no space for the
AID layer header. We discussed this problem in the chapter CLIENT END in
detail. Hence, we wrote two programs for this purpose, testServer and testClient.
The server runs the program testServer to accept connections, and the client runs
the program testClient to dump data to the server. In the program testClient, we
can restrict the size of packets sent to testServer by resetting the socket option. If
the packet size is smaller, testServer will get more packets (but same amount of
application layer data).

• What we want to see from the testing are how fast the AID system converges, how
T (waiting interval) changes, how many packets from legitimate users are dropped,

49

50

how many packets from attackers are dropped, how T affects the average arrival
rate, and etc. Many factors can influence the above behaviors, for example the
packet buffer's size. Most of these factors are malleable variables in the codes.

Testing Elements

We have five testing cases. Client Linux machine had several processes of the

program testClient to simulate more than one client ends. Each process of the program

testClient might be given different parameters. Given parameters decided if a client end

was a legitimate user or an attacker.

Program TestClient

Usage of program testClient is

 testClient testServerIP blockSize blockNO MAXSEG sleepTime

TestClient is the filename of the executable. TestServerIP is the IP address of the

host that runs the program testServer. TestClient will dump data there. The remaining

four parameters are more meaningful. There is a for loop, which runs blockNO iterations

in the program testClient. In every iteration a block whose size is blockSize is sent to

testServer. It indicates the size of application layer data, not the whole packet. Because

of headers, more than blockSize bytes are sent out in an iteration. With blockSize and

blockNO, testClient knows how many application layer data it needs to send out, which

are blockSize × blockNO bytes. The parameter MAXSEG defines the maximum size of

TCP packets. Notice that the size of the whole packet, including IP header, will be a little

bit bigger than MAXSEG. We need a suitable MAXSEG to save enough space for an AID

layer header. The last parameter, sleepTime, defines how many seconds the program

testClient sleeps before running the next iteration.

51

Program TestServer

TestServer accepts connection requests from testClient and prints out application

layer data sent by testClient.

Setting of the AID System

We have three Linux machines, one client, one AID station and one server. Table

7-1 shows the basic settings we used for testing. We explained what these factors mean

in previous chapters. Server’s capacity was 2000 bytes per second. 1600 bytes per

second of it was reserved for traffic from AID tunnels. The setting was fixed during

testing but the number of attackers and legitimate users varied. The attacking modes

changed in different testing cases too.

Table 7-1. List of important factors of the AID system for testing
Name Value
PCKBUFSIZET 50
PCKBUFSIZEN 50
IPQREADTIME 300000
READINTERVAL 300000
SENDPCKBUFNO 3
AVGINTERVAL 10
TOTALCAP 2000.0
RESERVEDTIMES 4.0
MAXVCTSEXCEED 4
DECREASERATIO 0.1

Case 1

There were two registered attackers. Their parameters were:

• Attacker1: testClient 192.168.1.102 1000 500 1000 0
• Attacker2: testClient 192.168.1.102 1000 500 1000 0

Fig. 7-1 shows how many packets were dropped because of big VCTS at the AID

station. MAXVCTSEXCEED is 4. Fig. 7-2A shows how variables T, I and decrease

changed their values. T was changed from I to 2I by the last update of T in exponential

phase and then entered linear phase. In linear phase, As decreased T by decrease

52

periodically to slow down virtual clocks. Decrease is equal to DECREASERATIO times

I. Fig 7-2B shows the arrival rate at the AID station and the server. AvgT is the arrival

rate of the tunnel tree at the server. AvgN is the arrival rate of the Internet at the server.

AvgAID is the arrival rate at the AID station. All of them are average received bytes per

second in the 10-seconds period. ‘AID cap’ is part of server's capacity that was reserved

for the registered clients. ‘Server cap’ is server's whole capacity. In the third 10-

seconds, avgN exceeded server's capacity, and the AID system was triggered. Two

attackers started to send packets via RON, instead of the Internet. We can see avgN went

down and finally to 0. Now, we examine Fig. 7-2A and Fig. 7-2B together. The AID

system converged after the twelfth 10-seconds. T ranged between 0.000875 and 0.00175

when converging. When T went down, avgAID went up. T kept decreasing to I, in linear

phase, until AvgAID was bigger than ‘AID cap’. At the moment, the AID system entered

exponential phase again. When T doubled, avgAID declined dramatically. When

avgAID became smaller than ‘AID cap’, the AID system entered linear phase. The AID

system prevented avgAID from exceeding ‘AID cap’ by tuning T. If no new attackers

joined, after the AID system converged, T would fall into a fixed range as we can see in

Fig. 7-2A. Table 7-2 shows how many packets and why they were dropped. About 2/3

of incoming packets were dropped.

