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Distributed denial of service (DDoS) is a major threat to the Internet nowadays.  

Legitimate users have a hard time accessing the servers that are under DDoS attacks.  

What makes it worse is that the attacking tools are easy to get.  Even people without 

enough professional knowledge can launch a DDoS attack.  Obviously, automated anti-

DDoS systems become more and more important. 

Many current available solutions to DDoS attacks require universal installation and 

configuration across different administrative realms, which are impossible or very 

difficult to do in many situations.  This thesis studied and provided another solution to 

DDoS attacks.  An anti-DoS service (called AID) is presented in this thesis, and no global 

deployment is required.  The AID service protects general TCP traffic.  It guarantees all 

registered clients can access a registered server fairly even when the server is under 

DDoS attacks.  A domain, like a school or company, can get immediate protection after 

having the AID service. 

xi 



Two primary parts of the AID service are the random overlay network (RON) and 

the distributed virtual-clock packet scheduling algorithm.  The former forms tunnel trees, 

which connect registered clients to a registered server.  Packets from registered clients go 

through the tree to the server when the server is under DDoS attacks.  It is adapted and 

easy to manage.  The latter is a packet scheduling algorithm to simulate client puzzles.  It 

confines the amount of data a registered client can send to a server through RON to 

achieve fairness. 
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CHAPTER 1 
INTRODUCTION 

What Is Distributed Denial of Service (DDoS) Attack 

A DoS attack intends to make a server out of its resource, which could be 

bandwidth, buffers, CPU time, etc.  Attackers can send a lot of requests to exhaust a 

server's bandwidth.  Other legitimate users will be unable to access the server.  Another 

example is SYN flooding attack [1-2].  To establish a connection, a client sends a SYN 

packet at first.  The server is going to keep this information in a buffer for a period T in 

order to recognize the following incoming packets.  If attackers send enough SYN 

packets to make the buffer overflow, the server has no way to process requests from other 

users.  In some cases, like route table updating or software’s bugs, a simple request can 

make the server do a considerable amount of computation.  In this case, normal users 

cannot access the server.  The basic idea of DoS attacks is simple, using a small amount 

of resources to overwhelm the server. 

What makes a DDoS attack different from a traditional DoS attack?  In a DDoS 

attack, the clients launching the attack might be victims as well.  Hackers compromise 

and install DDoS attacking programs on these hosts first.  Then, hackers can remotely 

control these victims to attack the servers cooperatively. With DDoS attacks, it is 

possible to flood a big commercial server in a brute-force way.  Besides, it becomes very 

difficult to trace back the attacker because the compromised hosts are not the real 

attackers.  Usually, there are hundreds or thousands of compromised hosts and they are 
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around the whole world. It makes attackers feel safe to do this.  Today, how to protect 

hosts against DDoS attacks is very important. 

Related Work 

Ingress Filtering Proposed by Ferguson and Senie 

In ingress filtering [3], before a packet is transmitted into another domain, the 

router checks the packet’s source address.  If it does not match the ingress filter rule, 

probably a spoofed source address, the packet will be dropped.  Ingress filtering helps to 

trace back the attacker, while it cannot prevent an attack originating from a valid source 

address. 

Route-Based Packet Filtering Proposed by Park and Lee 

With partial deployment (about 18% in Internet AS topologies) [4], spoofed IP 

packets can be prevented from reaching their intended targets effectively. 

SYN-Dog Proposed by Wang, Zhang and Shin 

SYN-dog [5] is a software agent which can be installed at leaf routers of stub 

networks.  It is stateless and light-weighted.  Therefore, SYN-dog itself is immune to any 

flooding attacks.  It detects SYN flooding attack by monitoring behavior of SYN-

SYN/ACK packets.  SYN-dog can also trace back the attacking source. 

Self-Complete Defense Systems 

There are a huge number of hosts on the Internet.  It is almost impossible to make 

every host join a specific defense system.  Here comes the problem.  If a server has the 

defense system installed, can it resist the DDoS attack from clients that do not participate 

in the same defense system?  The answer is no for most existing DDoS defense systems.  

Suppose we have a networked system of S + C.   C is a set of client networks, and S is a 

set of server networks.  C' is a subset of C and S' is a subset of S.  C' + S' has a defense 
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system installed.  A defense system is self-complete if any client in C' can still access any 

host in S' even when under DDoS attacks, as long as the client itself does not participate 

the attack.  It does not care if the attack is from C or C – C'.  In other words, a self-

complete defense system should be able to defeat attacks from either inside area C' or 

outside area C - C'.  A self-complete defense system makes itself a clean area in the 

Internet.  The area does not have to cover the entire Internet, and hosts in it are protected. 

Let us review the DDoS defense systems mentioned above. 

• Ingress filtering: Source addresses of packets from C - C' can be spoofed, because 
C - C' do not check them.  Therefore, DDoS attacks can be launched against the S' 
from C - C'.  In this case, clients in C' have difficulty to access S' even though C' 
and S' both join the defense system.  Therefore, Ingress filtering is not self-
complete. 

• Route-Based Packet Filtering: Packets with spoofed source are prevented from 
reaching their intended targets effectively as long as 18% of Internet AS's join the 
defense system.  However 18% of Internet AS's is a huge number.  It is not self-
complete until C' is as large as 18% of Internet AS's. 

• SYN-dog: Attackers can still do SYN-flooding to S' from C - C', because C - C' is 
not under protection.  Similar to ingress filtering, unless C' is as big as C, attackers 
from C - C' can make S' not accessible to C'.  In consequence, SYN-dog is not self-
complete. 

The benefits of a self-complete system are apparent.  It suits normal companies, 

schools and organizations.  They can set up a self-complete defense system in their realm 

and become under protection immediately, independent of others.  A working self-

complete defense system (called AID), the detail of its structure and how it was 

implemented are presented in the thesis.  The AID system’s overview is in chapter 2. 

 

 

 



CHAPTER 2 
AID SYSTEM OVERVIEW 

Fundamental Ideas 

The idea of the anti-DoS system (called AID) is from Chen et al [6].  The AID 

system contains clients, servers and AID stations physically.  Another two important 

parts in the AID system are random overlay network (RON) and distributed virtual-clock 

packet scheduling algorithm [6].  Random overlay network is formed on AID stations.  

We did not draw a clear line between DoS attacks and DDoS attacks in the thesis.  

Whenever a server senses an attack, like flooding packets beyond its capacity or unusual 

requests from clients, the AID defense system will be triggered.  The AID system's 

architecture is shown in Fig. 2-1. 

 
 
Figure 2-1.  AID system architecture.  The AID circle and AID tunnels symbolize RON, 

which is composed by AID stations.  A client point can mean a client network, 
not just a client host.  Likewise, a server point can be a server network behind 
a router. 

Who Is Protected? 

Register clients and servers that we want to protect at their nearby AID stations.  

The registration brings a shared secret key between the AID station and the registered 
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host.  The secret key is used in AID tunnels for integrity checking when under DDoS 

attacks.  Everyone can join the AID service by registering at an AID station. 

What Is Random Overlay Network (RON) for? 

RON consists of all AID stations.  When a registered server is under DoS attacks 

and other registered clients try to access the server, packets from these clients will go 

through the RON instead of the Internet.  We say that these packets are entering AID 

tunnels, which are tree structure.  They go through AID tunnels all the way to the 

attacked server.  Other packets from unregistered clients will reach the server via the 

Internet.  AID tunnels are one-way path for packets from registered clients to attacked 

registered servers.  We do not allow traffic from registered servers to registered clients 

entering RON to minimize the load of AID stations.  It is transmitted via the Internet.  Of 

course, traffic related to unregistered clients or unregistered servers cannot enter AID 

tunnels. 

How Does AID Defense System Work? 

When under attacks, packets from registered clients go through RON but packets 

from unregistered clients go through the Internet.  We make packets from AID tunnels 

have higher priority.  Servers process them first.  Hence, the external traffic (from 

unregistered clients) cannot influence the internal traffic (from registered clients).  How 

about if a registered client is an attacker itself?  Well, that is why we have distributed 

virtual-clock packet scheduling algorithm, which simulates client puzzles [7-10].  Every 

AID station manages a virtual clock for every tunnel hooking on a client network.  If a 

client has behavior of flooding a registered server, its virtual clock will run fast.  When 

virtual clock's value is too big, packets from that client will be dropped. By doing this, we 

can separate the attacking traffic out and block it. 
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Traffic in AID tunnels has integrity protection.  Remember the secret key a client 

or server got after registering at an AID station?  The secret key and other important data 

in a packet are put together and digested by MD5 algorithm.  The 128-bit-long packet 

digest is used for integrity checking.  As a result, alteration of packets in AID tunnels will 

be detected.  Because the third party cannot forge the packets, integrity checking is also 

authenticity checking, verifying that the packets are really from the hosts as they claimed. 

Now we know how AID stations interact with clients and servers.  We also know 

what random overlay network and distributed virtual-clock packet scheduling algorithm 

are for.  More details of the AID system and how it was implemented were revealed in 

the following chapters. 

Implementation Issues 

We chose Linux as our developing platform and our programs only work on IPv4.   

As mentioned in the section "How Does AID Defense System Work," a registered client 

should send it packets via RON instead of the Internet.  Meanwhile, the attacked server 

should be able to tell where a packet is from and give the one from AID tunnels higher 

priority.  We do not want people to recompile their Linux kernels or rewrite application 

codes if possible.  So, we introduced another layer between application layer and 

transport layer, called AID layer.  Extra information is added into a packet as an AID 

layer header for the AID service.  Higher application layer programs should not notice 

the existing of AID programs. 

Netfilter is one tool we used in our AID system to intercept and modify packets.  It 

was included in Linux 2.4.  It supports five different hooks and they are 

NF_IP_PRE_ROUTING, NF_IP_LOCAL_IN, NF_IP_FORWARD, 
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NF_IP_LOCAL_OUT and NF_IP_POST_ROUTING.  Fig. 2-2 shows how a packet goes 

through these hooks. 

 
 
Figure 2-2.  Netfilter hooks.  Hook 1 is NF_IP_PRE_ROUTING, hook 2 is 

NF_IP_LOCAL_IN, hook 3 is NF_IP_FORWARD, hook 4 is 
NF_IP_POST_ROUTING and hook 5 is NF_IP_LOCAL_OUT. 

NF_IP_PRE_ROUTING: A packet hits the hook after reaching the host and sanity 

checks but before the routing decision. 

NF_IP_LOCAL_IN: A packet hits the hook after the routing decision and the 

packet's destination is this host. 

NF_IP_FORWARD: A packet hits the hook after the routing decision if the 

packet's destination is another interface. 

NF_IP_LOCAL_OUT: A packet hits the hook when going down the kernel after a 

process creates and sends out the packet. 

NF_IP_POST_ROUTING: A packet hits the hook right before it is put on the wire. 

We can inject our handling functions into any of these hooks.  When a packet goes 

through hooks, their handling functions will be executed.  That is where and how we can 

modify the packet. 
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Packets Intercepting Modules 

Our first step is to write modules to intercept interested packets in proper hook 

positions.  The interested packets are queued into userspace.  Doing in this way may 

cause some performance penalty because of switching between kernelspace and 

userspace.  However, there are also some advantages.  First, it is easier to debug a 

program running in userspace.  Second, we have more libraries handy.  Third, 

misbehavior, if any, of a program will not crash the whole system.  Three modules 

totally, clientFilter.o takes care of packets in/out clients.  Likewise, AIDFilter.o is for 

AID stations, and serverFilter.o is for servers.  After loading an appropriate module on 

the host, interested packets will be queued to userspace.  To stop it, just unload the loaded 

module.  These queued packets will be inspected or modified later. 

