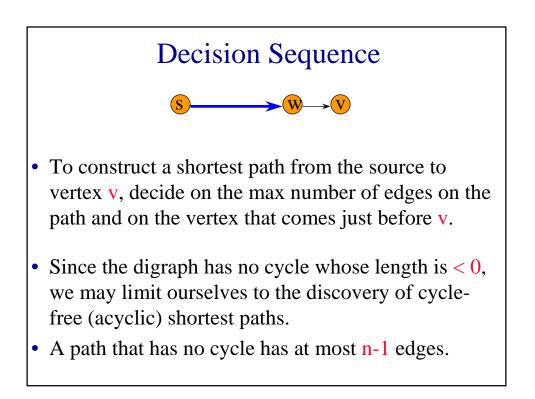
Single-Source All-Destinations Shortest Paths With Negative Costs

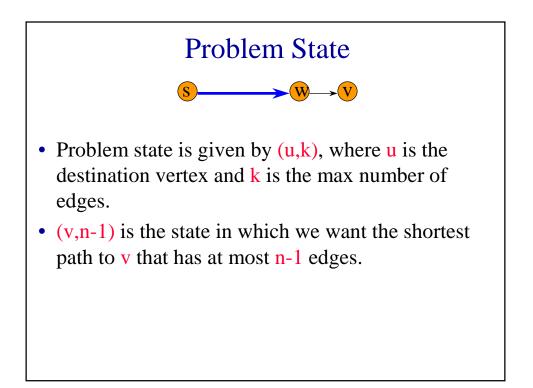
- Directed weighted graph.
- Edges may have negative cost.
- No cycle whose cost is < 0.
- Find a shortest path from a given source vertex
 s to each of the n vertices of the digraph.

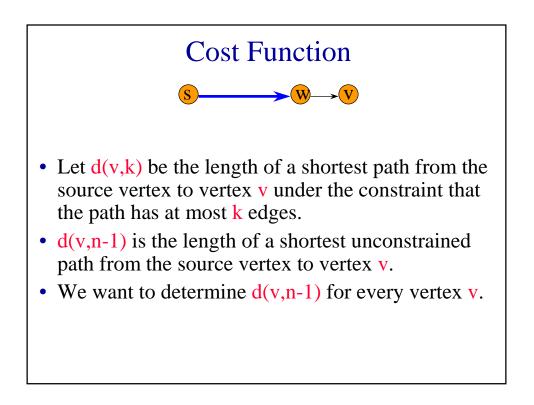
- Dijkstra's O(n²) single-source greedy algorithm doesn't work when there are negative-cost edges.
- Floyd's Theta(n³) all-pairs dynamicprogramming algorithm does work in this case.

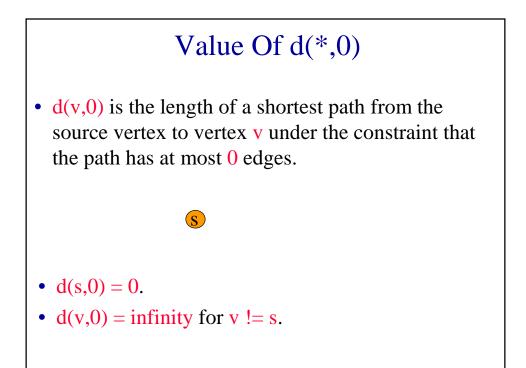
Bellman-Ford Algorithm

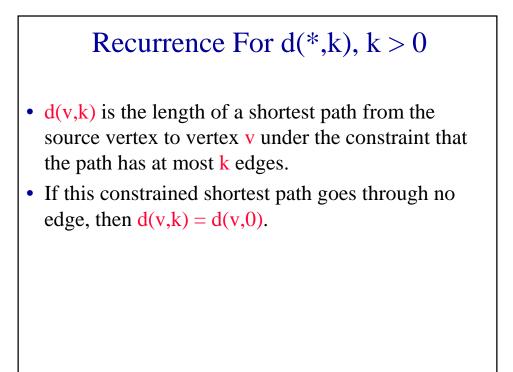
- Single-source all-destinations shortest paths in digraphs with negative-cost edges.
- Uses dynamic programming.
- Runs in O(n³) time when adjacency matrices are used.
- Runs in O(ne) time when adjacency lists are used.