Table 7-2. Case 1 packets statistics in the AID station. A packet is dropped when the
AID station’s packet buffer is full, VCTS – “AID station’s local time” > α ,
integrity checking fails or the AID station does not know where to route the
packet.

 Attacker1 Attacker2
Packet# in 1294 1230
Packet# out 487 456

BufferFull 0 BufferFull 0
BigVCTS 807 BigVCTS 774
MD5Fail 0 MD5Fail 0

Packet# dropped

CantRoute 0 CantRoute 0

53

Virtual clock timestamp - localTime

0

1

2

3

4

5

6

7

1 41 81 12
1

16
1

20
1

24
1

28
1

32
1

36
1

40
1

44
1

48
1

52
1

56
1

60
1

64
1

68
1

72
1

76
1

80
1

84
1

88
1

92
1

96
1

10
01

10
41

10
81

11
21

11
61

12
01

12
41

12
81

packet#

VC
TS

 -

attacker1

attacker2

MAXVCTSEXCEED

Figure 7-1. Distribution of incoming packets in case 1 at the AID station. Packets lay

above the straight line MAXVCTSEXCEED were dropped.

con trolT (Fig. 7-2A)

0

0.0005

0.001

0.0015

0.002

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10 seconds

va
ria

bl
e'

s
va

lu
e

I
d

arriv al rate (Fig. 7-2B)

0

500

1000

1500

2000

2500

3000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10 seconds

ar
riv

al
 ra

te
 in

 1
0

se
co

nd

avgT avgN
AID cap server cap
avgAID

Figure 7-2. How did T and arrival rate interact with each other in case 1. A) After

system converged, T pulsed in a fixed range. B) When avgAID exceeded
‘AID cap’, T doubled. Then avgAID fell again. Most of time, avgAID was
below the yellow straight line, showing the arrival rate was controlled well.

54

Case 2

Similar to case1, however, we added one legitimate registered client:

• Attacker1: testClient 192.168.1.102 1000 500 1000 0
• Attacker2: testClient 192.168.1.102 1000 500 1000 0
• Normal_user: testClient 192.168.1.102 250 700 250 1

The normal user was distinguished from two attackers in three ways. First, it sent

smaller amount of data. Second, the size of packets from it was smaller. Third, it slept 1

second every iteration. T ranged between 0.001125 and 0.00225 when converging. It

was bigger than in case 1 because we had three registered clients here. In Fig. 7-3, in the

same time period, normal_user sent about twice packets as many as an attacker did

because TCP had flow control mechanism. After many packets were dropped; attackers

would slow down their traffic. In Fig. 7-3, we know packets from the legitimate was

really safe because VCTS - localTime was in the range of {0.5, 1} approximately, which

was far away from 4. Normal_user was influenced by T much less harshly than attackers

were. Likewise, Fig. 7-4A and Fig. 7-4B show how the AID system quelled arrival rate

by adjusting T. Table 7-3 shows packets statistics of case 2.

Table 7-3. Case 2 packets statistics in the AID station. Normal_user had no packets
dropped.