Handling Queued Packets in Userspace 

To deal with the queued packets in userspace we need the library libipq developed 

by James Morris.  It can be found easily on the Internet and simple to install.  With the 

library, we can grab one packet out of the queue every time.  We can drop the packet, do 

nothing, or modify and send it back to the kernel.  One thing should be noticed is that 

checksums in TCP/UDP and IP headers need to be recalculated if the packet is altered. 

In the client end, all outgoing TCP packets are queued to userspace.  If a packet's 

destination server is under attacks, its destination IP will be converted to an AID station's 

IP.  The AID station is the one this client registered at.  The AID station will notify the 

registered client if a registered server is currently under attack.  If no attacks, packets are 

routed as usual.  A registered client executes the program client. 

In AID stations, AID tunnel trees are built up to route packets to their destination 

servers.  Assume a server registered at an AID station named As.  When the server is 
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under DoS attacks, an AID tunnel tree rooted at As is formed.  Packets from registered 

client to this server are routed from tree leaves to the root As and finally to the server.  

Besides routing, virtual clocks for every client are maintained by AID stations as well.  

An AID station executes the program AID. 

In the server end, packets from the Internet and AID tunnels are separated.  Process 

the latter first.  If under attacks, a server will send alert messages to its registering AID 

stations, As.  Then, this AID stations broadcasts alert messages to other AID stations.  

AID tunnel trees are constructed.  A server executes the program server. 

Showing Statistics 

Programs client, server and AID, all record statistic information of TCP traffic.  

Users can know how many packets got through or were dropped and the reasons of 

dropping.  They all have a while loop in main() whose condition is always true.  To keep 

programs simple, we did not use threads or fork a child process.  Then how can the 

programs interact with users when they want to see the statistics of traffic?  The answer is 

signal.  The reaction of the signal SIGINT was redefined in these three programs.  When 

Ctrl-c is typed, programs will not be terminated.  Instead, statistic information is printed 

out.  We can type Ctrl-\ to send the signal SIGQUIT to stop the programs. 

 

 

 



CHAPTER 3 
AID LAYER 

AID layer is added between application layer and transport layer.  In this chapter, 

we defined AID layer headers, which are inserted between TCP/UDP headers and 

application layer data in a packet.  Since we do not want AID service users to recompile 

their Linux kernels, Linux kernels have no idea of this new layer.  AID layer headers are 

treated as application data actually by Linux kernels.  In clients, the program client adds 

an AID layer header before a packet is sent out.  In servers, the program server takes the 

AID layer header off.  Only the AID system can recognize AID layer headers.  As for 

AID stations, AID layer headers contain data needed for routing, constructing AID tunnel 

trees, and etc.  Consequently, application programs in the client end or server end do not 

know they are already in the AID service and protected.  Currently, only TCP traffic is 

protected in the AID system because TCP’s congestion control feature is needed. 

When a packet enters RON, if it is a TCP packet, it belongs to traffic from a 

registered client to a registered server.  If it is a UDP packet, such as a PULL message, or 

PUSH message, the packet is used to control the AID system.  We explained what these 

UDP messages are later in this chapter. We have different AID layer headers for TCP and 

UDP packets.  Both TCP and UDP traffic have integrity guard. 

AID Layer for TCP Traffic 

We have two kinds of AID layer headers for TCP packets.  One is for packets 

transmitted via the Internet and the other is for packets transmitted via the RON (AID 

tunnels).  Fig. 3-1 shows the contents of the headers and where they are inserted. 

10 
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A 

 
B 

 
 
Figure 3-1.  AID layer header for TCP packets.  A) For normal TCP packets that do not 

enter AID tunnels.  Recognizing field is 0.  B) For TCP packets to attacked 
servers that enters AID tunnels.  Notice that recognizing field in the first 
figure is at the same position as server IP in the second figure. 

Server IP field is used to save the IP address of destination server.  To travel 

through AID tunnels, a packet’s destination is changed to the AID station where it is 

routed next.  However, the final destination is still the server, so we need to keep this 

information.  Md5 digest field is used to check integrity.  If checking fails, the packet will 

be dropped.  Virtual clock timestamp field is used in distributed virtual-clock packet 

scheduling algorithm. 

Why do we need recognizing field even in normal packets?  The problem is that 

when a server gets a packet, it has no way to know if the packet is from the Internet or 

AID tunnels.  Recognizing field of normal packets is at the same location as server IP 

field of packets to an attacked server, right after the TCP header.  When a packet arrives, 

the server checks this location.  If it is 0, the packet is from the Internet; otherwise, the 

packet is from the AID tunnels.  We assume server IP cannot be 0.0.0.0, so no conflicts. 

What information is under integrity protection? 

• Source IP (4 bytes) and destination IP (4 bytes) addresses in the IP header:  Source 
IP is always a client's IP address.  However, destination IP could be the destination 
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server’s IP address if transmitted via the Internet or an AID station's IP address if in 
the AID tunnels. 

• Source port (2 bytes) and destination port (2 bytes) in the TCP header:  Unlike 
destination IP, a packet’s destination port is not changed when entering AID 
tunnels. 

• Sequence number (4 bytes) and acknowledgement number (4 bytes) in the TCP 
header. 

• (a) Recognizing field (4 bytes) in the AID layer header.            
(b) Server IP (4 bytes) in the AID layer header.             
(a) and (b) are in the same position and  have the same size.  Its value is 0 for 
normal packets, or destination server’s IP for packets entering RON. 

• Virtual clock timestamp in the AID layer: Only packets go through AID tunnels 
have this field. 

• Whole application layer data. 

AID Layer for UDP Traffic 

There are several different UDP messages used to control the AID system.  They 

are distinguished by the packet type field in the AID layer header.  All of these messages 

are integrity-protected. 

PUSH Message 

PUSH messages notify other AID stations a server is currently under attacks.  Fig. 

3-2 shows the content of a PUSH message.  An AID station or registered server can send 

PUSH messages.  Md5 digest is for integrity protection.  Packet type is set to 2 for PUSH 

messages (defined in global.h).  AIDNO means AID station number, which records how 

many AID stations a packet will pass before reaching the server.  It is essential for 

establishing AID tunnels.  More details are explained in later chapters.  Service port and 

server IP are the attacked server’s IP address and port number. 
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Figure 3-2.  PUSH message.  The AID layer header is inserted between the UDP header 

and application layer data. 

PULL Message 

PULL messages ask other AID stations what servers are currently under attacks. 

 
 
Figure 3-3.  PULL message.  There is no application layer data in a PULL message. 

Fig. 3-3 shows the content of a PULL message.  There is nothing behind the AID 

layer header.  Md5 digest is for integrity protection.  Packet type is set to 0 here (defined 

in global.h). 

PULLANS Message 

When an AID station gets a PULL message from another AID station, the former 

will return information of all currently attacked servers it knows to the latter.  Sending 

PULLANS messages does it.  Fig. 3-4 shows the content of a PULLANS message.  

Packet type is set to 1 for PULLANS messages (defined in globa.h).  Every AID station 

maintains a service list, which stores information of attacked servers.  Each attacked 

server is a service list node. 

If an AID station has information of N attacked servers, there will be N nodes in the 

service list to be sent out.  In a service list node, Distance says that from this AID station 
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how many AID stations a packet still needs to pass to achieve the server, excluding the 

first AID station.  The distance information helps to construct AID tunnel trees. 

 

A 

 
B 
 

 
 
Figure 3-4.  PULLANS message.  A) The content of a PULLANS message.  B) The 

structure of the service list node.  It contains IP and port of an attacked server. 

CTRLT Message 

T, the waiting interval, is for adjusting the speed of a virtual clock.  When the 

arrival rate is larger than a server's capacity, a bigger T will be sent to AID stations to 

accelerate virtual clocks. 

 
 
Figure 3-5.  CTRLT message. 
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Packet type is set to 3 (defined as in global.h).  A CTRLT message is for a specific 

tunnel tree of the attacked server with server IP.  T field contains the new value of T for 

that specific tunnel tree.  After getting a CTRLT message, an AID station updates its T. 

Most of UDP messages are related to RON maintenance and distributed virtual- 

clock packet scheduling.  We have not talked about them so far.  They would be pointed 

out in later chapters. 

What fields are under integrity protection? 

• Source IP (4 bytes) and destination IP (4 bytes) addresses in the IP header. 

• Source port (2 bytes) and destination port (2 bytes) in the UDP header. 

• Packet type (1 byte) in AID layer header. 

• Whole application layer data. 

Implementation Issues 

Most UDP messages in our AID system have fixed size, except for the PULLANS 

message.  Its size depends on how many nodes in the service list.  If there are many 

nodes, the message packet will be too big to be sent out.  In the circumstance, it should be 

divided into two or more PULLANS messages.  How big is too big?  We defined a 

constant, UDPMAXSIZE, in global.h.  When a UDP message is bigger than 

UDPMAXSIZE, it will be chopped up into several packets. 

 

 

 



CHAPTER 4 
CLIENT END 

On the client end, we need to filter incoming and outgoing packets.  For example, 

when a TCP packet is leaving the client end, its destination needs to be checked.  If the 

destination server is under attacks, the packet will enter AID tunnels; otherwise, it is 

routed as usual. 

ClientFilter.c and client.c are two main source files for client ends.  ClientFilter.c is 

compiled as a module, queuing interested packets into userspace.  Then, client.c takes 

queued packets out and does whatever is necessary.  After a client registers at an AID 

station, Ac, it can get a secret key.  The key is used to verify that the third party did not 

modify the communication between the client and Ac.  The client also keeps Ac's IP 

address.  If it tries to access an attacked registered server, its packet will be forwarded to 

Ac. 

When an AID station is informed that a server is attacked, it will send PUSH 

messages to its registered clients.  For instance, the client gets PUSH messages from Ac, 

which is the AID station it registered at.  All UDP messages in the AID system are sent to 

port 4369.  However, there is no program in application level listening on this port.  UDP 

packets to port 4369 are handled by the program client. 

Module ClientFilter.o  

By compiling clientFilter.c, we can get the module clientFilter.o.  It hooks on 

handling functions at hooks NF_IP_PRE_ROUTING, NF_IP_LOCAL_OUT and 

NF_IP_POST_ROUTING.  At NF_IP_PRE_ROUTING, only UDP packets to the port 
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4369 are queued.  Other incoming traffic is not related to the AID system.  At 

NF_IP_LOCAL_OUT, all outgoing TCP packets are queued, except for the local traffic.  

Local traffic goes from loopback interface, 127.0.0.1, to loopback interface.  At 

NF_IP_POST_ROUTING, all outgoing TCP packets are queued, except for the local 

traffic. 

Only outgoing TCP packets are queued since currently only TCP traffic is 

protected.  When the module clientFilter.o is loaded in a host, the host must run the 

program client as well.  Otherwise interested packets keep getting into the queue, but no 

programs take them out of the queue.  The traffic is blocked if this happens.  A host 

should load the module clientFilter.o and run the program client at the same time.  It is 

meaningless to do just one of them. 

