All-Pairs Shortest Paths

- Given an n-vertex directed weighted graph, find a shortest path from vertex i to vertex j for each of the n^{2} vertex pairs (i,j).

Dijkstra's Single Source Algorithm

- Use Dijkstra's algorithm n times, once with each of the n vertices as the source vertex.

Performance

- Time complexity is $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time.
- Works only when no edge has a cost <0.

Dynamic Programming Solution

- Time complexity is Theta $\left(\mathrm{n}^{3}\right)$ time.
- Works so long as there is no cycle whose length is <0.
- When there is a cycle whose length is <0, some shortest paths aren't finite.
- If vertex 1 is on a cycle whose length is -2 , each time you go around this cycle once you get a 1 to 1 path that is 2 units shorter than the previous one.
- Simpler to code, smaller overheads.
- Known as Floyd's shortest paths algorithm.

- First decide the highest intermediate vertex (i.e., largest vertex number) on the shortest path from i to j .
- If the shortest path is $\mathrm{i}, 2,6,3,8,5,7$, j the first decision is that vertex 8 is an intermediate vertex on the shortest path and no intermediate vertex is larger than 8 .
- Then decide the highest intermediate vertex on the path from it to 8, and so on.

Problem State

- (i,j,k) denotes the problem of finding the shortest path from vertex ito vertex j that has no intermediate vertex larger than k .
- (i,j,n) denotes the problem of finding the shortest path from vertex i to vertex j (with no restrictions on intermediate vertices).

- Let $\mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ be the length of a shortest path from vertex i to vertex j that has no intermediate vertex larger than k .

$\mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{n})$

- $c(i, j, n)$ is the length of a shortest path from vertex i to vertex j that has no intermediate vertex larger than n.
- No vertex is larger than n.
- Therefore, $\mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{n})$ is the length of a shortest path from vertex i to vertex j.

$$
c(i, j, 0)
$$

- $c(i, j, 0)$ is the length of a shortest path from vertex i to vertex j that has no intermediate vertex larger than 0 .
- Every vertex is larger than 0 .
- Therefore, $\mathrm{c}(\mathrm{i}, \mathrm{j}, 0)$ is the length of a single-edge path from vertex i to vertex j .

Recurrence For $\mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k}), \mathrm{k}>0$

- The shortest path from vertex i to vertex j that has no intermediate vertex larger than k may or may not go through vertex k .
- If this shortest path does not go through vertex k, the largest permissible intermediate vertex is $\mathrm{k}-1$. So the path length is $\mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k}-1)$.

Recurrence For $\mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k})$), $\mathrm{k}>0$

- Shortest path goes through vertex k .

- We may assume that vertex k is not repeated because no cycle has negative length.
- Largest permissible intermediate vertex on i to k and k to j paths is $\mathrm{k}-1$.

Recurrence For $\mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k}) \mathrm{)}, \mathrm{k}>0$

- i to k path must be a shortest i to k path that goes through no vertex larger than k-1.
- If not, replace current i to k path with a shorter i to k path to get an even shorter i to j path.

Recurrence For $\mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k})$), $\mathrm{k}>0$

- Similarly, k to j path must be a shortest k to j path that goes through no vertex larger than k-1.
- Therefore, length of i to k path is $\mathrm{c}(\mathrm{i}, \mathrm{k}, \mathrm{k}-1)$, and length of k to j path is $\mathrm{c}(\mathrm{k}, \mathrm{j}, \mathrm{k}-1)$.
- So, $c(i, j, k)=c(i, k, k-1)+c(k, j, k-1)$.

Recurrence For $\mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k}) \mathrm{)}, \mathrm{k}>0$

- Combining the two equations for $\mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k})$, we get $\mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k})=\min \{\mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k}-1), \mathrm{c}(\mathrm{i}, \mathrm{k}, \mathrm{k}-1)+\mathrm{c}(\mathrm{k}, \mathrm{j}, \mathrm{k}-1)\}$.
- We may compute the $\mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k}) \mathrm{s}$ in the order $\mathrm{k}=1$, $2,3, \ldots, n$.