 Attacker1 Attacker2 Normal_user
Packet# in 473 474 952
Packet# out 173 172 952

BufferFull 0 BufferFull 0 BufferFull 0
BigVCTS 300 BigVCTS 302 BigVCTS 0
MD5Fail 0 MD5Fail 0 MD5Fail 0

Packet#
dropped

CantRoute 0 CantRoute 0 CantRoute 0

55

VCTS - localTime

0

1

2

3

4

5

6

7

1 41 81 121 161 201 241 281 321 361 401 441 481 521 561 601 641 681 721 761 801 841 881 921

packet#

VC
TS

-lo
ca

lT
im

e

attacker1
attacker2
normal_user
MAXVCTEXCEED

Figure 7-3. Distribution of incoming packets in case 2 at the AID station. Traffic from

normal_user was pretty stable (the lowest series).

controlT (Fig. 7-4A)

0

0.0005

0.001
0.0015

0.002

0.0025

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

10 seconds

va
ria

bl
e'

s
va

lu
e

I decrease T

arrival rate (Fig. 7-4B)

0

500

1000

1500

2000

2500

3000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

10 seconds

ar
riv

al
 ra

te
 in

 1
0

se
co

nd
s

avgT avgN
AID cap server cap
avgAID

Figure 7-4. How did T and arrival rate interact with each other in case 2. When T

doubled, avgAID and avgT fell.

56

Case 3

There were four registered attackers, and two registered legitimate clients. Notice

that two legitimate clients sent out different amount of data with different packet sizes.

Their parameters were:

• Attacker1: testClient 192.168.1.102 1000 500 1000 0
• Attacker2: testClient 192.168.1.102 1000 500 1000 0
• Attacker3: testClient 192.168.1.102 1000 500 1000 0
• Attacker4: testClient 192.168.1.102 1000 500 1000 0
• Normal_user1: testClient 192.168.1.102 250 700 250 1
• Normal_user2: testClient 192.168.1.102 100 700 100 1

T ranged between 0.00175 and 0.0035 when converging. It was even bigger than in

case 2 because we had six registered clients here. Normal_user1, having exactly the

same parameters as normal_user in case 2, had packets dropped. In case 2, normal_user

had no packets dropped. What made the difference to the clients with the same

parameters? When the traffic load in the AID system is heavier (T goes bigger), packets

have higher chances to be dropped even though they are not from hosts intending to

attack. That is because the AID system tries to make a fair share of resource among all

registered clients. If a client sends more, it has to wait longer for next sending. Packets

from normal_user2 had small enough VCTS, so none was dropped.

Table 7-4. Case 3 packets statistics in the AID station. Normal_user1 had more packets
dropped, but it also had more incoming packets.

 Attacker1 Attacker2 Attacker3 Attacker4 Normal_user1 Normal_user2
Packet#
in

411 357 388 366 1106 1215

Packet#
out

116 97 106 97 636 1215

BufferFull
= 0

BufferFull
= 0

BufferFull
= 1

BufferFull
= 0

BufferFull
= 0

BufferFull
= 0

BigVCTS
= 295

BigVCTS
= 260

BigVCTS
= 281

BigVCTS
= 269

BigVCTS
= 470

BigVCTS
= 0

MD5Fail
= 0

MD5Fail
= 0

MD5Fail
= 0

MD5Fail
= 0

MD5Fail
= 0

MD5Fail
= 0

Packet#
dropped

CantRoute
= 0

CantRoute
= 0

CantRoute
= 0

CantRoute
= 0

CantRoute
= 0

CantRoute
= 0

57

Normal_user1 had dropped packets, but it was still distinguished from other true

attackers. First, its traffic was not slowed down as much as attackers. In the same time

period, an attacker just sent out about 375 packets, but normal_user1 sent out 1106

packets (normal_user2 sent out 1215). Second, in Fig. 7-5 we can see VCTS-localTime

for packets from normal_user1 rippled around 4. However, it is 6 for packets from

attackers. In conclusion, normal_user1 had packets dropped, but it still maintained its

communication with the server.

VCTS - localTime

0

1

2

3

4

5

6

7

8

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

50
1

55
1

60
1

65
1

70
1

75
1

80
1

85
1

90
1

95
1

10
01

10
51

11
01

11
51

12
01

packet#

VC
TS

 -
lo

ca
lT

im
e

attacker1 attacker2
attacker3 attacker4
normal_user1 normal_user2
MAXVCTSEXCEED

Figure 7-5. Distribution of incoming packets in case 3 at the AID station. Traffic from

normal_user2 was pretty stable (the lowest series). Even though some of
packets from normal_user1 were discarded, it was still different from real
attackers.