Program Client 

By compiling client.c and linking other relative source files, we can get the 

executable program client.  It has a while loop in main() whose condition is always true.  

The program client deals with packets queued at different hooks by the module 

clientFilter.o.  Now, we discuss what the program client does to packets from different 

hooks. 

Packets from NF_IP_PRE_ROUTING 

All packets in the queue grabbed at the hook NF_IP_PRE_ROUTING are UDP 

traffic to port 4369.  For a client, the only UDP message of the AID system (to the port 

4369) is PUSH.  PUSH messages are sent by Ac to inform the client what servers are 

attacked.  Every client has a servList recording attacked servers (servList.h/servList.c).  

When getting PUSH messages, the client is going to update its servList.  PUSH messages 

have md5 digest in it, for integrity checking.  Others cannot pretend Ac to send PUSH 
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messages or pretend the client to send packets into AID tunnels as long as they do not 

know the secret key shared between Ac and the client.  These UDP packets do not go 

further from here in the kernel.  We mentioned no application level programs listening on 

port 4369 earlier.  The program client tells the kernel just drop them after it gets the 

information of PUSH messages. 

Packets from NF_IP_LOCALOUT 

The program client processes all TCP packets leaving the client host.  First, it 

examines a packet's destination IP.  If it finds a match in the servList (the destination 

service is under attacks), it changes the packet’s destination IP to Ac's IP and copy the 

packet with new destination IP back to the kernel.  The destination port is not compared 

when searching a match in the servList.  It is not necessary to distinguish different service 

ports on an attacked server.  With Ac's IP as destination, the packet is going to enter an 

AID tunnel tree.  If no match in servList, the program client just tells the kernel it did not 

do anything to the packet and the kernel can continue passing on the packet. 

Packets from NF_IP_POST_ROUTING 

All TCP packets come here after passing the hook NF_IP_LOCAL_OUT.  The 

program client inserts a bunch of data into every packet as AID layer header.  If a 

packet's original destination is an attacked server, its destination IP we can see here is Ac's 

IP.  It was modified in the hook NF_IP_LOCAL_OUT.  If the server is not under attacks, 

we can see the server's IP as the packet's destination IP. 

The program client inserts different AID layer headers into packets.  If destination 

IP was changed into Ac's IP, it means the packets are going to enter AID tunnels.  As 

shown in Fig. 4-1, application layer data is moved back 28 bytes, and an AID layer 

header is put into that 28 bytes space.  Virtual clock timestamp is initialized to the client's 
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local time.  Md5 digest ensures Ac that the packets are really from the client and not 

altered. 

 
 
Figure 4-1.  Inserting an AID layer header to a packet that enters AID tunnels.  A 28-

byte-long AID layer header is injected. 

For packets not entering AID tunnels, their destination IP is still the server's IP.  

These packets do not need md5 digest and virtual clock timestamp.  Nevertheless, they do 

need the 4-byte-long recognizing field.  Fig. 4-2 shows how this sort of packets is dealt 

with.  Recognizing field is an unsigned integer with value 0.  We explained why we need 

it clearly in the chapter AID LAYER. 

 
 
Figure 4-2.  Inserting an AID layer header to a packet not entering AID tunnels.  A 4-

byte-long AID layer header is injected. 

Either packets going to AID tunnels or not, this hook is the final chance we can 

modify them.  After copying the modified contents back to the kernel, these packets are 

sent out right away. 
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Implementation Issues 

What Is ServList? 

ServList is a simple list structure.  It uses sequential search going through every list 

node to find a match.  A servList node contains an attacked server's IP and port, but 

currently the port is not checked for a match in our AID system.  A servList is updated by 

PUSH messages from Ac. 

Why Changes a Packet's Destination in Hook NF_IP_LOCAL_OUT? 

The program client used to change a packet's destination IP in the hook 

NF_IP_POST_ROUTING, but it did not work as we expected sometimes.  For example, 

we have a server, an AID station and a client.  Their IP addresses are 192.168.1.100, 

192.168.1.101 and 192.168.1.103 respectively.  Assume the server is under attacks, and 

the client sends a packet to the server.  Before getting in the hook 

NF_IP_POST_ROUTING, the packet's destination IP is server's IP, 192.168.1.100.  After 

leaving the hook but before really sent out, the packet's destination IP is the AID station's 

IP, 192.168.1.101.  Then the packet leaves the client.  Unexpected things happen here.  

The AID station does not get the packet, but the server gets it.  If the server has 

FORWARD chain in iptables set well, the packet may be forwarded to the AID station.  

Anyway, it is not what we want.  The packet should go to the AID station directly since 

we changed the packet's destination IP.  We concluded that we should not change the 

packet's destination IP right before it leaves the host.  We should do this in the hook 

NF_IP_LOCAL_OUT instead, and everything goes well. 

How Is the Registration Done? 

It is lots of work and difficult to make a complete secure system.  Registration may 

be a secure hole in the system.  In our AID system, clients get the secret key shared with 
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Ac by registration.  We just took the easiest step here.  The shared key was pre-configured 

in both the client and AID station, Ac.  If users want to change the key, they need to 

redefine it in both sides, with the same value.  Then recompile the codes.  It is not hard.  

We wrote a makefile compiling and linking object files to generate the program client.  It 

can be done by just one command.  Clients also need Ac's IP address.  It is not pre-defined 

in the codes.  It is given as a command argument when users run the program client.  It is 

possible to introduce public key system here, a better but complex way.  We do not 

consider it currently. 

Not Perfectly Isolated from Higher-Level Applications 

Our goal is to make the AID system completely independent of higher-level 

applications.  It means application level programs do not observe the existence of the 

AID service.  Unfortunately, considering AID layer is not handled in the kernel and it is 

treated like application layer data, our AID system cannot be perfectly isolated from 

higher-level application.  All outgoing TCP packets are inserted an AID layer header.  

When servers, which did not join the AID service, get these packets, their application 

programs will find extra junk data, the AID layer header we appending.  Network 

communication follows protocols.  The AID layer header is useless to the application 

programs.  Protocols may be violated and the communication will fail.  Before 

connecting servers that did not join the AID service, the module clientFilter.o should be 

unloaded first. 

The Maximum Transmission Unit (MTU) Problems 

Akin to the last issue, some more problems are caused by inserting an AID layer 

header that is not handled by kernel.  We add 28 bytes into packets entering the AID 

tunnels and 4 bytes into the other packets.  Is it harmless to enlarge a packet like this?  
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The answer is not always true.  Usually, the OS tries to buffer enough data to form big 

packets to avoid small size packets by Nagle algorithm.  Every packet has headers, if 

only a few data inside, the ratio of headers in a packet goes high and it is inefficient. 

If we telnet or ssh a server, it may be fine.  If we ftp or sftp a server, the kernel will 

try to buffer as many data as possible.  Usually, a packet's size is as large as MTU.  If we 

add an AID layer header in a packet in this case, the packet's size will be larger than 

MTU.  The packet will be just dropped. We noticed this problem when testing ftp service 

in the AID system.  There are two ways to solve the problem.  One is to disable the Nagle 

algorithm, and the other is to strict the size of packets from higher-level applications.  

After opening a TCP socket, we have a chance to set socket options by calling the 

function setsockopt() in C library.  We can pass in the option TCP_NODELAY to disable 

the Nagle algorithm or the option TCP_MAXSEG to change the maximum segment size 

for outgoing TCP packets.  We chose the second way to keep the efficiency brought by 

the Nagle algorithm. 

It is another cause that the AID system is not totally isolated from higher-level 

applications.  Most application programs do not strict the size of outgoing TCP packets.  

They fully take the advantage of Nagle algorithm.  If programs tend to buffer data used in 

the AID system, ftp clients for example, most of packets cannot be sent out because of 

the huge size.  It is easy to fix by setting the socket option TCP_MAXSEG.  However, 

the application programs need to be recompiled.  It can be fixed as well if we handle the 

AID layer in the kernel, but we need to recompile kernel though. 

 

 

 



CHAPTER 5 
SERVER END  

On the server end, it needs to tell where packets come from, the Internet or AID 

tunnels.  The server end also has to alert AID stations if it is attacked. 

ServerFilter.c and server.c are two main source files for server ends.  ServerFilter.c 

is compiled as a module, queuing interested packets into userspace.  Then, server.c takes 

queued packets out and does whatever is necessary.  After a server registers at an AID 

station, As, it can get a secret key.  The key is used to verify the communication between 

the server and As are not modified by the third party.  The server also keeps As's IP 

address.  If it is under attacks, As will be informed. 

When a registered server is attacked, it will send PUSH messages to the AID 

station, which the server registered at.  This AID station called As.  All UDP messages in 

the AID system are sent to port 4369.  However, there is no program listening on this 

port.  UDP packets to port 4369 are handled by the program server.  We can characterize 

occurrences of DoS attacks in several ways.  In our AID system, we use arrival rates, 

average incoming bytes per second, to determine if a server is attacked.  Each server has 

its capacity, 10000 bytes per second for example.  When the arrival rate is higher than its 

capacity, the server is under attacks.  We can include other definitions of DoS attacks into 

the AID system easily in our implementation. 

Module ServerFilter.o 

By compiling serverFilter.c, we can get the module serverFilter.o.  It hooks on 

handling functions at NF_IP_PRE_ROUTING, and NF_IP_POST_ROUTING.  At 
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NF_IP_PRE_ROUTING, all incoming TCP packets are queued, except for the local 

traffic.  Local traffic goes from loopback interface, 127.0.0.1, to loopback interface.  At 

NF_IP_POST_ROUTING, only UDP packets to the port 4369 are queued.  Other 

outgoing traffic is not related to the AID system. 

Only incoming TCP packets are queued since currently only TCP traffic is 

protected.  When the module serverFilter.o is loaded in a host, the host must run the 

program server as well.  Otherwise interested packets keep getting into the queue, but no 

program takes them out of the queue.  The traffic is blocked if this happens.  A host 

should load the module serverFilter.o and run the program server at the same time.  It is 

meaningless to do just one of them. 

Program Server 

By compiling server.c and linking other relative source files, we can get the 

executable program server.  It has a while loop in main() whose condition is always true.  

The program server has two packet buffers, one for packets from the Internet and the 

other for packets from AID tunnels.  The former is called bufferN and the latter is called 

bufferT.  Because packets from AID tunnels have higher priority, the program server 

intends to handle packets in bufferT first.  Let us see what the program server does to 

packets from different hooks. 

Packets from NF_IP_PRE_ROUTING 

In this hook, the program server has to remove the AID layer header from every 

queued packet.  Before doing this, program server needs to know if the packet is from the 

Internet or AID tunnels.  The program server inspects the recognizing field.  If it is 0, the 

packet is from the Internet.  If it is the server's IP (IP of the host runs the program server), 
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the packet is from the AID tunnels.  If neither 0 nor the server's IP, the packet has wrong 

contents and is dropped. 

If the packet is from the Internet, it is put into the bufferN.  It is dropped if bufferN 

is full.  The 4-byte-long recognizing field is removed from the packet. 

If the packet is from AID tunnels, the whole AID layer header is 28 bytes long, 

including the recognizing field, md5 digest and virtual clock timestamp.  First, the 

program server inspects the packet's integrity with md5 digest.  If failing, drops the 

packet.  Then, the packet is put into the bufferT.  Drops the packet if bufferT is full.  