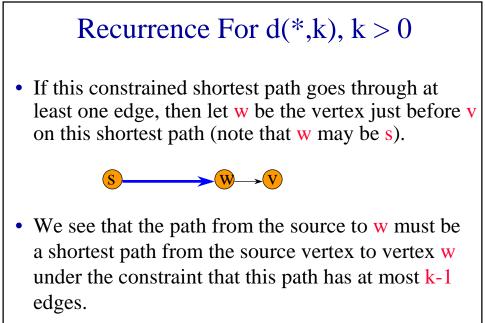




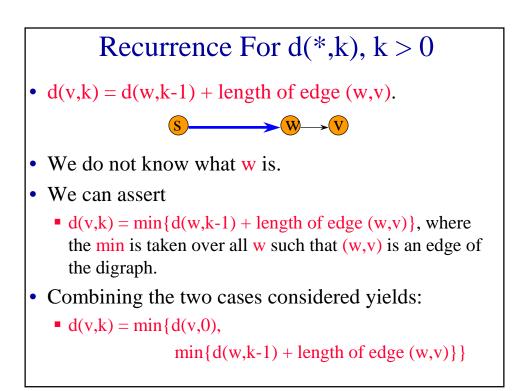


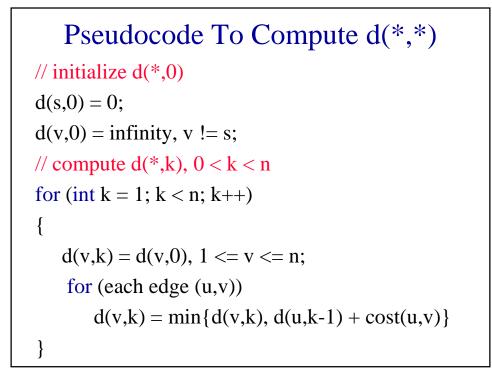


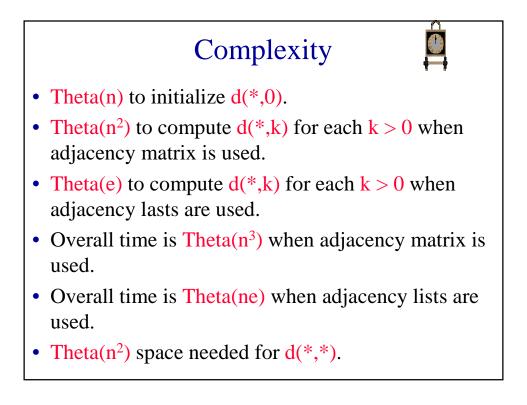


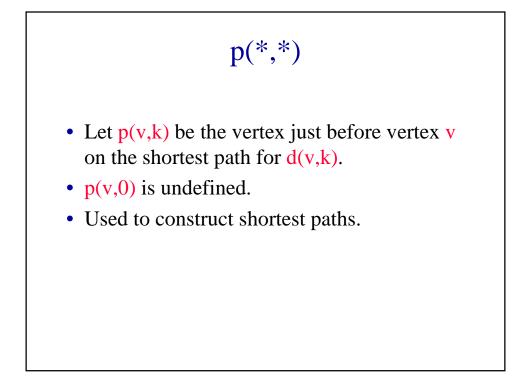


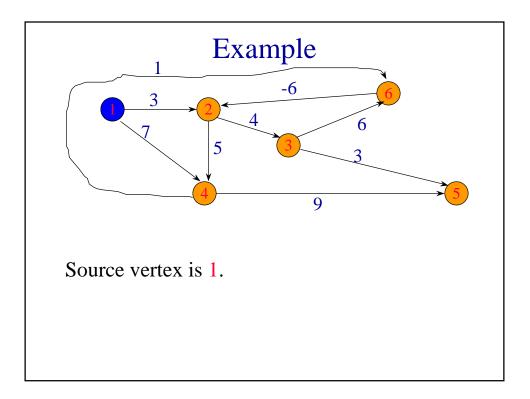
• d(v,k) = d(w,k-1) + length of edge (w,v).