58

controlT (Fig. 7-6A)

0

0.001

0.002

0.003

0.004

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

10 seconds

va
ria

bl
e'

s
va

lu
e

I

decrease

T

arrival rate (Fig. 7-6B)

0
500

1000
1500
2000
2500
3000
3500
4000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

10 seconds

ar
riv

al
 ra

te
 in

 1
0

se
co

nd
s

avgT

avgN

AID cap

server cap

avgAID

Figure 7-6. How did T and arrival rate interact each with other in case 3. When T

doubled, avgAID and avgT fell; otherwise avgAID and avgT rose.

Case 4

There were two registered attackers, two registered normal users and two

unregistered normal users. Their parameters were:

• Attacker1: testClient 192.168.1.102 1000 500 1000 0
• Attacker2: testClient 192.168.1.102 1000 500 1000 0
• Normal_user1: testClient 192.168.1.102 250 700 250 1
• Normal_user2: testClient 192.168.1.102 250 700 250 1
• Normal_user3: testClient 192.168.1.102 250 700 250 1
• Normal_user4: testClient 192.168.1.102 250 700 250 1

T ranged between 0.00125 and 0.0025 when converging. In Fig. 7-7, we can see

incoming packets distribution of two registered normal users and two registered attackers.

Packets from the other two unregistered normal users did not enter tunnel tree. As a

result, the AID station had no statistics data about them. In this testing case avgN did not

become zero after the AID system was triggered. Only the two registered attackers had

59

packets dropped. Ideally, avgT:avgN = 1600:400 = 4:1 should be true in the case 4 (this

ratio can be changed by modifying RESERVEDTIMES in server.c and signing a new

contract between the server and AID station). However, because attackers slowed down

their traffic (less than half amount of packets sent out as other normal users), avgT went

down too.

Table 7-5. Case 4 packets statistics in the AID station. Normal_user1 and normal_user2
are registered had no packets dropped.

 Attacker1 Attacker2 Normal_user1 Normal_user2
Packet#
in

493 453 1187 1194

Packet#
out

172 154 1187 1194

BufferFull 0 BufferFull 0 BufferFull 0 BufferFull 0
BigVCTS 321 BigVCTS 299 BigVCTS 0 BigVCTS 0
MD5Fail 0 MD5Fail 0 MD5Fail 0 MD5Fail 0

Packet#
dropped

CantRoute 0 CantRoute 0 CantRoute 0 CantRoute 0

VCTS - localTime

0

1

2

3

4

5

6

7

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

50
1

55
1

60
1

65
1

70
1

75
1

80
1

85
1

90
1

95
1

10
01

10
51

11
01

11
51

packet#

VC
TS

 -
lo

ca
lT

im
e

attacker1
attacker2
normal_user1
normal_user2
MAXVCTSEXCEED

Figure 7-7. Distribution of incoming packets in case 4 at the AID station. Traffic from

normal_user1 and normal_use2 were pretty stable (the lower two series). It is
very similar to Fig 7-3 with the exception that series for two normal users are
a little bit higher.

60

controlT (Fig. 7-8A)

0
0.0005

0.001
0.0015

0.002
0.0025

0.003

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

10 seconds

va
ria

bl
e'

s
va

lu
e

I decrease T

arrival rate (Fig. 7-8B)

0
500

1000
1500
2000
2500
3000
3500
4000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

10 seconds

ar
riv

al
 ra

te
 in

 1
0

se
co

nd
s

avgT avgN
AID cap server cap
avgAID

Figure 7-8. How did T and arrival rate interact with each other in case 4. AvgN is the

server’s arrival rate of the traffic from the Internet. T would not affect AvgN
directly, since the traffic did not enter the AID tunnels. However, because the
traffic from AID tunnels had higher priority, the unregistered attackers could
not flood the server.

Case 5

This is an interesting case. It is very analogous to case 2, two attackers and one

normal user. However, attackers chopped same amount of data into smaller pieces here.

• Attacker1: testClient 192.168.1.102 1000 500 300 0
• Attacker2: testClient 192.168.1.102 1000 500 300 0
• Normal_user: testClient 192.168.1.102 250 700 250 1

In case 2, MAXSEG was 1000 for attackers, and it was 300 in case 5. In Fig. 7-10,

we can see that after system converged, value of T varied between 0.001375 and 0.00275.