Similarly, the whole 28-byte-long AID layer header is removed from the packet in the 

program server.  Fig. 5-1 shows how an AID layer header is removed for an incoming 

TCP packet. 

A 

 
 
B 

 
 
Figure 5-1.  Removing the AID layer header in server end.  A) All incoming TCP packets 

should have an AID layer header.  Other parts of a packet are not tainted.  B) 
A packet from AID tunnels has a 28-byte-long AID layer header; otherwise its 
AID layer header is 4 bytes long. 
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The program server does exactly contrary things to what the program client dose to 

packets from hook NF_IP_POST_ROUTING.  The program client adds AID layer 

headers on packets, and they are ripped out here.  As a result, higher-level applications 

have no idea of the existence of AID layer.  When they get a packet, they see no data of 

an AID layer header. 

Packets from NF_IP_POST_ROUTING 

All packets in the queue grabbed at hook NF_IP_POST_ROUTING are UDP 

traffic to port 4369.  The only UDP message belongs the AID system (to the port 4369) 

that would be sent out by a server end is PUSH.  PUSH messages are sent to As to say the 

server is attacked.  Before leaving a server, these queued packets will be appended 16-

byte-long md5 digest.  It prevents the third party from forging PUSH messages and send 

them to As. 

Implementation Issues 

No Threads 

In the chapter AID System Overview, we pointed out no threads or child processes 

in programs client, server and AID for printing out statistic information under users' 

requests.  Unlike the program client, the program server has one more thing to handle, 

sending packets in bufferN and bufferT to higher-level applications.  The program server 

also has a while loop with a consistent true condition in main().  In every iteration, the 

while loop examines two things.  First, sees if there are packets in bufferT and bufferN.  

A part of them are passed to higher-level applications.  Second, sees if any packet was 

queued by the module serverFilter.o and read in one packet.  Each of them takes only 

little time, so they look like running simultaneously.  Threads make a program harder to 
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maintain and may cause serious problems like resource competition and deadlocks, if not 

used very carefully. 

Important Variables 

There are some important variables defined in the source file server.c.  They decide 

the way the program server works.  To make the program server work properly, they 

need to be assigned reasonable values. We discuss them below. 

PCKBUFSIZET 

BufferT's size, if too small, packets from AID tunnels will be dropped frequently 

with heavy incoming traffic.  BufferT stores packets from AID tunnels.  

PCKBUFSIZEN 

BufferN's size, if too small, packets from the Internet will be dropped frequently 

with heavy incoming traffic.  BufferN stores packets from the Internet. 

IPQREADTIME 

In the section No Threads, we said two things are done every iteration in the while 

loop of main().  One of them is to read in a packet queued by the module serverFilter.o if 

the queue is not empty.  If the queue is empty, the program server is blocked until a 

packet is put into queue by the module serverFilter.o.  If blocked, the packets in the 

bufferN and bufferT cannot be sent to their destination, higher-level applications.  

Consequently, we need to constrain the time of this reading behavior.  Do not wait more 

than IPQREADTIME microseconds if the queue is empty.  If it is larger than 500000, the 

client side may feel painful lags. 

READINTERVAL 

BufferT and bufferN are examined every iteration in the while loop of main(), and 

some packets in the two buffers are sent to higher level applications.  We are not sure 
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how long one iteration may take.  We may want packets stay in the buffers longer than 

the time of one iteration because we need to balance the traffic from AID tunnels and 

from the Internet (packets from AID tunnels have higher priority).  It can be done by this 

variable.  It defines how often packets in the two buffers are sent out.  It is in 

microseconds, too.  It cannot be too small or the program server cannot control the 

traffic.  If the variable is too big, apparent lags appear. 

SENDPCKBUFNO 

Every READINTERVAL microseconds, packets in two buffers are taken out, but 

how many?  The variable is the answer.  If it is 10, the 10 packets from the two buffers 

can be sent out.  Notice it is a total number for packets from both bufferT and bufferN.  

Since bufferT has higher priority, if 10 packets are picked up this iteration from bufferT, 

packets in bufferN have to wait until next iteration.  If it is too small, the two buffers gets 

full easily.  Packets will be dropped frequently when traffic is heavy. 

AVGINTERVAL 

The program server calculates the arrival rate every AVGINTERVAL seconds.  If 

it is too small, the arrival rate may not be representative.  If it is too big, the program 

server may not be able to detect attacks in real time (not sensitive enough). 

TOTALCAP 

Capacity of the server end, in our AID system, was defined as how many bytes per 

second the server end can handle.  Once the arrival rate is higher than TOTALCAP, the 

program server alerts the AID system to create a tunnel tree by sending PUSH messages 

to As. 
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RESERVEDTIMES 

When under attacked, a server has traffic from both the Internet and AID tunnels.  

We said the latter has higher priority, but how?  The server handles data in bufferT and in 

bufferN with the ratio RESERVEDTIMES: 1.  For instance, if TOTALCAP is 1000 bytes 

per second and RESERVEDTIMES is 4, 1000 × 4/(1+4) = 800 bytes per second is 

reserved for the traffic from tunnel trees, and 1000 x 1/(1+4) = 200 bytes per second is 

reserved for the traffic from the Internet. 

How the Registration Is Done 

In our AID system, servers get the secret key shared with As by registration.  We 

just took the easiest step here.  The shared key was pre-configured in both the server and 

AID station, As.  If users want to change the key, they need to redefine it in both sides, 

with the same value.  Then recompile the codes.  It is not hard.  We wrote a makefile 

compiling and linking object files to generate the program server.  It can be done by just 

one command. 

Not Perfectly Isolated from Higher-Level Applications 

Same as the program client, the program server cannot be totally isolated from 

higher-level applications because the Linux kernel does not actually handle AID layer 

headers.  AID layer headers are viewed as application layer data by the kernel.  The 

program client inserts an AID layer header into a packet and the program server removes 

the AID layer header from the packet.  It is a little confusing here.  Is the program client 

different from other client programs like telnet and ssh?  Our program client does not try 

to connect the server host.  It takes care of queued packets in a client host instead.  

Likewise, the program server is not a server daemon program.  It does not listen on a 
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port.  Its job is taking care of queued packets in a server host. When a client host tries to 

connect a server host, there are four possibilities: 

• The client host has clientFilter.o loaded and is running the program client, and the 
server host has serverFilter.o loaded and is running the program server as well.  It 
works just fine in this case because both sides can recognize the AID layer headers 
inserted in packets. 

• The client host has clientFilter.o loaded and is running the program client, but the 
server host does not load serverFilter.o.  It does not work in this case because the 
server host will get packets with AID layer headers from the client host, and the 
server host cannot recognize them.  AID layer headers are junk data for the server 
host, which make communication fail. 

• The client host does not load clientFilter.o, but the server host has serverFilter.o 
loaded and is running the program server.  It does not work in this case either 
because the client host sends out packets without AID layer headers.  When the 
server host gets the TCP packets from the client host, it tries to know if the packets 
are from AID tunnels or the Internet by inspecting the recognizing field in AID 
layer headers.  Of course, these packets do not have the recognizing field and 
application layer data is used as recognizing field.  Then, communication fails. 

• The client host does not load clientFilter.o and the server host does not load 
serverFilter.o either.  Both sides know nothing about AID layer headers.  It works 
well.  In this case, the AID service has nothing to do with both sides.  
Communication just goes as without the AID service protection as before. 

In conclusion, if a client host wants to connect a server host that has serverFilter.o 

loaded and is running the program server, the client host should load the module 

clientFilter.o and run the program client before making a connecting.  On the other hand, 

if a client host wants to connect a server host that does not load serverFilter.o, the client 

host should unload the module clientFilter.o and terminate the program client before 

making a connection.  The client host should match the server host to make everything go 

well. 

One thing worth a mention is that loading clientFilter.o and running the program 

client do not mean the client host already joined the AID service.  It should register at an 

AID station to make the AID service effective first.  Same thing applies to the server host 
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as well.  However, an unregistered client host can still connect to a registered server host 

by loading clientFilter.o and running the program client.  All packets from that client host 

cannot enter AID tunnels because the client has no secret key.  They can only be 

transmitted via the Internet.. 

Loading or unloading the module clientFilter.o can be done by one command.  A 

client host can adapt itself to different server hosts dynamically. 

Program Alert 

By compiling the source file alert.c and linking other relative source files, we can 

get the executable program alert.  A server host can send PUSH messages to AID stations 

by executing the program alert.  We leave the flexibility of defining DDoS attacks to the 

users.  Users can define the situations of being attacked to meet their need.  All they need 

to do is to run the program alert when the server host detects attacks.  It will send As a 

PUSH message to trigger the AID system.  Afterward, all packets from registered clients 

to that server go through the AID tunnels.  The program server inserts Md5 digest into 

the PUSH message packets at hook NF_IP_POST_ROUTING. 

 

 

 



CHAPTER 6 
AID STATION 

AID stations are the cores of our AID system [6].  They form an AID tunnel tree 

for each attacked registered server.  How is a tunnel tree created?  How are packets 

routed in a tunnel tree?  How to resist attacks from registered clients?  How was it 

implemented?  Answers to the above questions are in this chapter. 

AID Tunnel Tree 

We have seen AID tunnels many times in the previous chapters.  We know AID 

tunnels are tree structures.  Packets from registered clients to the attacked registered 

servers would enter AID tunnels.  In this section, we explained how an AID tunnel tree is 

constructed and how packets are routed inside.  The push-n-pull process [6] establishes a 

tunnel tree from the registered clients to an attacked server. 

Push Phase 

Assume a server S is attacked; it sends a PUSH message to As, the AID station that 

it registered at.  An AID tunnel tree for the server is going to be built up, and the tree's 

root node is As.  The scenario is as follows. 

1. Server S senses an attack and sends PUSH messages to As.  As is the root node of 
the AID tunnel tree, which called the first level node. 

2. As is the only AID station that knows S is under attacks so far.  As picks up k other 
AID stations randomly, and sends a PUSH message to each of them.  Any other 
AID station could be selected.  Subsequently, k+1 AID stations know S is under 
attacks at the end of the step.  We call these k AID stations the second level nodes 
in the tunnel tree. How big should k be?  We have deep discussion about it later. 

3. Every second level node randomly picks up k other AID stations, and sends a 
PUSH message to each of them.  Any other AID stations could be selected except 
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for As.  So, the k second levels nodes selected k2 nodes totally.  We call these k2 
nodes the third level nodes in the tunnel tree. 

Notice that a node might be picked up more than once in the step 2 and in step 3 

because both steps randomly select k AID stations.  Fig. 6-1 shows how is a tunnel tree 

created in push phase. 

 
 
Figure 6-1.  Tunnel tree created in push phase.  Not all third level nodes are shown in the 

figure.  Arrows from nodes to nodes indicates the direction packets would be 
routed.  See the broken arrows in the figure.  Node A got PUSH messages 
from both As and B.  A would choose As as its parent node because of shorter 
routing path.  Similarly, node D got PUSH messages from B and A.  D could 
pick either of them to be its parent node, but not both.  In push phase, there 
might be some AID stations not receiving PUSH messages, which are 
unconnected nodes in the figure. 

Suppose we have N AID stations.  We want to notify every AID station when a 

server is attacked.  In step 1, only As is notified.  In step 2, k+1 AID stations are notified.  

