
Backtracking And Branch And Bound Subset & Permutation Problems
• Subset problem of size n.

� Nonsystematic search of the space for the answer takes 
O(p2n) time, wherep is the time needed to evaluate 

each member of the solution space.

• Permutation problem of size n.
� Nonsystematic search of the space for the answer takes 

O(pn!) time, wherep is the time needed to evaluate 
each member of the solution space.

• Backtracking and branch and bound perform a 
systematic search; often taking much less time 
than taken by a nonsystematic search. 

Tree Organization Of Solution Space
• Set up a tree structure such that the leaves 

represent members of the solution space.
• For a sizen subset problem, this tree structure has 

2n leaves.

• For a sizen permutation problem, this tree 
structure has n! leaves.

• The tree structure is too big to store in memory; it 
also takes too much time to create the tree 
structure.

• Portions of the tree structure are created by the 
backtracking and branch and bound algorithms as 
needed.

Subset Problem

• Use a full binary tree that has 2n leaves.

• At level i the members of the solution space 
are partitioned by theirxi values.

• Members withxi = 1 are in the left subtree.

• Members withxi = 0 are in the right subtree.

• Could exchange roles of left and right
subtree.

Subset Tree For n = 4

x1=1 x1= 0

x2=1 x2= 0 x2=1 x2= 0

x3=1 x3= 0

x4=1 x4=0

1110 1011 0111 0001

Permutation Problem

• Use a tree that has n! leaves.

• At level i the members of the solution space 
are partitioned by theirxi values.

• Members (if any) withxi = 1 are in the first
subtree.

• Members (if any) withxi = 2 are in the next
subtree.

• And so on.



Permutation Tree For n = 3

x1=1 x1=2
x1= 3

x2= 2 x2= 3 x2= 1 x2= 3 x2= 1 x2= 2

x3=3 x3=2 x3=3 x3=1 x3=2 x3=1

123 132 213 231 312 321

Backtracking

• Search the solution space tree in a depth-
first manner.

• May be done recursively or use a stack to 
retain the path from the root to the current 
node in the tree.

• The solution space tree exists only in your 
mind, not in the computer.

Backtracking Depth-First Search

x1=1 x1= 0

x2=1 x2= 0 x2=1 x2= 0

Backtracking Depth-First Search

x1=1 x1= 0

x2=1 x2= 0 x2=1 x2= 0

Backtracking Depth-First Search

x1=1 x1= 0

x2=1 x2= 0 x2=1 x2= 0

Backtracking Depth-First Search

x1=1 x1= 0

x2=1 x2= 0 x2=1 x2= 0



Backtracking Depth-First Search

x1=1 x1= 0

x2=1 x2= 0 x2=1 x2= 0

O(2n) Subet Sum & Bounding Functions

x1=1 x1= 0

x2=1 x2= 0 x2=1 x2= 0

Each forward and backward move takes O(1) time.

{10, 5, 2, 1}, c = 14

Bounding Functions
• When a node that represents a subset whose sum 

equals the desired sum c, terminate.

• When a node that represents a subset whose sum 
exceeds the desired sum c, backtrack. I.e., do not 
enter its subtrees, go back to parent node.

• Keep a variable r that gives you the sum of the 
numbers not yet considered. When you move to a 
right child, check if current subset sum + r >= c. 
If not, backtrack.

Backtracking

• Space required is O(tree height).

• With effective bounding functions, large instances 
can often be solved.

• For some problems (e.g., 0/1 knapsack), the 
answer (or a very good solution) may be found 
quickly but a lot of additional time is needed to 
complete the search of the tree.

• Run backtracking for as much time as is feasible 
and use best solution found up to that time.

Branch And Bound

• Search the tree using a breadth-first search (FIFO
branch and bound).

• Search the tree as in a bfs, but replace the FIFO 
queue with a stack (LIFO branch and bound).

• Replace the FIFO queue with a priority queue 
(least-cost (or max priority) branch and bound). 
The priority of a node p in the queue is based on 
an estimate of the likelihood that the answer node 
is in the subtree whose root isp.

Branch And Bound

• Space required is O(number of leaves).

• For some problems, solutions are at different 
levels of the tree (e.g., 16 puzzle).

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

1
32

4

56
13

14

15

12
11 10

9 78



Branch And Bound
� FIFO branch and bound finds solution closest to root.

� Backtracking may never find a solution because tree 
depth is infinite (unless repeating configurations are 
eliminated).

• Least-cost branch and bound directs the search to 
parts of the space most likely to contain the 
answer. So it could perform better than 
backtracking.