It is bigger than in case 2. What made case 5 so special? Let us compare it with case 2.

In case 2, attackers sent out 1000 bytes, exclusive of headers, every iteration, and

MAXSEG was 1000. Here, attackers also sent out 1000 bytes per iteration, but MAXSEG

61

was 300. That means an iteration needs to send packets as many as three times in case 5.

Then, what happened? See Fig. 7-9.

First, unlike in case 2, an attacker almost sent out as many packets as normal user

did. A packet's VCTS is decided by its size and T of the tunnel tree. When a packet is

small, VCTS will be small too. Consequently, the packet has a higher chance to be

accepted by an AID station.

Second, compared with case 2, T became bigger when system converged, but

VCTS-localTime for packets from attackers became smaller. Smaller packets made

smaller VCTS but more packets sent out (heavier traffic) in an iteration made bigger T.

Third, Since T became bigger and packets from normal_user had the same

MAXSEG as in case 2, 250, we can see VCTS-localTime for packets from normal_user

twisted a lot, unlike in case 2.

In our AID service, packets from either attackers or legitimate users might be

dropped. Because a server's capacity is fixed, if more clients try to access the server at

the same time, every client could get less resource from the server. If a client intends to

use more than its share, its packets will be discarded. The AID system controls the

arrival rate not to surpass a server's capacity by this policy. We can see in case 2 and

case 3. A client is treated differently when the traffic load changes. A legitimate client

slows down its outgoing TCP traffic when sensing its packets were dropped (no

acknowledgement from the other end), if it implemented TCP correctly. For an attacker,

if it implemented TCP right, it would slow down outgoing traffic. If it did not, VCTS for

its packets would grow very fast, and most of its packets would be dropped. Damage

62

from attackers is soothed in both cases, and at the same time, a server is still accessible to

legitimate clients.

Table 7-6. Case 5 packets statistics in the AID station. Normal_user had no packets
dropped.

 Attacker1 Attacker2 Normal_user
Packet# in 1229 1185 1215
Packet# out 723 659 1215

BufferFull 1 BufferFull 3 BufferFull 0
BigVCTS 505 BigVCTS 523 BigVCTS 0
MD5Fail 0 MD5Fail 0 MD5Fail 0

Packet#
dropped

CantRoute 0 CantRoute 0 CantRoute 0

VCTS - localTime

0

1

2

3

4

5

6

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

50
1

55
1

60
1

65
1

70
1

75
1

80
1

85
1

90
1

95
1

10
01

10
51

11
01

11
51

12
01

packet#

VC
TS

 -
lo

ca
lT

im
e

attacker1
attacker2
normal_user
MAXVCTSEXCEED

Figure 7-9. Distribution of incoming packets in case 5 at the AID station. Notice the big

“wave” of normal_user.

63

controlT (Fig 7-10A)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

10 seconds

va
ria

bl
e'

s
va

lu
e

I decrease T

arrival rate (Fig 7-10B)

0
500

1000
1500
2000
2500
3000
3500

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

10 seonds

ar
riv

al
 ra

te
 in

 1
0

se
co

nd
s

avgT avgN
AID cap server cap
avgAID

Figure 7-10. How did T and arrival rate interact with each other in case 5.

CHAPTER 8
FUTURE WORK AND CONCLUSION

Limitations and Future Work

Our AID system has some limitations theoretically and practically. Improving they

is our goal in future work.

Protecting UDP traffic: We need the self-adaptation feature based on TCP

congestion control to separate legitimate users and attackers. That is why our AID

system only protects TCP traffic at present. Future work is to include UDP traffic into

our AID service.

Robustness against the compromise of AID stations: In the current design of our

AID system, we did not address how to deal with the case that AID stations are

compromised. A compromised AID station can send forged UDP messages (PUSH,

PULL, CTRLT and etc.), drop packets from legitimate users and adjust virtual clock

maliciously. The good thing is an AID station can be removed or added into the AID

system easily. We could disconnect a suspicious station for an inspection

Traceback: The AID system can resist against DoS attacks but cannot trace back to

the origin of attacks. Flooding traffic might be from registered clients that are zombies

remotely controlled by real attackers. We may implement existing IP traceback

mechanisms in the AID system.