In step 3, ideally, 1+k+k2 AID stations are notified.  If k is the square root of N, we get 

1+k+k2 > N, which means the tunnel tree covers every AID station.  However, some AID 
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stations picked in step 2 may be picked again in step 3 and some second level nodes may 

select the same third level nodes.  We cannot guarantee every AID station is included in 

the tunnel tree.  That is why we need pull phase.  In push phase, k(k+1) PUSH messages 

are sent out totally, because only the first level node and the second level nodes would 

send PUSH messages.  If we allow the third level nodes to send PUSH message, push 

phase will be expensive.  The majority of AID stations can be reached in push phase. 

Pull Phase 

When a server detects an attack, a tunnel tree rooted at As is built up.  Some nodes 

might not get the PUSH messages in push phase.  These nodes did not connect to the 

tunnel tree yet.  We try to include them into the tunnel tree in pull phase.  In pull phase an 

AID station will ask other AID stations by sending PULL messages what servers are 

attacked.  In push phase, an AID station gets information of attacked server passively. 

If an AID station B gets PULL messages from another AID station A, B will send 

PULLANS messages back to A.  PULLANS messages contain information of all attacked 

servers B knows.  When A gets these PULLANS messages from B, it will update its 

attacked servers recording.  Actually, an AID station sends PULL messages to q other 

AID stations.  Like the variable k in push phase, we should choose a proper q.  We will 

discuss q and k later.  Each AID station sends PULL messages out periodically. 

Routing 

As is the first AID station that knows the register server S is attacked, and As is also 

the root of the tunnel tree for the server S.  When an AID station A tells another AID 

station B that server S is attacked by either PUSH or PULLANS messages, A becomes B's 

parent node in the tunnel tree for the server S.  Hence, As is the parent node of the second 

level nodes, and the second level nodes are the parent nodes of the third level nodes.  
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The structure of a tunnel tree changes dynamically because of PULLANS messages.  In 

pull phase, if a third level node gets PULLANS messages from As, the only first level 

node, it will switch its parent to As and become the second level node.   Then, the routing 

path becomes one AID station shorter.  As is the root node, all TCP packets to the server S 

are routed to As finally. 

If an AID station gets a packet whose final destination is server S, where the packet 

is routed to next?  The AID station routes the packet to its parent node.  The third level 

nodes route packets to the second level nodes, and the second level nodes route packets 

to As.  Packets go from leaf nodes to the root node in the tunnel tree.  Finally, As forwards 

packets to the server S. 

An AID station could be a tree node of more than one tunnel trees.  If N servers are 

attacked, there will be N tunnel trees built up on the random overlay network (RON).  

One tree is independent from another. 

Why Does a Tunnel Tree Try to Include Every AID Station? 

Two reasons here, first, a client is free to register at an arbitrary AID station.  

Suppose server S is attacked and client C is trying to connect S.  C registered at AID 

station Ac.  A tunnel tree would be created for server S.  If the tunnel tree does not 

embrace Ac, Ac does not know S is under attacks.  In this case, C would not be informed 

by Ac that S is attacked.  Thus, client C keeps sending packets to server S via the Internet.  

These packets are not protected even though C did register and joined the AID service.  

We do not constrain which AID station can have registered clients, so we tries to include 

all AID stations. 

Second, it is about routing.  AID station A routes packets to AID station B if B is 

A's parent node in the tunnel tree.  A got PUSH or PULLANS messages from B before.  B 
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also routes these packets to its parent node.  If B crashes and then restores, it will lose 

information about its parent node of the tunnel tree.  Now, B does not know where to 

route the packets from A.  B sends PULL messages to others when getting a packet that it 

does not know where to route.  If one PULLANS message B got contains information it 

needs, where to route packets to server S, B hooks on the tunnel tree again.  However, it 

is possible that all PULLANS messages B got contain nothing about server S.  If we 

choose right k and q, the chance that this happens is very low. 

Variables k and q 

Assume we have a set of n AID stations.  AID stations A, B and As are elements of 

the set.  In step 2 of push phase, As sends PUSH messages to other k AID stations.  The 

probability that A does not get the PUSH message from As is 
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does not connect to the tunnel tree right after push phase if it obtained no PSUH message 
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arbitrary AID station A could be in the tunnel tree after push phase is 
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approaching infinity.  Hence, if  and 2> nk = , PInTree 
e
11−> .  We use n=k  in 

our AID system. 

Let us talk about variable q now.  =∏ s  n×PInTree AID stations are expected to be 

covered in the AID tunnel tree right after push phase and we know n×PInTree 
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e
n 11 by Theorem 1.  An AID station sends out PULL messages to q other AID 

stations.  The probability that at least one of these q AID stations is in the tunnel tree is 
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If q = 10, the probability is greater than 0.99995.  It is high enough that we can 

almost say it will happen.  When an unconnected AID station receives PULLANS from 

another AID station that is in the tree already, it connects to the tree.  With push-n-pull 

process, the chance that all AID stations are included in the tree is very high. 

Advantages of Random Overlay Network (RON) 

First, small diameter and modest nodal degree: A good overlay network topology 

should have small diameter and nodal degree.  Unfortunately, they conflict with each 

other.  We made a tradeoff in our RON topology.  We have a fixed small diameter that is 

three and modest nodal degree that is about the square root of the number of all AID 

stations.  With small diameter, packets can arrive at servers by passing few AID stations.  

With modest nodal degree, we save some resource and keep the availability against node 

failure.  We explain why the diameter is three in the end of this chapter. 

Second, easy to set and maintain: A tunnel tree is established by sending PUSH and 

PULL messages.  They are sent randomly by an AID station to other AID stations.  We 

do not need a complicated algorithm to create the tree.  Besides, every tree node just has 

to know who is its parent to forward packets.  Not many things need to be remembered 

by an AID station.  Capacity of the AID system can be increased by adding more AID 

stations. 

Third, against node failure: If a tree node, an AID station, is down somehow, its 

children nodes are disconnected from the tunnel tree.  However, the children nodes can 

hook on the tree again in next pull phase.  Therefore, we can easily shutdown an AID 

station for maintenance without affecting the entire AID system.  It is also true for adding 
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an AID station.  A new-added AID station can connect the tree in pull phase as well.  An 

AID station can join and leave the AID service with little damage. 

Distributed Virtual-Clock Packet Scheduling 

Basic Idea 

Assume we have an attacked server S and a tunnel tree for S.  Every AID station 

maintains a virtual clock VCu [11] (initialized to be the local system time) for every 

tunnel u connecting with a client network.  When an AID station gets a packet from 

tunnel u, VCu is updated as follows [6]. 

VCu = max {VCu, current_time} + T ×  L   (2) 

The AID station then marks the packet's virtual clock timestamp as VCu.  All AID 

stations’ local clocks should be synchronized.  L is the length of the packet.  T is called 

waiting interval.  As broadcasts a new T to all AID stations periodically by sending 

CTRLT messages.  We use T to control the speed of a virtual clock.  Since T can be 

changed dynamically, we can adjust a virtual clock’s speed dynamically as well.  The 

maximum rate a client can send data to server S via RON is 1/T.  If an AID station gets a 

packet from tunnel u connecting to another AID station, the packet has a timestamp on it 

already. 

An AID stations puts all incoming TCP packets into a buffer in ascending order 

based on their virtual clock timestamps.  When the buffer is full, the packet with largest 

timestamp will be dropped.  We call a packet’s virtual clock timestamp VCTS.  If VCTS 

– “the AID station’s local time” > α  is true for an incoming packet, the packet is just 

dropped, not put into the buffer even though the buffer is not full.  The value of α  can be 

configured in the program.  If a registered client hosts an attacker, its virtual clock will 

run very fast because of huge amount of traffic.  Most of packets from the client will be 
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dropped since their virtual clock timestamps are too big.  In this way, server's capacity is 

shared fairly among all clients. 

How to Adjust T 

Server S reserves part of its capacity, called Cs, for RON.  T is set to 1/ Cs at first 

and broadcasted to all AID stations by As.  There are two phases to adjust T.  In each 

phase, new T is broadcasted to every AID station. 

• Exponential phase: In this phase, As doubles the value of T to make virtual clocks 
run twice faster.  When virtual clocks run twice faster, the maximum arrival rate of 
server S from RON is cut by half.  As keeps in exponential phase until the arrival 
rate is below Cs.  Then, As enters linear phase. 

• Linear phase: Suppose T is changed from I to 2I by the last update of T in 
exponential phase.  In linear phase, As decrease T by I⋅ε  periodically to slowdown 
virtual clocks until arrival rate is above Cs.  We call the system converges at the 
moment.  Then, As may enter exponential phase again. 

Programs for an AID Station 

AID stations route packets from registered clients, form a tunnel tree for an 

attacked registered server and control the traffic flows of tunnel trees. 

AIDFilter.c and AID.c are two main source files for AID station.  AIDFilter.c is 

compiled as a module, queuing interested packets into userspace.  Then, AID.c takes 

queued packets out and does whatever is necessary.  An AID station keeps information 

about its registered clients and servers.  An AID station routes TCP packets in a tunnel 

tree, and uses UDP messages to control the AID system. 

Module AIDFilter.o 

By compiling AIDFilter.c, we can get the module AIDFilter.o.  It hooks on 

handling functions at NF_IP_PRE_ROUTING, and NF_IP_POST_ROUTING.  At 

NF_IP_PRE_ROUTING, all incoming TCP packets and UDP packets to port 4369 are 

queued, except for the local traffic.  Local traffic goes from loopback interface, 127.0.0.1, 
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to loopback interface.  At NF_IP_POST_ROUTING, all outgoing TCP packets and UDP 

packets to port 4369 are queued, except for the local traffic. 

Queued TCP packets are traffic inside tunnel trees.  They come from registered 

clients and head for registered servers.  When the module AIDFilter.o is loaded in a host, 

the host must run the program AID as well.  Otherwise interested packets keep getting 

into the queue, but no program takes them out of the queue.  The traffic is blocked if this 

happens.  A host should load the module AIDFilter.o and run the program AID at the 

same time.  It is meaningless to do just one of them. 

Program AID 

By compiling AID.c and linking other relative source files, we can get the 

executable program AID.  It has a while loop in main() whose condition is always true.  

The program AID has a packet buffer, storing incoming TCP packets. 

TCP packets from NF_IP_PRE_ROUTING 

Every queued incoming TCP packet in an AID station will go through the 

following processes. 

• Verify the third party did not alter the packet.  The packet is dropped if md5 digest 
stored in the packet is not equal to the one calculated by the AID station. 

• Packet's virtual clock timestamp is refreshed as described in the section Distributed 
Virtual-Clock Packet Scheduling. 

• Examine the packet's virtual clock timestamp.  If VCTS – “the AID station’s local 
time” > α , the packet will be dropped.  Constant α was defined as 
MAXVCTSEXCEED in AID.c.  Most of offending packets are filtered out here. 

• The AID station look up its routeList to know where to route the packet.  Every 
AID station has a routeList, which is a list structure.  A routeListNode contains 
information for a tunnel tree, inclusive of server's IP, distance to As, and the parent 
node's IP.  An AID station may be embraced in more than one tunnel trees, and its 
routeList will contain more than one routeListNode.  If The AID station does not 
know where to route the packet, no information for the destination server stored in 
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the routeList, the AID station will drop the packet and send PULL messages to 
other AID stations. 

