
Dynamic Programming
• Steps.

9View the problem solution as the result of a sequence
of decisions.

9Obtain a formulation for the problem state.
9Verify that the principle of optimality holds.
9Set up the dynamic programming recurrence

equations.
9Solve these equations for the value of the optimal

solution.
� Perform a traceback to determine the optimal

solution.

Dynamic Programming

• When solving the dynamic programming
recurrence recursively, be sure to avoid the
recomputation of the optimal value for the
same problem state.

• To minimize run time overheads, and hence
to reduce actual run time, dynamic
programming recurrences are almost always
solved iteratively (no recursion).

0/1 Knapsack Recurrence

• If wn <= y, f(n,y) = pn.

• If wn > y, f(n,y) = 0.

• When i < n
� f(i,y) = f(i+1,y) whenever y < wi.

� f(i,y) = max{f(i+1,y), f(i+1,y-wi) + pi} , y >= wi.

• Assume the weights and capacity are integers.

• Only f(i,y)s with 1 <= i <= n and 0 <= y <= c
are of interest.

Iterative Solution Example

• n = 5, c = 8, w = [4,3,5,6,2], p = [9,7,10,9,3]

y

5
4
3
2
1

f[i][y]
0 1 2 3 4 5 6 7 8

i

Compute f[5][*]

• n = 5, c = 8, w = [4,3,5,6,2], p = [9,7,10,9,3]

y

5
4
3
2
1

f[i][y]
0 1 2 3 4 5 6 7 8

i

0 0 3 3 3 3 3 3 3

Compute f[4][*]

• n = 5, c = 8, w = [4,3,5,6,2], p = [9,8,10,9,3]

y

5
4
3
2
1

f[i][y]
0 1 2 3 4 5 6 7 8

i

0 0 3 3 3 3 3 3 3

0 0 3 3 3 3 9 9 12

f(i,y) = max{f(i+1,y), f(i+1,y-wi) + pi} , y >= wi

Compute f[3][*]

• n = 5, c = 8, w = [4,3,5,6,2], p = [9,8,10,9,3]

y

5
4
3
2
1

f[i][y]
0 1 2 3 4 5 6 7 8

i

0 0 3 3 3 3 3 3 3

0 0 3 3 3 3 9 9 12

0 0 3 3 3 10 10 13 13

f(i,y) = max{f(i+1,y), f(i+1,y-wi) + pi} , y >= wi

Compute f[2][*]

• n = 5, c = 8, w = [4,3,5,6,2], p = [9,8,10,9,3]

y

5
4
3
2
1

f[i][y]
0 1 2 3 4 5 6 7 8

i

0 0 3 3 3 3 3 3 3

0 0 3 3 3 3 9 9 12

0 0 3 3 3 10 10 13 13

0 0 3 8 8 11 11 13 18

f(i,y) = max{f(i+1,y), f(i+1,y-wi) + pi} , y >= wi

Compute f[1][c]

• n = 5, c = 8, w = [4,3,5,6,2], p = [9,8,10,9,3]

y

5
4
3
2
1

f[i][y]
0 1 2 3 4 5 6 7 8

i

0 0 3 3 3 3 3 3 3

0 0 3 3 3 3 9 9 12

0 0 3 3 3 10 10 13 13

0 0 3 8 8 11 11 13 18

18

f(i,y) = max{f(i+1,y), f(i+1,y-wi) + pi} , y >= wi

Iterative Implementation

// initialize f[n][]

int yMax = Math.min(w[n] - 1, c);

for (int y = 0; y <= yMax; y++)

f[n][y] = 0;

for (int y = w[n]; y <= c; y++)

f[n][y] = p[n];

Iterative Implementation
// compute f[i][y], 1 < i < n
for (int i = n - 1; i > 1; i--)
{

yMax = Math.min(w[i] - 1, c);
for (int y = 0; y <= yMax; y++)

f[i][y] = f[i + 1][y];
for (int y = w[i]; y <= c; y++)

f[i][y] = Math.max(f[i + 1][y],
f[i + 1][y - w[i]] + p[i]);

}

Iterative Implementation

// compute f[1][c]

f[1][c] = f[2][c];

if (c >= w[1])

f[1][c] = Math.max(f[1][c],

f[2][c-w[1]] + p[1]);

}

Time Complexity

• O(cn).
• Same as for the recursive version with no

recomputations.
• Iterative version is expected to run faster

because of lower overheads.
� No checks to see if f[i][j] already computed

(but all f[i][j] are computed).
� Method calls replaced by for loops.

