Hard Problems

- Some problems are hard to solve.
- No polynomial time algorithm is known.
- E.g., NP-hard problems such as machine scheduling, bin packing, $0 / 1$ knapsack.
- Is this necessarily bad?
- Data encryption relies on difficult to solve problems.

Cryptography

Transmission
Channel

Public Key Cryptosystem (RSA) \ddagger

- A public encryption method that relies on a public encryption algorithm, a public decryption algorithm, and a public encryption key.
- Using the public key and encryption algorithm, everyone can encrypt a message.
- The decryption key is known only to authorized parties.
- Asymmetric method.
- Encryption and decryption keys are different; one is not easily computed from the other.

Public Key Cryptosystem (RSA) $=$

- p and q are two prime numbers.
- $\mathrm{n}=\mathrm{pq}$
- $\mathrm{m}=(\mathrm{p}-1)(\mathrm{q}-1)$
- a is such that $1<a<m$ and $\operatorname{gcd}(m, a)=1$.
- b is such that $(a b) \bmod m=1$.
- a is computed by generating random positive integers and testing $\operatorname{gcd}(\mathrm{m}, \mathrm{a})=1$ using the extended Euclid's gcd algorithm.
- The extended Euclid's gcd algorithm also computes b when $\operatorname{gcd}(\mathrm{m}, \mathrm{a})=1$.

RSA Encryption And Decryption \approx

- Message $\mathrm{M}<\mathrm{n}$.
- Encryption key = (a,n).
- Decryption key $=(\mathrm{b}, \mathrm{n})$.
- Encrypt $=>\mathrm{E}=\mathrm{M}^{\mathrm{a}} \bmod \mathrm{n}$.
- Decrypt $=>M=E^{b} \bmod n$.

Breaking RSA

- Factor n and determine p and $\mathrm{q}, \mathrm{n}=\mathrm{pq}$.
- Now determine $m=(p-1)(q-1)$.
- Now use Euclid's extended gcd algorithm to compute $\operatorname{gcd}(\mathrm{m}, \mathrm{a})$. b is obtained as a byproduct.
- The decryption key (b,n) has been determined!

Security Of RSA

- Relies on the fact that prime factorization is computationally very hard.
- Let q be the number of bits in the binary representation of n.
- No algorithm, polynomial in q, is known to find the prime factors of n.
- Try to find the factors of a 100 bit number.

Elliptic Curve Cryptography (ECC)

- Asymmetric Encryption Method
- Encryption and decryption keys are different; one is not easily computed from the other.
- Relies on difficulty of computing the discrete logarithm problem for the group of an elliptic curve over some finite field.
- Galois field of size a power of 2 .
- Integers modulo a prime.
- 1024-bit RSA ~ 200-bit ECC (cracking difficulty).
- Faster to compute than RSA?

Data Encryption Standard

- Used for password encryption.
- Encryption and decryption keys are the same, and are secret.
- Relies on the computational difficulty of the satisfiability problem.
- The satisfiability problem is NP-hard.

Satisfiability Problem

- The permissible values of a boolean variable are true and false.
- The complement of a boolean variable x is denoted x .
- A literal is a boolean variable or the complement of a boolean variable.
- A clause is the logical or of two or more literals.
- Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{n}}$ be n boolean variables.

Satisfiability Problem

- Example clauses:
- $\mathrm{X}_{1}+\mathrm{x}_{2}+\mathrm{X}_{3}$
- $\mathrm{x}_{4}+\overline{\mathrm{x}}_{7}+\mathrm{x}_{8}$
- $\mathrm{x}_{3}+\mathrm{x}_{7}+\mathrm{x}_{9}+\mathrm{x}_{15}$
- $\mathrm{X}_{2}+\mathrm{X}_{5}$
- A boolean formula (in conjunctive normal form CNF) is the logical and of m clauses.
- $\mathrm{F}=\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \ldots \mathrm{C}_{\mathrm{m}}$

Satisfiability Problem

- $\mathrm{F}=\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}\right)\left(\mathrm{x}_{4}+\mathrm{x}_{7}+\mathrm{x}_{8}\right)\left(\mathrm{x}_{2}+\mathrm{x}_{5}\right)$
- F is true when x_{1}, x_{2}, and x_{4} (for e.g.) are true.

Satisfiability Problem

- A boolean formula is satisfiable iff there is at least one truth assignment to its variables for which the formula evaluates to true.
- Determining whether a boolean formula in CNF is satisfiable is NP-hard.
- Problem is solvable in polynomial time when no clause has more than 2 literals.
- Remains NP-hard even when no clause has more than 3 literals.