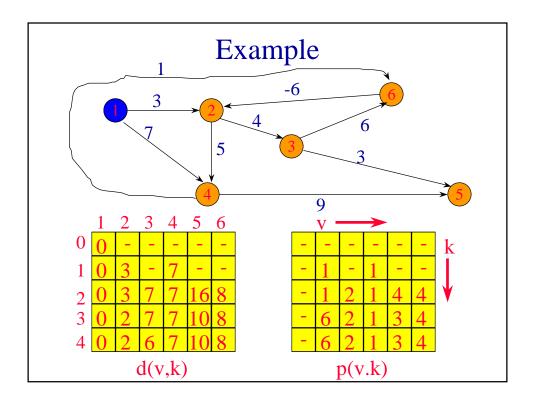


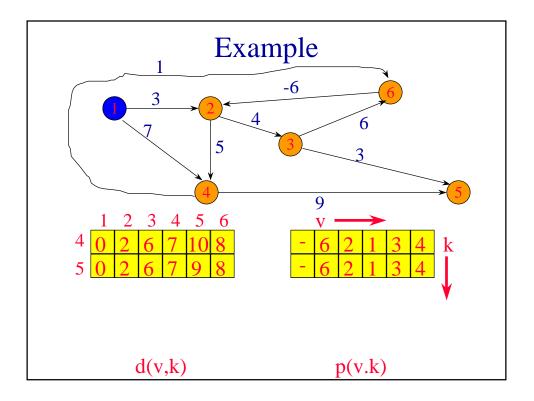


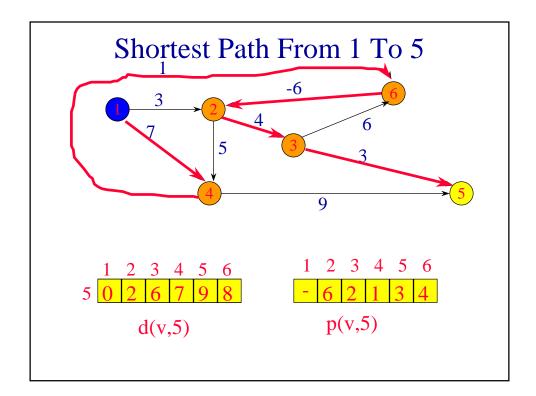


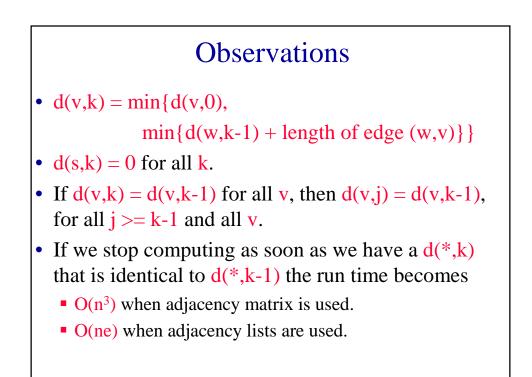












Observations

The computation may be done in-place.
 d(v) = min{d(v), min{d(w) + length of edge (w,v)}} instead of
 d(v,k) = min{d(v,0),

 $\min\{d(w,k-1) + \text{length of edge } (w,v)\}\}$

- Following iteration k, $d(v,k+1) \le d(v) \le d(v,k)$
- On termination d(v) = d(v,n-1).
- Space requirement becomes O(n) for d(*) and p(*).