

- Steps.
 - ✓ View the problem solution as the result of a sequence of decisions.
 - ✓ Obtain a formulation for the problem state.
 - ✓ Verify that the principle of optimality holds.
 - ✓ Set up the dynamic programming recurrence equations.
 - ✓ Solve these equations for the value of the optimal solution.
 - Perform a traceback to determine the optimal solution.

🛕 Dynamic Programming 🛕

- When solving the dynamic programming recurrence recursively, be sure to avoid the recomputation of the optimal value for the same problem state.
- To minimize run time overheads, and hence to reduce actual run time, dynamic programming recurrences are almost always solved iteratively (no recursion).


```
// initialize f[n][]
int yMax = Math.min(w[n] - 1, c);
for (int y = 0; y <= yMax; y++)
f[n][y] = 0;
for (int y = w[n]; y <= c; y++)
f[n][y] = p[n];</pre>
```


Matrix Multiplication Chains

• Multiply an m x n matrix A and an n x p matrix B to get an m x p matrix C.

$$C(i,j) = \sum_{k=1}^{n} A(i,k) * B(k,j)$$

- We shall use the number of multiplications as our complexity measure.
- n multiplications are needed to compute one C(i,j).
- mnp multiplicatons are needed to compute all mp terms of C.

Matrix Multiplication Chains

- Suppose that we are to compute the product X*Y*Z of three matrices X, Y and Z.
- The matrix dimensions are:
 X:(100 x 1), Y:(1 x 100), Z:(100 x 1)
- Multiply X and Y to get a 100 x 100 matrix T.
 100 * 1 * 100 = 10,000 multiplications.
- Multiply T and Z to get the 100 x 1 answer.
 100 * 100 * 1 = 10,000 multiplications.
- Total cost is 20,000 multiplications.
- 10,000 units of space are needed for T.

Matrix Multiplication Chains

- The matrix dimensions are:
 X:(100 x 1)
 - Y:(1 x 100)
 - Z:(100 x 1)
- Multiply Y and Z to get a 1 x 1 matrix T.
 1 * 100 * 1 = 100 multiplications.
- Multiply X and T to get the 100 x 1 answer.
 100 * 1 * 1 = 100 multiplications.
- Total cost is 200 multiplications.
- 1 unit of space is needed for T.

Product Of 5 Matrices

- Some of the ways in which the product of 5 matrices may be computed.
 - A*(B*(C*(D*E))) right to left
 - (((A*B)*C)*D)*E left to right
 - $(A^*B)^*((C^*D)^*E)$
 - $(A^*B)^*(C^*(D^*E))$
 - (A*(B*C))*(D*E)
 - ((A*B)*C)*(D*E)

Find Best Multiplication Order Number of ways to compute the product of q matrices is $O(4^{4/}q^{1.5})$.

• Evaluating all ways to compute the product takes $O(4^{q}/q^{0.5})$ time.

An Application

• Registration of pre- and post-operative 3D brain MRI images to determine volume of removed tumor.

3D Registration

- Each image has 256 x 256 x 256 voxels.
- In each iteration of the registration algorithm, the product of three matrices is computed at each voxel ... (12 x 3) * (3 x 3) * (3 x 1)
- Left to right computation => 12 * 3 * 3 + 12 * 3*1 = 144 multiplications per voxel per iteration.
- 100 iterations to converge.

3D Registration

- Total number of multiplications is about $2.4 * 10^{11}$.
- Right to left computation => 3 * 3*1 + 12 * 3 * 1
 = 45 multiplications per voxel per iteration.
- Total number of multiplications is about 7.5 * 10^{10} .
- With 10⁸ multiplications per second, time is 40 min vs 12.5 min.