Floyd's Shortest Paths Algorithm

$$
\begin{aligned}
& \text { for (int } \mathrm{k}=1 ; \mathrm{k}<=\mathrm{n} ; \mathrm{k}++ \text {) } \\
& \text { for (int } \mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++ \text {) } \\
& \text { for (int } \mathrm{j}=1 ; \mathrm{j}<=\mathrm{n} ; \mathrm{j}++) \\
& \qquad \mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k})=\min \{\mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k}-1) \\
& \qquad \mathrm{c}(\mathrm{i}, \mathrm{k}, \mathrm{k}-1)+\mathrm{c}(\mathrm{k}, \mathrm{j}, \mathrm{k}-1)\}
\end{aligned}
$$

- Time complexity is $\mathrm{O}\left(\mathrm{n}^{3}\right)$.
- More precisely Theta(n^{3}).
- Theta $\left(\mathrm{n}^{3}\right)$ space is needed for $\mathrm{c}\left(*,{ }^{*}, *\right)$.

Space Reduction

- $\mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k})=\min \{\mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k}-1), \mathrm{c}(\mathrm{i}, \mathrm{k}, \mathrm{k}-1)+\mathrm{c}(\mathrm{k}, \mathrm{j}, \mathrm{k}-1)\}$
- When neither i nor j equals $\mathrm{k}, \mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k}-1)$ is used only in the computation of $\mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k})$.
column k

- So c(i,j,k) can overwrite $\mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k}-1)$.

Space Reduction

- $c(i, j, k)=\min \{c(i, j, k-1), c(i, k, k-1)+c(k, j, k-1)\}$
- When i equals $k, c(i, j, k-1)$ equals $c(i, j, k)$.
- $\mathrm{c}(\mathrm{k}, \mathrm{j}, \mathrm{k})=\min \{\mathrm{c}(\mathrm{k}, \mathrm{j}, \mathrm{k}-1), \mathrm{c}(\mathrm{k}, \mathrm{k}, \mathrm{k}-1)+\mathrm{c}(\mathrm{k}, \mathrm{j}, \mathrm{k}-1)\}$
$=\min \{c(\mathrm{k}, \mathrm{j}, \mathrm{k}-1), 0+\mathrm{c}(\mathrm{k}, \mathrm{j}, \mathrm{k}-1)\}$ $=c(\mathrm{k}, \mathrm{j}, \mathrm{k}-1)$
- So, when i equals k, c(i,j,k) can overwrite $\mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k}-1)$.
- Similarly when j equals $\mathrm{k}, \mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ can overwrite $\mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k}-1)$.
- So, in all cases $\mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ can overwrite $\mathrm{c}(\mathrm{i}, \mathrm{j}, \mathrm{k}-1)$.

Floyd's Shortest Paths Algorithm

$$
\begin{aligned}
& \text { for (int } \mathrm{k}=1 ; \mathrm{k}<=\mathrm{n} ; \mathrm{k}++ \text {) } \\
& \text { for (int } \mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++) \\
& \quad \text { for }(\operatorname{int} \mathrm{j}=1 ; \mathrm{j}<=\mathrm{n} ; \mathrm{j}++) \\
& \quad \mathrm{c}(\mathrm{i}, \mathrm{j})=\min \{\mathrm{c}(\mathrm{i}, \mathrm{j}), \mathrm{c}(\mathrm{i}, \mathrm{k})+\mathrm{c}(\mathrm{k}, \mathrm{j})\}
\end{aligned}
$$

- Initially, $c(i, j)=c(i, j, 0)$.
- Upon termination, $c(i, j)=c(i, j, n)$.
- Time complexity is Theta(n^{3}).
- Theta $\left(\mathrm{n}^{2}\right)$ space is needed for $\mathrm{c}\left({ }^{*}, *\right)$.