Independency of higher-level application: Our AID system is not perfectly

independent of higher-level applications because we introduced AID layer and it is not

processed by the Linux kernel. However, we also do not want users to recompile their

64

65

Linux kernels to join the AID service. We may find some other way to program our AID

system to avoid the dilemma.

Flexibility of programs: Most controlling factors are defined as constants in the

programs. We need to recompile them if we want to do registration, change the secret

keys, adjust virtual clock setting and etc. These factors can be saved in files to make our

programs more flexible.

Conclusion

Most existing defense systems for DoS attacks are not self-complete. They usually

need universal deployment. In the thesis a self-complete anti-DoS service (AID) was

implemented and tested. The AID service can be applied to Internet services, such as ssh,

ftp, www and so on. Everyone can join the AID service by registration and get

immediate protection. The AID service provides a fair share of a server's resource to all

registered clients. It requires no modification of end systems and routing infrastructure to

join. Random overlay network accommodates an efficient and scalable structure to route

traffic from registered clients. It changes dynamically. An AID station can be removed

or added easily. Distributed virtual-clock packet scheduling algorithm blocks the traffic

from attackers and manages the arrival rate of a server. A registered client host, which is

not an attacker, can access a registered server even when the server is attacked. Finally,

we still have some problems need to be solved in the future, for example, including UPD

traffic into the AID service, making AID station robust, tracing back attackers and having

programs more flexible.

APPENDIX A
HOW TO RUN

Make sure the library libipq was installed before continue. It can be found in

iptables-1.2.9.

Program server:

• make server
• cd src_module
• make serverFilter.o
• insmod ip_queue
• insmod serverFilter.o
• cd ..
• ./server AIDSIP SERVERIP

AIDSIP is IP of the AID station As. SERVERIP is the server’s IP.

Program client:

• make client
• cd src_module
• make clientFilter.o
• insmod ip_queue
• insmod clientFilter.o
• cd ..
• ./client AIDIP

AIDIP is IP of the AID station Ac.

Program AID

• make AID
• cd src_module
• make AIDFilter.o
• insmod ip_queue
• insmod AIDFilter.o
• cd ..
• ./AID clientIP serverIP

66

67

ClientIP is IP of the registered client and serverIP is IP of the registered server. In

our testing cases, we had only one client machine, AID station and server machine. If an

AID station wants to register more than one client or server, information of the

client/server should be added into the function initialize() of the source file AID.c.

Program alert

• make alert
• ./alert AIDIP serverIP serverPort

AIDIP is IP of AID station As. ServerIP:serverPort identifies the attacked service.

Remove loaded module:

• rmmod ip_queue
• rmmod clientFilter
• rmmod AIDFilter
• rmmod serverFilter

Turn on forwarding in iptables at an AID station:

• su -
• echo “1” > /proc/sys/net/ipv4/ip_forward
• iptables –I FORWARD – j ACCEPT

APPENDIX B
FILE GLOBAL.H

File global.h defined many important constants. Their names and values we used

in testing are:

• #define MTU 1500: Max transfer unit.

• #define BUFSIZE 4096: The size of the buffer that a queued packet is copied to.

• #define TCPINFOSIZE 28: The length of an AID layer header, in byte long, for
TCP packets entering a tunnel tree. The whole packet looks like: IP header | TCP
header | new destination IP (32 bits) | packet digest for integrity (128 bits) | virtual
clock timestamp 64 bits | application data. So, (32 + 128 + 64)/8 = 28 bytes.

• #define UDPINFOSIZE 17: The length of an AID layer header, in byte long, for
UDP packets. The whole packet looks like: IP header | UDP header | packet digest
for integrity (128 bits) | packetType 8 bits | application data. So, (128+8)/8 = 17
bytes.

• #define MD5DGSIZE 16: Bytes of md5 digest created by md5 library, md5.h and
md5.c.

• #define RCZSIZE 4: Bytes of recognizing field of normal TCP packets.