Traceback

• n = 5, c = 8, w = [4,3,5,6,2], p = [9,8,10,9,3]

y

5
4
3
2
1

f[i][y]
0 1 2 3 4 5 6 7 8

i

0 0 3 3 3 3 3 3 3

0 0 3 3 3 3 9 9 12

0 0 3 3 3 10 10 13 13

0 0 3 8 8 11 11 13 18

18

f[1][8] = f[2][8] => x 1 = 0

Traceback

• n = 5, c = 8, w = [4,3,5,6,2], p = [9,8,10,9,3]

y

5
4
3
2
1

f[i][y]
0 1 2 3 4 5 6 7 8

i

0 0 3 3 3 3 3 3 3

0 0 3 3 3 3 9 9 12

0 0 3 3 3 10 10 13 13

0 0 3 8 8 11 11 13 18

18

f[2][8] != f[3][8] => x 2 = 1

10

Traceback

• n = 5, c = 8, w = [4,3,5,6,2], p = [9,8,10,9,3]

y

5
4
3
2
1

f[i][y]
0 1 2 3 4 5 6 7 8

i

0 0 3 3 3 3 3 3 3

0 0 3 3 3 3 9 9 12

0 0 3 3 3 10 10 13 13

0 0 3 8 8 11 11 13 18

18

f[3][5] != f[4][5] => x 3 = 1

0

Traceback

• n = 5, c = 8, w = [4,3,5,6,2], p = [9,8,10,9,3]

y

5
4
3
2
1

f[i][y]
0 1 2 3 4 5 6 7 8

i

0 3 3 3 3 3 3 3

0 0 3 3 3 3 9 9 12

0 0 3 3 3 10 10 13 13

0 0 3 8 8 11 11 13 18

18

f[4][0] = f[5][0] => x 4 = 0

0

Traceback

• n = 5, c = 8, w = [4,3,5,6,2], p = [9,8,10,9,3]

y

5
4
3
2
1

f[i][y]
0 1 2 3 4 5 6 7 8

i

0 0 3 3 3 3 3 3 3

0 0 3 3 3 3 9 9 12

0 0 3 3 3 10 10 13 13

0 0 3 8 8 11 11 13 18

18

f[5][0] = 0 => x5 = 0

Complexity Of Traceback

• O(n)

Matrix Multiplication Chains
• Multiply an m x n matrix A and an n x p matrix

B to get an m x p matrix C.

k = 1

n
C(i,j) = A(i,k) * B(k,j)

• We shall use the number of multiplications as
our complexity measure.

• n multiplications are needed to compute one
C(i,j).

• mnpmultiplicatons are needed to compute all
mp terms of C.

Matrix Multiplication Chains
• Suppose that we are to compute the product X*Y*Z of

three matrices X, Y and Z.
• The matrix dimensions are:

� X:(100 x 1), Y:(1 x 100), Z:(100 x 1)

• Multiply X and Y to get a 100 x 100 matrix T.
� 100 * 1 * 100 = 10,000 multiplications.

• Multiply T and Z to get the 100 x 1 answer.
� 100 * 100 * 1 = 10,000 multiplications.

• Total cost is 20,000 multiplications.
• 10,000 units of space are needed for T.

Matrix Multiplication Chains
• The matrix dimensions are:

� X:(100 x 1)
� Y:(1 x 100)
� Z:(100 x 1)

• Multiply Y and Z to get a 1 x 1 matrix T.
� 1 * 100 * 1 = 100 multiplications.

• Multiply X and T to get the 100 x 1 answer.
� 100 * 1 * 1 = 100 multiplications.

• Total cost is 200 multiplications.
• 1 unit of space is needed for T.

Product Of 5 Matrices

• Some of the ways in which the product of 5 matrices
may be computed.
� A*(B*(C*(D*E))) right to left
� (((A*B)*C)*D)*E left to right
� (A*B)*((C*D)*E)
� (A*B)*(C*(D*E))
� (A*(B*C))*(D*E)
� ((A*B)*C)*(D*E)

Find Best Multiplication Order

• Number of ways to compute the product ofq
matrices isO(4q/q1.5).

• Evaluating all ways to compute the product
takesO(4q/q0.5) time.

An Application

• Registration of pre- and post-operative 3D brain
MRI images to determine volume of removed
tumor.

3D Registration

3D Registration

• Each image has 256 x 256 x 256voxels.

• In each iteration of the registration algorithm, the
product of three matrices is computed at each
voxel … (12 x 3) * (3 x 3) * (3 x 1)

• Left to right computation => 12 * 3 * 3 + 12 * 3*1
= 144 multiplications per voxel per iteration.

• 100 iterations to converge.

3D Registration

• Total number of multiplications is about 2.4 *
1011.

• Right to left computation => 3 * 3*1 + 12 * 3 * 1
= 45 multiplications per voxel per iteration.

• Total number of multiplications is about 7.5 *
1010.

• With 108 multiplications per second, time is40
min vs12.5 min.

