

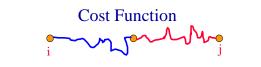
Dynamic Programming Solution

- Time complexity is Theta(n³) time.
- Works so long as there is no cycle whose length is < 0.
- When there is a cycle whose length is < 0, some shortest paths aren't finite.
 - If vertex 1 is on a cycle whose length is -2, each time you go around this cycle once you get a 1 to 1 path that is 2 units shorter than the previous one.
- Simpler to code, smaller overheads.
- Known as Floyd's shortest paths algorithm.

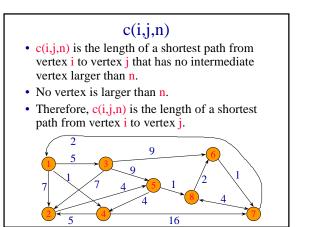
Decision Sequence

- First decide the highest intermediate vertex (i.e., largest vertex number) on the shortest path from i to j.
- If the shortest path is i, 2, 6, 3, 8, 5, 7, j the first decision is that vertex 8 is an intermediate vertex on the shortest path and no intermediate vertex is larger than 8.
- Then decide the highest intermediate vertex on the path from i to 8, and so on.

- (i,j,k) denotes the problem of finding the shortest path from vertex i to vertex j that has no intermediate vertex larger than k.
- (i,j,n) denotes the problem of finding the shortest path from vertex i to vertex j (with no restrictions on intermediate vertices).

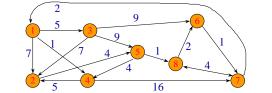


• Let c(i,j,k) be the length of a shortest path from vertex i to vertex j that has no intermediate vertex larger than k.



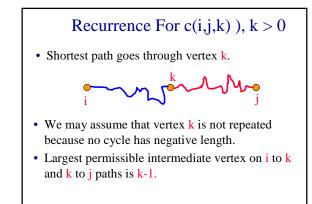
c(i,j,0)

- c(i,j,0) is the length of a shortest path from vertex i to vertex j that has no intermediate vertex larger than 0.
 - Every vertex is larger than 0.
 - Therefore, c(i,j,0) is the length of a single-edge path from vertex i to vertex j.



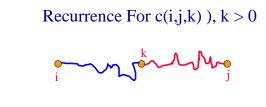
Recurrence For c(i,j,k), k > 0

- The shortest path from vertex i to vertex j that has no intermediate vertex larger than k may or may not go through vertex k.
- If this shortest path does not go through vertex k, the largest permissible intermediate vertex is k-1. So the path length is c(i,j,k-1).



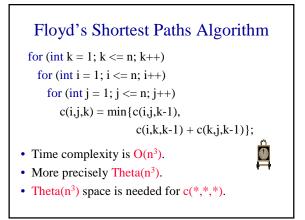
Recurrence For c(i,j,k)), k > 0

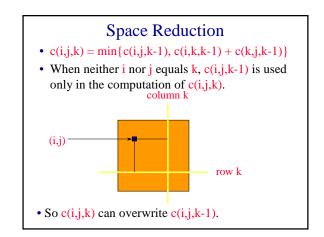
- i to k path must be a shortest i to k path that goes through no vertex larger than k-1.
- If not, replace current i to k path with a shorter i to k path to get an even shorter i to j path.

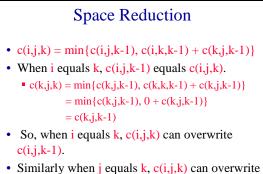


- Similarly, k to j path must be a shortest k to j path that goes through no vertex larger than k-1.
- Therefore, length of i to k path is c(i,k,k-1), and length of k to j path is c(k,j,k-1).
- So, c(i,j,k) = c(i,k,k-1) + c(k,j,k-1).

- Combining the two equations for c(i,j,k), we get $c(i,j,k) = \min\{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)\}.$
- We may compute the c(i,j,k)s in the order k = 1, 2, 3, ..., n.







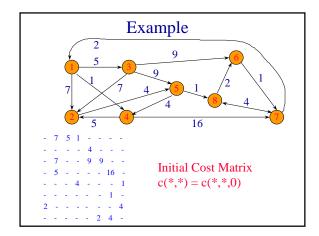
- Similarly when j equals k, c(1,j,k) can overwrite c(i,j,k-1).
- So, in all cases c(i,j,k) can overwrite c(i,j,k-1).



Building The Shortest Paths

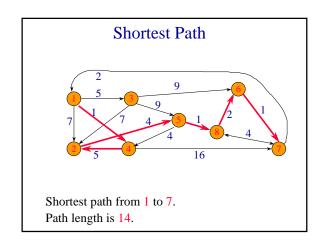
- Let kay(i,j) be the largest vertex on the shortest path from i to j.
- Initially, kay(i,j) = 0 (shortest path has no intermediate vertex).

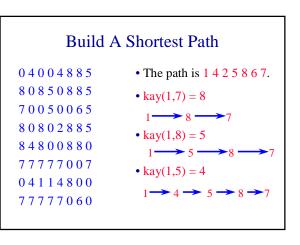
```
\label{eq:states} \begin{split} & \text{for (int } k=1; \, k <= n; \, k++) \\ & \text{for (int } i=1; \, i <= n; \, i++) \\ & \text{for (int } j=1; \, j <= n; \, j++) \\ & \text{if } (c(i,j) > c(i,k) + c(k,j)) \\ & \quad \{ kay(i,j) = k; \, c(i,j) = c(i,k) + c(k,j); \} \end{split}
```



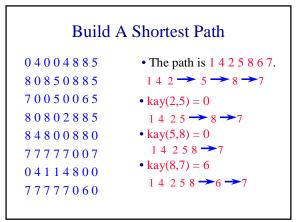
Final Co	ost	M	atr	ix	c(*	;,*)) =	c(*	,*,r	n)
0	6	5	1	10	13	14	11			
10	0	15	8	4	7	8	5			
12	7	0	13	9	9	10	10			
15	5	20	0	9	12	13	10			
6	9	11	4	0	3	4	1			
3	9	8	4	13	0	1	5			
2	8	7	3	12	6	0	4			
5	11	10	6	15	2	3	0			

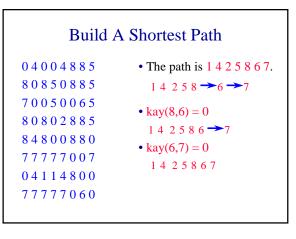
kay Matrix	
04004885	
80850885	
70050065	
80802885	
84800880	
7777007	
$0\ 4\ 1\ 1\ 4\ 8\ 0\ 0$	
7777060	

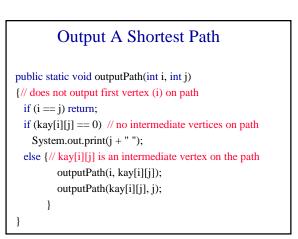




Build A Shortest Path						
04004885	• The path is 1 4 2 5 8 6 7.					
80850885	$1 \longrightarrow 4 \longrightarrow 5 \longrightarrow 8 \longrightarrow 7$					
70050065	• $kay(1,4) = 0$					
80802885	$1 4 \longrightarrow 5 \longrightarrow 8 \longrightarrow 7$					
84800880	• $kay(4,5) = 2$					
77777007	$1 \xrightarrow{4} 2 \xrightarrow{5} 5 \xrightarrow{8} 7$					
04114800	• $kay(4,2) = 0$					
77777060	$1 4 2 \rightarrow 5 \rightarrow 8 \rightarrow 7$					







O(number of vertices on shortest path)