• #define UDPMAXSIZE 256: The max size in bytes of a UDP packet in the AID
system, inclusive of md5 digest (16 bytes), packetType (1 byes), service list (7*n
bytes). It should be big enough for different UDP messages.

• #define UDPTYPELEN 1: Length of the packetType field in a UDP packet in byte
long.

• #define PULLNO 0: Number of the nearby AID stations this AID station should
send PULL messages to (variable q).

• #define PUSHNO 0: Number of the nearby AID stations this AID station should
send PUSH messages to (variable k). Using square root of NEARBYAID (defined
in AID.c) is ok.

• #define PUSHDEEP 2: how many AID station a PUSH message can go through,
exclusive the first one which is As.

68

69

• #define PULL 0: Value of packetType field for a PULL message.

• #define PULLANS 1: Value of packetType field for a PULLANS message.

• #define PUSH 2: Value of packetType field for a PUSH message.

• #define CTRLT 3: Value of packetType field for a CTRLT message.

• #define PCKTYPEOFFSET 16: The offset of packetType in UDP packets, the
location is: UDP header 8 bytes | md5 digest 16 bytes | packetType 1 byte =16

• #define VCSTAMPOFFSET 20: The offset of virtual clock timestamp in TCP,
the location is: TCP header (offset bytes) | serverIP 4 bytes | md5 digest 16 bytes |
VCTStamp 4 bytes, 4+16 = 20

• #define DATAOFFSET 28: The offset of application data in TCP packets, the
location is: TCP header (offset bytes) | serverIP 4 bytes | md5 digest 16 bytes |
VCTStamp 8 bytes | application data, 4+16+8 = 28

LIST OF REFERENCES

1. C. Schuba, I. Krsul, M. Kuhn, E. Spafford, A. Sundaram, and D. Zamboni,
“Analysis of A Denial of Service Attack on TCP,” Proc. of IEEE Symposium on
Security and Privacy, pp. 208-223, IEEE Computer Society Press, Oakland, CA,
May 1997.

2. J. Lemon, “Resisting SYN Flood DoS Attacks with A SYN Cache,” Proc. of
USENIX BSDCON2002, pp. 89-97, USENIX Association, Berkeley, CA, February
2002.

3. P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating Denial of Service
Attacks Which Employ IP Source Address Spoofing,” IETF, RFC 2267, January
1998.

4. K. Park and H. Lee, “On the Effectiveness of Route-Based Packet Filtering for
Distributed DoS Attack Prevention in Power-Law Internets,” Proc. of ACM
SIGCOMM’ 2001, vol. 31, pp. 15-26, August 2001.

5. H. Wang, D. Zhang, and K. G. Shin, “SYN-dog: Sniffing SYN Flooding Sources,”
Proc. of 22nd International Conference on Distributed Computing System
(ICDCS’02), pp. 421-428, IEEE Computer Society, Washington D.C., July 2002.

6. S. Chen, R. Chow, Y. Xia and Y. Ling, “A Global Anti-DoS Service Based on
Random Overlay Network,” unpublished paper, Department of Computer and
Information Science and Engineering, University of Florida, September 2004.

7. A. Juel and J. Brainard, “Client Puzzles: A Cryptographic Countermeasure Against
Connection Depletion Attacks,” Proc. of Network and Distributed System Security
Symposium (NDSS’99), pp. 151-165, Networks and Distributed Security Systems,
San Diego, CA, February 1999.

8. T. Aura, P. Nikander, and J. Leiwo, “DoS-Resistant Authentication with Client
Puzzles,” Cambridge Security Protocols Workshop 2000. LNCS, Springer-Verlag,
vol. 2133, pp. 170-177, 2001.

9. D. Dean and A. Stubblefield, “Using Client Puzzles to Protect TLS,” paper
presented at 10th Annual USENIX Security Symposium, Washington D.C., August
2001.

70

71

10. X. Wang and M. K. Reiter, “Defending Against Denial-of-Service Attacks with
Puzzle Auctions,” Proc. of IEEE Symposium on Security and Privacy, pp. 78-92,
IEEE Computer Society, Washington D.C, May 2003.