• If a packet passes all of the above and the packet buffer is not full, it can be put into 
the packet buffer.  If the packet buffer is full, the packet with maximum virtual 
clock timestamp in the packet buffer is selected.  The incoming packet and selected 
packet are compared in their virtual clock timestamps.  If the incoming packet has 
smaller timestamp, it can replace the selected packet in the packet buffer; 
otherwise, it will be just dropped. The packet's destination IP is modified to the 
parent node's IP, since the packet will be routed to the parent node in the tunnel 
tree. 

UDP packets from NF_IP_PRE_ROUTING 

Every queued incoming UDP packet in an AID station will go through the 

following process. 

• Verify the third party did not alter the packet.  The packet is dropped if md5 digest 
stored in the packet is not equal to the one calculated by the AID station. 

• Recognize what kind of UDP message the packet is.  In the chapter AID Layer, we 
said there are a couple of different UDP messages in the AID system.  We can tell 
it by the packet's packet type field in the AID layer header.  If it is a PULL 
message, the AID station sends whole information of its routeList in PULLANS 
messages to the asking AID station.  It happens in pull phase.  If it is a PULLANS 
message, the AID station updates its routeList with the data of the packet.  It 
happens in pull phase.  If it is a PUSH message, the AID station updates its 
routeList with the data of the packet and sends PUSH message to other AID 
stations.  It happens in push phase.  If it is a CTRLT message, the AID station 
updates the variable T for the specific tunnel tree.  A CTRLT message contains IP 
of the server that the tunnel tree is for.  See the chapter AID Layer for more details 
about different UDP messages.  A UDP message has md5 digest.  It cannot be 
forged without knowing the secret key. 

TCP packets from NF_IP_POST_ROUTING 

The AID station is going to forward every queued packet to its parent node.  The 

destination IP was changed to the parent node's IP in the hook NF_IP_PRE_ROUTING 

already.  Here, the program AID recalculates md5 digest because the packet's destination 

IP and virtual clock timestamp were changed.  Finally, the program AID computes the 

checksums in the TCP header and IP header. 
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UDP packets from NF_IP_POST_ROUTING 

Every queued UDP packet in this hook heads to port 4369.  Md5 digest need to be 

calculated and inserted into every queued UDP packet.  The checksums in the TCP 

header and IP header are recomputed in this hook.  Afterward, the packets are ready to 

leave the AID station. 

Implementation Issues 

No Threads 

In the chapter AID System Overview, we pointed out no threads or child processes 

in programs client, server and AID for printing out statistic information under users' 

requests.  Besides getting a packet from the queue, the program AID has three more 

things to do, sending packets in the packet buffer to higher-level applications, sending out 

CTRLT messages and sending out PULL messages.  The program AID also has a while 

loop with consistent true condition in main().  In every iteration of the while loop, four 

things are examined.  First, sees if the packet buffer has packets waiting and passes some 

packets to higher-level applications.  Second, sees if it is time to send out CTRLT 

messages.  We can define how often an AID station can send out CTRLT messages.  

Third, sees if it is time to send out PULL messages.  We can also define how often an 

AID station can send out PULL messages.  Fourth, sees if any packet was queued by the 

module AIDFilter.o and read in one packet.  Each of them takes only little time, so they 

look like running simultaneously.  Threads make a program hard to maintain and may 

cause serious problems like resource competition and deadlocks, if not used very 

carefully. 
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Registration for Clients and Servers 

As we said before, the secret keys shared with clients and servers are pre-

configured in the codes.  If an AID station wants to register a client, the client's 

information needs to be added into AID.c.  It is also true for registering a server.  The 

program AID has to be recompiled after registration, which can be done by one 

command. 

Important Variables 

There are some important variables defined in the source file AID.c.  They decide 

how the program AID works.  To make the program AID work properly, they need to be 

assigned reasonable values. We discuss them below. 

PCKBUFSIZE 

The packet buffer’s size, if too small, incoming TCP packets will be dropped 

frequently with heavy traffic. 

IPQREADTIME 

We mentioned four things are done every iteration in while loop of main().  One is 

to read in a queued packet.  If the queue is empty, the program might be blocked until a 

packet is queued by the module AIDFilter.o.  If blocked, the packets in the packet buffer 

cannot be got by higher-level applications.  Consequently, we need to constrain the time 

of this reading behavior.  Do not wait more than IPQREADTIME microseconds if the 

queue is empty.  If it is larger than 500000, the client side may feel painful lags. 

READINTERVAL 

The packet buffer is examined every iteration in the while loop of main(), and some 

packets are sent to higher-level applications.  We are not sure how long one iteration may 

take.  We may want packets stay in the packet buffer longer than the time of one 
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iteration.  It can be done by this variable.  It defines how often the packet buffer is 

checked.  It is in microseconds, too. 

SENDPCKBUFNO 

Every READINTERVAL microseconds, packets in the packet buffer are taken out, 

but how many?  The variable is the answer.  If it is 10, the 10 packets from the packet 

buffer can be sent to higher-level applications.  If it is too small, packets will be dropped 

frequently when heavy traffic. 

NEARBYAID 

The number of other AID stations that are known by this AID station.  PUSH, 

PULL, and CTRLT messages are sent to these neighbors. 

SNEDTINTERVAL 

If the AID station is As, a root node of a tunnel tree, it sends CTRLT messages to 

all other AID stations every SENDTINTERVAL seconds. 

SENDPULLINVAL 

Every SENDPULLINVAL seconds, an AID station sends PULL messages to other 

PULLNO (defined in global.h) AID stations.  Periodically sending out PULL messages 

can make sure every AID station connects tunnel trees. 

DECREASERATIO 

In linear phase, As decreases T by I⋅ε .  DECREASERATIO is ε . 

MAXVCTSEXCEED 

If a packet's VCTS – “AID station’s local time” > MAXVCTSEXCEED, the packet 

is dropped.  MAXVCTSEXCEED is the constant α . 
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Adding New AID Stations 

A new added AID stations can be included into an AID tunnel tree by sending 

PULL messages to others.  However, we still need to make the AID station known by all 

other AID station.  Like handling registrations, an AID station pre-configures its 

neighbors in AID.c.  When a new AID station is added into the AID system, its 

neighbor’s AID.c needs to be updated and recompiled.  It can be improved in a better but 

complex way. 

Diameter of a Tunnel Tree 

Remember the AIDNO field of a PUSH message and distance field of a server list 

node of a PULLANS message?  Actually, they two mean the same thing, the distance to 

As of a tunnel tree.  We explain why our random overlay network's diameter is three here.  

Every tree node, an AID station, records its distance to As.  For As itself, the distance is 0.  

For the second level nodes, it is 1.  For the third level nodes, it is 2.  Suppose we have 

tree node A with distance of 1, tree node B with distance of 2 and tree node C not 

included in the tree yet.  C has two ways to join the tunnel tree. 

• Another node sends a PUSH message to C.  It could be root As or node A.  If C gets 
PUSH messages from As, C's distance to As is 1.  If from A, C's distance to As is 2.  
Notice only the root node and the second level nodes can send PUSH messages or 
push phase becomes expensive (more than k(k+1) PUSH messages sent out). 

• C gets PULLANS messages from another AID station.  It could be root node As, 
node A or node B.  If C gets PUSH messages from As, C's distance to As is 1.  If 
from A, C's distance to As is 2.  If from B, C's distance to As is 3. 

Assume we have another node D not included in the tree.  D can join the tree by 

PUSH or PULLANS from node A or node B, but not node C.  D ignores PULLANS 

message from the nodes with distance of 3.  If D joins the tree by C's messages, C 

becomes D's parent node.  That means D has distance of 4 to As, which is not allowed. 
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If C's distance is 3 and it gets PULLANS or PUSH messages from A, C will switch 

its parent node to A to have smaller distance, 2.  C becomes the third level node after 

switching.  An AID station's distance to As can only go smaller.  By doing this, no cycle 

appears in a tunnel tree.  As a result, distance between As and every other tree nodes is 

not larger than 3.  Actually, we can reset the diameter by redefining PUSHDEEP in file 

global.h.  A tunnel tree’s diameter is PUSHDEEP+1.  There are four possibilities of a 

packet being routed from a registered client to a registered server, shown in Fig. 6-2. 

 
 
Figure 6-2.  Four possibilities a packet can be routed.  The numbers are the value of 

AIDNO field of PUSH messages or distance field of PULLANS messages 
sent by the host.  Packets are routed toward As in an AID tunnel tree. 

Forwarding Packets 

Pay attention to the word “forwarding.”  An AID station works like a router 

somewhat.  Packets in RON are forwarded to As by AID stations.  The difference is 

normal routers do not adjust md5 digest or virtual clock timestamp of a packet.  Usually, 

the forwarding function is turned off in a Linux machine by default.  It has to be on.  

After version 2.4, the tool iptables is available in Linux.  We use it to set forwarding rules 

in an AID station.  To be simple, no sophisticated rules are used.  We just allow all kind 

of forwarding.  Of course, we can set more secure and elaborate forwarding rules.  An 
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AID station is not allowed to send out its own TCP packets.  It can only forward TCP 

packets. 

 

 

 

 



CHAPTER 7 
TESTING RESULTS AND ANALYSIS 

After going through the previous chapters, we understand how the AID system 

works theoretically and practically.  In this chapter we talk about how we tested our AID 

system and analyze testing results.  When an idea is transformed into real programs, 

unexpected problems show up always.  We already discussed some of them in 

Implement Issues sections of previous chapters.  The other practical problems are 

illustrated in this chapter. 

Important Issues about Testing 

• The root access is required to load a module.  A client host, a server host or an AID 
station needs to load clientFilter.o, serverFilter.o and AIDFilter.o respectively.  We 
do not have enough Linux machines with the root access for tests.  As a 
consequence, we just tested our AID system on three Linux machines, for a client 
host, a server host and an AID station separately.  We might not test some 
functionality well with such a simple model. 

• Since only one Linux machine is for client hosts, we have to simulate n client hosts 
on it by running n client processes.  The AID station treats TCP packets from 
different source ports as they are from different hosts, even though they have the 
same source IP. 

• A client process uploading a huge file to the server symbolizes an attacker.  
However, normal ftp programs cannot be used because of MTU problems.  Packets 
sent out by a normal ftp client could be as big as MTU.  There is no space for the 
AID layer header.  We discussed this problem in the chapter CLIENT END in 
detail.  Hence, we wrote two programs for this purpose, testServer and testClient.  
The server runs the program testServer to accept connections, and the client runs 
the program testClient to dump data to the server.  In the program testClient, we 
can restrict the size of packets sent to testServer by resetting the socket option.  If 
the packet size is smaller, testServer will get more packets (but same amount of 
application layer data). 

• What we want to see from the testing are how fast the AID system converges, how 
T (waiting interval) changes, how many packets from legitimate users are dropped, 
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how many packets from attackers are dropped, how T affects the average arrival 
rate, and etc.  Many factors can influence the above behaviors, for example the 
packet buffer's size.  Most of these factors are malleable variables in the codes. 

Testing Elements 

We have five testing cases.  Client Linux machine had several processes of the 

program testClient to simulate more than one client ends.  Each process of the program 

testClient might be given different parameters.  Given parameters decided if a client end 

was a legitimate user or an attacker. 