Building The Shortest Paths

- Let kay(i,j) be the largest vertex on the shortest path from i to j .
- Initially, kay $(\mathrm{i}, \mathrm{j})=0$ (shortest path has no intermediate vertex).

$$
\begin{aligned}
& \text { for (int } \mathrm{k}=1 ; \mathrm{k}<=\mathrm{n} ; \mathrm{k}++ \text {) } \\
& \text { for (int } \mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++ \text {) } \\
& \qquad \text { for (int } \mathrm{j}=1 ; \mathrm{j}<=\mathrm{n} ; \mathrm{j}++ \text {) } \\
& \quad \text { if }(\mathrm{c}(\mathrm{i}, \mathrm{j})>\mathrm{c}(\mathrm{i}, \mathrm{k})+\mathrm{c}(\mathrm{k}, \mathrm{j})) \\
& \quad\{\operatorname{kay}(\mathrm{i}, \mathrm{j})=\mathrm{k} ; \mathrm{c}(\mathrm{i}, \mathrm{j})=\mathrm{c}(\mathrm{i}, \mathrm{k})+\mathrm{c}(\mathrm{k}, \mathrm{j}) ;\}
\end{aligned}
$$

Final Cost Matrix c(*,*) $=\mathrm{c}(*, *, n)$

0	6	5	1	10	13	14	11
10	0	15	8	4	7	8	5

$\begin{array}{llllllll}10 & 0 & 15 & 8 & 4 & 7 & 8 & 5\end{array}$
$\begin{array}{llllllll}12 & 7 & 0 & 13 & 9 & 9 & 10 & 10\end{array}$
$\begin{array}{lllllll}15 & 5 & 20 & 0 & 9 & 12 & 13\end{array} 10$
$\begin{array}{llllllll}6 & 9 & 11 & 4 & 0 & 3 & 4 & 1\end{array}$
$\begin{array}{llllllll}3 & 9 & 8 & 4 & 13 & 0 & 1 & 5\end{array}$
$\begin{array}{llllllll}2 & 8 & 7 & 3 & 12 & 6 & 0 & 4\end{array}$
$\begin{array}{lllllll}5 & 11 & 10 & 6 & 15 & 2 & 3\end{array}$

kay Matrix

04004885
80850885
70050065
80802885
84800880
77777007
04114800
77777060

Shortest path from 1 to 7.
Path length is 14 .

Build A Shortest Path

- The path is 1425867 .
- $\operatorname{kay}(1,7)=8$
$1 \longrightarrow 8 \longrightarrow 7$
- $\operatorname{kay}(1,8)=5$
$1 \longrightarrow 5 \longrightarrow 8 \longrightarrow 7$
- $\operatorname{kay}(1,5)=4$
$1 \rightarrow 4 \rightarrow 5 \rightarrow 8 \rightarrow 7$

Build A Shortest Path	
04004885	- The path is 1425867.
80850885	$1 \rightarrow 4 \rightarrow 5 \rightarrow 8 \rightarrow 7$
70050065	- $\operatorname{kay}(1,4)=0$
80802885	$14 \rightarrow 5$
84800880	- $\operatorname{kay}(4,5)=2$
77777007	$14 \rightarrow 2 \rightarrow 5 \rightarrow 8 \rightarrow 7$
04114800	- $\operatorname{kay}(4,2)=0$
77777060	$142 \rightarrow 5 \rightarrow 8 \rightarrow 7$

Build A Shortest Path	
04004885	- The path is 1425867.
80850885	$142 \rightarrow 5 \rightarrow 8 \rightarrow 7$
70050065	- $\operatorname{kay}(2,5)=0$
80802885	$1425 \rightarrow 8 \rightarrow 7$
84800880	- $\operatorname{kay}(5,8)=0$
77777007	$14258 \rightarrow 7$
04114800	- $\operatorname{kay}(8,7)=6$
77777060	$14258 \rightarrow 6 \rightarrow 7$

Build A Shortest Path

04004885	\bullet The path is 1425867.
80850885	$14258 \rightarrow 6 \rightarrow 7$
70050065	$\bullet \operatorname{kay}(8,6)=0$
80802885	$142586 \rightarrow 7$
84800880	$\bullet \operatorname{kay}(6,7)=0$
77777007	1425867
04114800	
77777060	

Output A Shortest Path

public static void outputPath(int i , int j)
\{// does not output first vertex (i) on path if ($\mathrm{i}==\mathrm{j}$) return;
if $(\operatorname{kay}[i][j]==0) / /$ no intermediate vertices on path System.out.print(j + " ");
else $\{/ /$ kay[i][j] is an intermediate vertex on the path outputPath(i, kay[i][j]);
outputPath(kay[i][j], j);
\}
\}

Time Complexity Of outputPath \hat{A}

 O (number of vertices on shortest path)