Other Problems

- Partition
- Partition n positive integers $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \ldots, \mathrm{~s}_{\mathrm{n}}$ into two groups A and B such that the sum of the numbers in each group is the same.
- [9, 4, 6, 3, 5, 1,8]
- $\mathrm{A}=[9,4,5]$ and $\mathrm{B}=[6,3,1,8]$
- NP-hard.

Subset Sum Problem

- Does any subset of n positive integers $\mathrm{s}_{1}, \mathrm{~s}_{2}$, $\mathrm{s}_{3}, \ldots, \mathrm{~s}_{\mathrm{n}}$ have a sum exactly equal to c ?
- $[9,4,6,3,5,1,8]$ and $\mathrm{c}=18$
- $\mathrm{A}=[9,4,5]$
- NP-hard.

Traveling Salesperson Problem (TSP)

- Let G be a weighted directed graph.
- A tour in G is a cycle that includes every vertex of the graph.
- TSP => Find a tour of shortest length.
- Problem is NP-hard.

Applications Of TSP

- Home city
- Visit city

Applications Of TSP

- Each vertex represents a city that is in Joe's sales district.
- The weight on edge (u, v) is the time it takes Joe to travel from city u to city v.
- Once a month, Joe leaves his home city, visits all cities in his district, and returns home.
- The total time he spends on this tour of his district is the travel time plus the time spent at the cities.
- To minimize total time, Joe must use a shortest-length tour.

Applications Of TSP

- Tennis practice.
- Start with a basket of approximately 200 tennis balls.
- When balls are depleted, we have 200 balls lying on and around the court.
- The balls are to be picked up by a robot (more realistically, the tennis player).
- The robot starts from its station visits each ball exactly once (i.e., picks up each ball) and returns to its station.

Applications Of TSP

Applications Of TSP

- 201 vertex TSP.
- 200 tennis balls and robot station are the vertices.
- Complete directed graph.
- Length of an edge (u,v) is the distance between the two objects represented by vertices u and v.
- Shortest-length tour minimzes ball pick up time.
- Actually, we may want to minimize the sum of the time needed to compute a tour and the time spent picking up balls using the computed tour.

Applications Of TSP

- Manufacturing.
- A robot arm is used to drill n holes in a metal sheet.

n+1 vertex TSP.

n-Queens Problem

A queen that is placed on an $n \times n$ chessboard, may attack any piece placed in the same column, row, or diagonal.

8x8 Chessboard

n-Queens Problem

Can n queens be placed on an $n x n$ chessboard so that no queen may attack another queen?

n-Queens Problem

8x8

Difficult Problems

- Many require you to find either a subset or permutation that satisfies some constraints and (possibly also) optimizes some objective function.
- May be solved by organizing the solution space into a tree and systematically searching this tree for the answer.

Subset Problems

- Solution requires you to find a subset of n elements.
- The subset must satisfy some constraints and possibly optimize some objective function.
- Examples.
- Partition.
- Subset sum.
- 0/1 Knapsack.
- Satisfiability (find subset of variables to be set to true so that formula evaluates to true).
- Scheduling 2 machines.
- Packing 2 bins.

Permutation Problems

- Solution requires you to find a permutation of n elements.
- The permutation must satisfy some constraints and possibly optimize some objective function.
- Examples.
- TSP.
- n-queens.
$>$ Each queen must be placed in a different row and different column.
$>$ Let queen i be the queen that is going to be placed in row i .
\Rightarrow Let c_{i} be the column in which queen i is placed.
$>\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \ldots, \mathrm{c}_{\mathrm{n}}$ is a permutation of $[1,2,3, \ldots, \mathrm{n}]$ such that no two queens attack.

Solution Space

- Set that includes at least one solution to the problem.
- Subset problem.
- $\mathrm{n}=2,\{00,01,10,11\}$
- $\mathrm{n}=3,\{000,001,010,100,011,101,110,111\}$
- Solution space for subset problem has 2^{n} members.
- Nonsystematic search of the space for the answer takes $\mathrm{O}\left(\mathrm{p} 2^{\mathrm{n}}\right)$ time, where p is the time needed to evaluate each member of the solution space.

Solution Space

- Permutation problem.
- $\mathrm{n}=2,\{12,21\}$
- $\mathrm{n}=3,\{123,132,213,231,312,321\}$
- Solution space for a permutation problem has n ! members.
- Nonsystematic search of the space for the answer takes $\mathrm{O}(\mathrm{pn}!)$ time, where p is the time needed to evaluate a member of the solution space.