Program TestClient 

Usage of program testClient is 

 testClient testServerIP blockSize blockNO MAXSEG sleepTime 

TestClient is the filename of the executable.  TestServerIP is the IP address of the 

host that runs the program testServer.  TestClient will dump data there.  The remaining 

four parameters are more meaningful.  There is a for loop, which runs blockNO iterations 

in the program testClient.  In every iteration a block whose size is blockSize is sent to 

testServer.  It indicates the size of application layer data, not the whole packet.  Because 

of headers, more than blockSize bytes are sent out in an iteration.  With blockSize and 

blockNO, testClient knows how many application layer data it needs to send out, which 

are blockSize ×  blockNO bytes.  The parameter MAXSEG defines the maximum size of 

TCP packets.  Notice that the size of the whole packet, including IP header, will be a little 

bit bigger than MAXSEG.  We need a suitable MAXSEG to save enough space for an AID 

layer header.  The last parameter, sleepTime, defines how many seconds the program 

testClient sleeps before running the next iteration. 
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Program TestServer 

TestServer accepts connection requests from testClient and prints out application 

layer data sent by testClient. 

Setting of the AID System 

We have three Linux machines, one client, one AID station and one server.  Table 

7-1 shows the basic settings we used for testing.  We explained what these factors mean 

in previous chapters.  Server’s capacity was 2000 bytes per second.  1600 bytes per 

second of it was reserved for traffic from AID tunnels.  The setting was fixed during 

testing but the number of attackers and legitimate users varied.  The attacking modes 

changed in different testing cases too. 

Table 7-1.  List of important factors of the AID system for testing 
Name Value 
PCKBUFSIZET 50 
PCKBUFSIZEN 50 
IPQREADTIME 300000 
READINTERVAL 300000 
SENDPCKBUFNO 3 
AVGINTERVAL 10 
TOTALCAP 2000.0 
RESERVEDTIMES 4.0 
MAXVCTSEXCEED 4 
DECREASERATIO 0.1 

 
Case 1 

There were two registered attackers.  Their parameters were: 

• Attacker1: testClient 192.168.1.102 1000 500 1000 0 
• Attacker2: testClient 192.168.1.102 1000 500 1000 0 

Fig. 7-1 shows how many packets were dropped because of big VCTS at the AID 

station.  MAXVCTSEXCEED is 4.  Fig. 7-2A shows how variables T, I and decrease 

changed their values.  T was changed from I to 2I by the last update of T in exponential 

phase and then entered linear phase.  In linear phase, As decreased T by decrease 
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periodically to slow down virtual clocks.  Decrease is equal to DECREASERATIO times 

I.  Fig 7-2B shows the arrival rate at the AID station and the server.  AvgT is the arrival 

rate of the tunnel tree at the server.  AvgN is the arrival rate of the Internet at the server.  

AvgAID is the arrival rate at the AID station.  All of them are average received bytes per 

second in the 10-seconds period.  ‘AID cap’ is part of server's capacity that was reserved 

for the registered clients.  ‘Server cap’ is server's whole capacity.  In the third 10-

seconds, avgN exceeded server's capacity, and the AID system was triggered.  Two 

attackers started to send packets via RON, instead of the Internet.  We can see avgN went 

down and finally to 0.  Now, we examine Fig. 7-2A and Fig. 7-2B together.  The AID 

system converged after the twelfth 10-seconds.  T ranged between 0.000875 and 0.00175 

when converging.  When T went down, avgAID went up.  T kept decreasing to I, in linear 

phase, until AvgAID was bigger than ‘AID cap’.  At the moment, the AID system entered 

exponential phase again.  When T doubled, avgAID declined dramatically.  When 

avgAID became smaller than ‘AID cap’, the AID system entered linear phase.  The AID 

system prevented avgAID from exceeding ‘AID cap’ by tuning T.  If no new attackers 

joined, after the AID system converged, T would fall into a fixed range as we can see in 

Fig. 7-2A.  Table 7-2 shows how many packets and why they were dropped.  About 2/3 

of incoming packets were dropped. 

Table 7-2.  Case 1 packets statistics in the AID station.  A packet is dropped when the 
AID station’s packet buffer is full, VCTS – “AID station’s local time” > α , 
integrity checking fails or the AID station does not know where to route the 
packet. 

 Attacker1 Attacker2 
Packet# in 1294 1230 
Packet# out 487 456 

BufferFull 0 BufferFull 0 
BigVCTS 807 BigVCTS 774 
MD5Fail 0 MD5Fail 0 

Packet# dropped 

CantRoute 0 CantRoute 0 
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Figure 7-1.  Distribution of incoming packets in case 1 at the AID station.  Packets lay 

above the straight line MAXVCTSEXCEED were dropped. 
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Figure 7-2.  How did T and arrival rate interact with each other in case 1.  A) After 

system converged, T pulsed in a fixed range.  B) When avgAID exceeded 
‘AID cap’, T doubled.  Then avgAID fell again.  Most of time, avgAID was 
below the yellow straight line, showing the arrival rate was controlled well. 
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Case 2 

Similar to case1, however, we added one legitimate registered client: 

• Attacker1: testClient 192.168.1.102 1000 500 1000 0 
• Attacker2: testClient 192.168.1.102 1000 500 1000 0 
• Normal_user: testClient 192.168.1.102 250 700 250 1 

The normal user was distinguished from two attackers in three ways.  First, it sent 

smaller amount of data.  Second, the size of packets from it was smaller.  Third, it slept 1 

second every iteration.  T ranged between 0.001125 and 0.00225 when converging.  It 

was bigger than in case 1 because we had three registered clients here.  In Fig. 7-3, in the 

same time period, normal_user sent about twice packets as many as an attacker did 

because TCP had flow control mechanism.  After many packets were dropped; attackers 

would slow down their traffic.  In Fig. 7-3, we know packets from the legitimate was 

really safe because VCTS - localTime was in the range of {0.5, 1} approximately, which 

was far away from 4.  Normal_user was influenced by T much less harshly than attackers 

were. Likewise, Fig. 7-4A and Fig. 7-4B show how the AID system quelled arrival rate 

by adjusting T.  Table 7-3 shows packets statistics of case 2. 

Table 7-3.  Case 2 packets statistics in the AID station.  Normal_user had no packets 
dropped. 

 Attacker1 Attacker2 Normal_user 
Packet# in 473 474 952 
Packet# out 173 172 952 

BufferFull 0 BufferFull 0 BufferFull 0 
BigVCTS 300 BigVCTS 302 BigVCTS 0 
MD5Fail 0 MD5Fail 0 MD5Fail 0 

Packet# 
dropped 

CantRoute 0 CantRoute 0 CantRoute 0 
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Figure 7-3.  Distribution of incoming packets in case 2 at the AID station.  Traffic from 

normal_user was pretty stable (the lowest series). 
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Figure 7-4.  How did T and arrival rate interact with each other in case 2.  When T 

doubled, avgAID and avgT fell. 
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Case 3 

There were four registered attackers, and two registered legitimate clients.  Notice 

that two legitimate clients sent out different amount of data with different packet sizes.  

Their parameters were: 

• Attacker1: testClient 192.168.1.102 1000 500 1000 0 
• Attacker2: testClient 192.168.1.102 1000 500 1000 0 
• Attacker3: testClient 192.168.1.102 1000 500 1000 0 
• Attacker4: testClient 192.168.1.102 1000 500 1000 0 
• Normal_user1: testClient 192.168.1.102 250 700 250 1 
• Normal_user2: testClient 192.168.1.102 100 700 100 1 

T ranged between 0.00175 and 0.0035 when converging.  It was even bigger than in 

case 2 because we had six registered clients here.  Normal_user1, having exactly the 

same parameters as normal_user in case 2, had packets dropped.  In case 2, normal_user 

had no packets dropped.  What made the difference to the clients with the same 

parameters?  When the traffic load in the AID system is heavier (T goes bigger), packets 

have higher chances to be dropped even though they are not from hosts intending to 

attack.  That is because the AID system tries to make a fair share of resource among all 

registered clients.  If a client sends more, it has to wait longer for next sending.  Packets 

from normal_user2 had small enough VCTS, so none was dropped. 

Table 7-4.  Case 3 packets statistics in the AID station.  Normal_user1 had more packets 
dropped, but it also had more incoming packets. 

 Attacker1 Attacker2 Attacker3 Attacker4 Normal_user1 Normal_user2
Packet# 
in 

411 357 388 366 1106 1215 

Packet# 
out 

116 97 106 97 636 1215 

BufferFull 
= 0 

BufferFull 
= 0 

BufferFull 
= 1 

BufferFull 
= 0 

BufferFull 
= 0 

BufferFull 
= 0 

BigVCTS 
= 295 

BigVCTS 
= 260 

BigVCTS 
= 281 

BigVCTS 
= 269 

BigVCTS 
= 470 

BigVCTS 
= 0 

MD5Fail 
= 0 

MD5Fail 
= 0 

MD5Fail 
= 0 

MD5Fail 
= 0 

MD5Fail 
= 0 

MD5Fail 
= 0 

Packet# 
dropped 

CantRoute 
= 0 

CantRoute 
= 0 

CantRoute 
= 0 

CantRoute 
= 0 

CantRoute 
= 0 

CantRoute 
= 0 
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Normal_user1 had dropped packets, but it was still distinguished from other true 

attackers.  First, its traffic was not slowed down as much as attackers.  In the same time 

period, an attacker just sent out about 375 packets, but normal_user1 sent out 1106 

packets (normal_user2 sent out 1215).  Second, in Fig. 7-5 we can see VCTS-localTime 

for packets from normal_user1 rippled around 4.  However, it is 6 for packets from 

attackers.  In conclusion, normal_user1 had packets dropped, but it still maintained its 

communication with the server. 
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Figure 7-5.  Distribution of incoming packets in case 3 at the AID station.  Traffic from 

normal_user2 was pretty stable (the lowest series).  Even though some of 
packets from normal_user1 were discarded, it was still different from real 
attackers. 
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Figure 7-6.  How did T and arrival rate interact each with other in case 3.  When T 

doubled, avgAID and avgT fell; otherwise avgAID and avgT rose. 

Case 4 

There were two registered attackers, two registered normal users and two 

unregistered normal users.  Their parameters were: 

• Attacker1: testClient 192.168.1.102 1000 500 1000 0 
• Attacker2: testClient 192.168.1.102 1000 500 1000 0 
• Normal_user1: testClient 192.168.1.102 250 700 250 1 
• Normal_user2: testClient 192.168.1.102 250 700 250 1 
• Normal_user3: testClient 192.168.1.102 250 700 250 1 
• Normal_user4: testClient 192.168.1.102 250 700 250 1 

T ranged between 0.00125 and 0.0025 when converging.  In Fig. 7-7, we can see 

incoming packets distribution of two registered normal users and two registered attackers.  

Packets from the other two unregistered normal users did not enter tunnel tree.  As a 

result, the AID station had no statistics data about them.  In this testing case avgN did not 

become zero after the AID system was triggered.  Only the two registered attackers had 
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packets dropped.  Ideally, avgT:avgN = 1600:400 = 4:1 should be true in the case 4 (this 

ratio can be changed by modifying RESERVEDTIMES in server.c and signing a new 

contract between the server and AID station).  However, because attackers slowed down 

their traffic (less than half amount of packets sent out as other normal users), avgT went 

down too. 