11. L. Zhang, “VirtualClock: A New Traffic Control Algorithm for Packet Switching
Networks,” ACM Transactions on Computer Systems, vol. 9, no. 2, pp. 101-124,
May 1991.

BIOGRAPHICAL SKETCH

I earned my BS degree in computer science and information engineering from

National Chiao Tung University in Taiwan. As an undergraduate, I was like a sponge to

absorb all kinds of knowledge of computer science accessible to me. In my junior and

senior years, I worked on a project of providing QoS (quality of service) in wireless ATM

network. Integer programming is the key of the project. Through those four years, I

finished many projects in different areas: network, security, compiler, windows

programming, audio processing, graphics, database system, etc. I am seeking my MS

degree at the University of Florida by writing the thesis. After about two years’ training

ar the University of Florida, I polished my professional knowledge and skills better and

became more confident to face new challenges.

72

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	What Is Distributed Denial of Service (DDoS) Attack
	Related Work
	Ingress Filtering Proposed by Ferguson and Senie
	Route-Based Packet Filtering Proposed by Park and Lee
	SYN-Dog Proposed by Wang, Zhang and Shin

	Self-Complete Defense Systems

	AID SYSTEM OVERVIEW
	Fundamental Ideas
	Who Is Protected?
	What Is Random Overlay Network (RON) for?
	How Does AID Defense System Work?

	Implementation Issues
	Packets Intercepting Modules
	Handling Queued Packets in Userspace
	Showing Statistics

	AID LAYER
	AID Layer for TCP Traffic
	AID Layer for UDP Traffic
	PUSH Message
	PULL Message
	PULLANS Message
	CTRLT Message

	Implementation Issues

	CLIENT END
	Module ClientFilter.o
	Program Client
	Packets from NF_IP_PRE_ROUTING
	Packets from NF_IP_LOCALOUT
	Packets from NF_IP_POST_ROUTING

	Implementation Issues
	What Is ServList?
	Why Changes a Packet's Destination in Hook NF_IP_LOCAL_OUT?
	How Is the Registration Done?
	Not Perfectly Isolated from Higher-Level Applications
	The Maximum Transmission Unit (MTU) Problems

	SERVER END
	Module ServerFilter.o
	Program Server
	Packets from NF_IP_PRE_ROUTING
	Packets from NF_IP_POST_ROUTING

	Implementation Issues
	No Threads
	Important Variables
	PCKBUFSIZET
	PCKBUFSIZEN
	IPQREADTIME
	READINTERVAL
	SENDPCKBUFNO
	AVGINTERVAL
	TOTALCAP
	RESERVEDTIMES

	How the Registration Is Done
	Not Perfectly Isolated from Higher-Level Applications
	Program Alert

	AID STATION
	AID Tunnel Tree
	Push Phase
	Pull Phase
	Routing
	Why Does a Tunnel Tree Try to Include Every AID Station?
	Variables k and q
	Advantages of Random Overlay Network (RON)

	Distributed Virtual-Clock Packet Scheduling
	Basic Idea
	How to Adjust T

	Programs for an AID Station
	Module AIDFilter.o
	Program AID
	TCP packets from NF_IP_PRE_ROUTING
	UDP packets from NF_IP_PRE_ROUTING
	TCP packets from NF_IP_POST_ROUTING
	UDP packets from NF_IP_POST_ROUTING

	Implementation Issues
	No Threads
	Registration for Clients and Servers
	Important Variables
	PCKBUFSIZE
	IPQREADTIME
	READINTERVAL
	SENDPCKBUFNO
	NEARBYAID
	SNEDTINTERVAL
	SENDPULLINVAL
	DECREASERATIO
	MAXVCTSEXCEED

	Adding New AID Stations
	Diameter of a Tunnel Tree
	Forwarding Packets

	TESTING RESULTS AND ANALYSIS
	Important Issues about Testing
	Testing Elements
	Program TestClient
	Program TestServer
	Setting of the AID System

	Case 1
	Case 2
	Case 3
	Case 4
	Case 5

	FUTURE WORK AND CONCLUSION
	Limitations and Future Work
	Conclusion

	HOW TO RUN
	FILE GLOBAL.H
	LIST OF REFERENCES
	BIOGRAPHICAL SKETCH