Table 7-5.  Case 4 packets statistics in the AID station.  Normal_user1 and normal_user2 
are registered had no packets dropped. 

 Attacker1 Attacker2 Normal_user1 Normal_user2 
Packet# 
in 

493 453 1187 1194 

Packet# 
out 

172 154 1187 1194 

BufferFull 0 BufferFull 0 BufferFull 0 BufferFull 0 
BigVCTS 321 BigVCTS 299 BigVCTS 0 BigVCTS 0 
MD5Fail 0 MD5Fail 0 MD5Fail 0 MD5Fail 0 

Packet# 
dropped 

CantRoute 0 CantRoute 0 CantRoute 0 CantRoute 0 
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Figure 7-7.  Distribution of incoming packets in case 4 at the AID station.  Traffic from 

normal_user1 and normal_use2 were pretty stable (the lower two series).  It is 
very similar to Fig 7-3 with the exception that series for two normal users are 
a little bit higher. 
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controlT (Fig. 7-8A)
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Figure 7-8.  How did T and arrival rate interact with each other in case 4.  AvgN is the 

server’s arrival rate of the traffic from the Internet.  T would not affect AvgN 
directly, since the traffic did not enter the AID tunnels.  However, because the 
traffic from AID tunnels had higher priority, the unregistered attackers could 
not flood the server. 

Case 5 

This is an interesting case.  It is very analogous to case 2, two attackers and one 

normal user.  However, attackers chopped same amount of data into smaller pieces here. 

• Attacker1: testClient 192.168.1.102 1000 500 300 0 
• Attacker2: testClient 192.168.1.102 1000 500 300 0 
• Normal_user: testClient 192.168.1.102 250 700 250 1 

In case 2, MAXSEG was 1000 for attackers, and it was 300 in case 5.  In Fig. 7-10, 

we can see that after system converged, value of T varied between 0.001375 and 0.00275.  

It is bigger than in case 2.  What made case 5 so special?  Let us compare it with case 2.  

In case 2, attackers sent out 1000 bytes, exclusive of headers, every iteration, and 

MAXSEG was 1000.  Here, attackers also sent out 1000 bytes per iteration, but MAXSEG 
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was 300.  That means an iteration needs to send packets as many as three times in case 5.  

Then, what happened?  See Fig. 7-9. 

First, unlike in case 2, an attacker almost sent out as many packets as normal user    

did.  A packet's VCTS is decided by its size and T of the tunnel tree.  When a packet is 

small, VCTS will be small too.  Consequently, the packet has a higher chance to be    

accepted by an AID station. 

Second, compared with case 2, T became bigger when system converged, but 

VCTS-localTime for packets from attackers became smaller.  Smaller packets made 

smaller VCTS but more packets sent out (heavier traffic) in an iteration made bigger T. 

Third, Since T became bigger and packets from normal_user had the same 

MAXSEG as in case 2, 250, we can see VCTS-localTime for packets from normal_user 

twisted a lot, unlike in case 2. 

In our AID service, packets from either attackers or legitimate users might be 

dropped.  Because a server's capacity is fixed, if more clients try to access the server at 

the same time, every client could get less resource from the server.  If a client intends to 

use more than its share, its packets will be discarded.  The AID system controls the 

arrival rate not to surpass a server's capacity by this policy.  We can see in case 2 and 

case 3.  A client is treated differently when the traffic load changes.  A legitimate client 

slows down its outgoing TCP traffic when sensing its packets were dropped (no 

acknowledgement from the other end), if it implemented TCP correctly.  For an attacker, 

if it implemented TCP right, it would slow down outgoing traffic.  If it did not, VCTS for 

its packets would grow very fast, and most of its packets would be dropped.  Damage 
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from attackers is soothed in both cases, and at the same time, a server is still accessible to 

legitimate clients. 

Table 7-6.  Case 5 packets statistics in the AID station.  Normal_user had no packets 
dropped. 

 Attacker1 Attacker2 Normal_user 
Packet# in 1229 1185 1215 
Packet# out 723 659 1215 

BufferFull 1 BufferFull 3 BufferFull 0 
BigVCTS 505 BigVCTS 523 BigVCTS 0 
MD5Fail 0 MD5Fail 0 MD5Fail 0 

Packet# 
dropped 

CantRoute 0 CantRoute 0 CantRoute 0 
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Figure 7-9.  Distribution of incoming packets in case 5 at the AID station.  Notice the big 

“wave” of normal_user. 
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controlT (Fig 7-10A)
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Figure 7-10.  How did T and arrival rate interact with each other in case 5. 

 

 

 



CHAPTER 8 
FUTURE WORK AND CONCLUSION 

Limitations and Future Work 

Our AID system has some limitations theoretically and practically.  Improving they 

is our goal in future work. 

Protecting UDP traffic: We need the self-adaptation feature based on TCP 

congestion control to separate legitimate users and attackers.  That is why our AID 

system only protects TCP traffic at present.  Future work is to include UDP traffic into 

our AID service. 

Robustness against the compromise of AID stations: In the current design of our 

AID system, we did not address how to deal with the case that AID stations are 

compromised.  A compromised AID station can send forged UDP messages (PUSH, 

PULL, CTRLT and etc.), drop packets from legitimate users and adjust virtual clock 

maliciously.  The good thing is an AID station can be removed or added into the AID 

system easily.  We could disconnect a suspicious station for an inspection 

Traceback: The AID system can resist against DoS attacks but cannot trace back to 

the origin of attacks.  Flooding traffic might be from registered clients that are zombies 

remotely controlled by real attackers.  We may implement existing IP traceback 

mechanisms in the AID system. 

Independency of higher-level application: Our AID system is not perfectly 

independent of higher-level applications because we introduced AID layer and it is not 

processed by the Linux kernel.  However, we also do not want users to recompile their 
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Linux kernels to join the AID service.  We may find some other way to program our AID 

system to avoid the dilemma. 

Flexibility of programs: Most controlling factors are defined as constants in the 

programs.  We need to recompile them if we want to do registration, change the secret 

keys, adjust virtual clock setting and etc.  These factors can be saved in files to make our 

programs more flexible. 

Conclusion 

Most existing defense systems for DoS attacks are not self-complete.  They usually 

need universal deployment.  In the thesis a self-complete anti-DoS service (AID) was 

implemented and tested.  The AID service can be applied to Internet services, such as ssh, 

ftp, www and so on.  Everyone can join the AID service by registration and get 

immediate protection.  The AID service provides a fair share of a server's resource to all 

registered clients.  It requires no modification of end systems and routing infrastructure to 

join.  Random overlay network accommodates an efficient and scalable structure to route 

traffic from registered clients.  It changes dynamically.  An AID station can be removed 

or added easily.  Distributed virtual-clock packet scheduling algorithm blocks the traffic 

from attackers and manages the arrival rate of a server.  A registered client host, which is 

not an attacker, can access a registered server even when the server is attacked.  Finally, 

we still have some problems need to be solved in the future, for example, including UPD 

traffic into the AID service, making AID station robust, tracing back attackers and having 

programs more flexible. 

 

 

 



APPENDIX A 
HOW TO RUN 

Make sure the library libipq was installed before continue.  It can be found in 

iptables-1.2.9. 

Program server: 

• make server 
• cd src_module 
• make serverFilter.o 
• insmod ip_queue 
• insmod serverFilter.o 
• cd .. 
• ./server AIDSIP SERVERIP 

AIDSIP is IP of the AID station As.  SERVERIP is the server’s IP. 

Program client: 

• make client 
• cd src_module 
• make clientFilter.o 
• insmod ip_queue 
• insmod clientFilter.o 
• cd .. 
• ./client AIDIP 

AIDIP is IP of the AID station Ac. 

 

Program AID 

• make AID 
• cd src_module 
• make AIDFilter.o 
• insmod ip_queue 
• insmod AIDFilter.o 
• cd .. 
• ./AID clientIP serverIP 
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ClientIP is IP of the registered client and serverIP is IP of the registered server.  In 

our testing cases, we had only one client machine, AID station and server machine.  If an 

AID station wants to register more than one client or server, information of the 

client/server should be added into the function initialize() of the source file AID.c. 

 

Program alert 

• make alert 
• ./alert AIDIP serverIP serverPort 

AIDIP is IP of AID station As.  ServerIP:serverPort identifies the attacked service. 

 

Remove loaded module: 

• rmmod ip_queue 
• rmmod clientFilter 
• rmmod AIDFilter 
• rmmod serverFilter 

 

Turn on forwarding in iptables at an AID station: 

• su - 
• echo “1” > /proc/sys/net/ipv4/ip_forward 
• iptables –I FORWARD – j ACCEPT 

 

 

 



APPENDIX B 
FILE GLOBAL.H 

File global.h defined many important constants.  Their names and values we used 

in testing are: 

• #define MTU 1500: Max transfer unit. 

• #define BUFSIZE 4096: The size of the buffer that a queued packet is copied to. 

• #define TCPINFOSIZE 28: The length of an AID layer header, in byte long, for 
TCP packets entering a tunnel tree.  The whole packet looks like: IP header | TCP 
header | new destination IP (32 bits) | packet digest for integrity (128 bits) | virtual 
clock timestamp 64 bits | application data.  So, (32 + 128 + 64)/8 = 28 bytes. 

• #define UDPINFOSIZE 17: The length of an AID layer header, in byte long, for 
UDP packets.  The whole packet looks like: IP header | UDP header | packet digest 
for integrity (128 bits) | packetType 8 bits | application data.  So, (128+8)/8 = 17 
bytes. 

• #define MD5DGSIZE 16: Bytes of md5 digest created by md5 library, md5.h and 
md5.c. 

• #define RCZSIZE 4: Bytes of recognizing field of normal TCP packets. 

• #define UDPMAXSIZE 256: The max size in bytes of a UDP packet in the AID 
system, inclusive of md5 digest (16 bytes), packetType (1 byes), service list (7*n 
bytes).  It should be big enough for different UDP messages. 

• #define UDPTYPELEN 1: Length of the packetType field in a UDP packet in byte 
long. 

• #define PULLNO 0: Number of the nearby AID stations this AID station should 
send PULL messages to (variable q). 

• #define PUSHNO 0: Number of the nearby AID stations this AID station should 
send PUSH messages to (variable k).  Using square root of NEARBYAID (defined 
in AID.c) is ok. 

• #define PUSHDEEP 2: how many AID station a PUSH message can go through, 
exclusive the first one which is As. 
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• #define PULL 0: Value of packetType field for a PULL message. 

• #define PULLANS 1: Value of packetType field for a PULLANS message. 

• #define PUSH 2: Value of packetType field for a PUSH message. 

• #define CTRLT 3: Value of packetType field for a CTRLT message. 

• #define PCKTYPEOFFSET 16: The offset of packetType in UDP packets, the 
location is: UDP header 8 bytes | md5 digest 16 bytes | packetType 1 byte =16 

• #define VCSTAMPOFFSET 20: The offset of virtual clock timestamp in TCP, 
the location is: TCP header (offset bytes) | serverIP 4 bytes | md5 digest 16 bytes | 
VCTStamp 4 bytes, 4+16 = 20 

• #define DATAOFFSET 28: The offset of application data in TCP packets, the 
location is: TCP header (offset bytes) | serverIP 4 bytes | md5 digest 16 bytes | 
VCTStamp 8 bytes | application data, 4+16+8 = 28 
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