- Dynamic Programming

- Steps.
\checkmark View the problem solution as the result of a sequence of decisions.
\checkmark Obtain a formulation for the problem state.
\checkmark Verify that the principle of optimality holds.
\checkmark Set up the dynamic programming recurrence equations.
\checkmark Solve these equations for the value of the optimal solution.
- Perform a traceback to determine the optimal solution.

\triangle Dynamic Programming

- When solving the dynamic programming recurrence recursively, be sure to avoid the recomputation of the optimal value for the same problem state.
- To minimize run time overheads, and hence to reduce actual run time, dynamic programming recurrences are almost always solved iteratively (no recursion).

0/1 Knapsack Recurrence \square

- If $w_{n}<=y, f(n, y)=p_{n}$.
- If $w_{n}>y, f(n, y)=0$.
- When i < n
- $f(i, y)=f(i+1, y)$ whenever $y<w_{i}$.
- $\mathrm{f}(\mathrm{i}, \mathrm{y})=\max \left\{\mathrm{f}(\mathrm{i}+1, \mathrm{y}), \mathrm{f}\left(\mathrm{i}+1, \mathrm{y}-\mathrm{w}_{\mathrm{i}}\right)+\mathrm{p}_{\mathrm{i}}\right\}, \mathrm{y}>=\mathrm{w}_{\mathrm{i}}$.
- Assume the weights and capacity are integers.
- Only $\mathrm{f}(\mathrm{i}, \mathrm{y}) \mathrm{s}$ with $1<=\mathrm{i}<=\mathrm{n}$ and $0<=\mathrm{y}<=\mathrm{c}$ are of interest.

Iterative Solution Example

- $\mathrm{n}=5, \mathrm{c}=8, \mathrm{w}=[4,3,5,6,2], \mathrm{p}=[9,7,10,9,3]$

Compute f[5][*]

- $\mathrm{n}=5, \mathrm{c}=8, \mathrm{w}=[4,3,5,6,2], \mathrm{p}=[9,7,10,9,3]$

Compute f[4][*]

- $\mathrm{n}=5, \mathrm{c}=8, \mathrm{w}=[4,3,5,6,2], \mathrm{p}=[9,8,10,9,3]$

f[i][y

$\mathrm{y} \longrightarrow$
$\mathrm{f}(\mathrm{i}, \mathrm{y})=\max \left\{\mathrm{f}(\mathrm{i}+1, \mathrm{y}), \mathrm{f}\left(\mathrm{i}+1, \mathrm{y}-\mathrm{w}_{\mathrm{i}}\right)+\mathrm{p}_{\mathrm{i}}\right\}, \mathrm{y}>=\mathrm{w}_{\mathrm{i}}$

Compute f[3][*]

- $\mathrm{n}=5, \mathrm{c}=8, \mathrm{w}=[4,3,5,6,2], \mathrm{p}=[9,8,10,9,3]$

```
\(\mathrm{f}[\mathrm{i}][\mathrm{y}]\)
```



```
\(\mathrm{y} \longrightarrow\)
\(\mathrm{f}(\mathrm{i}, \mathrm{y})=\max \left\{\mathrm{f}(\mathrm{i}+1, \mathrm{y}), \mathrm{f}\left(\mathrm{i}+1, \mathrm{y}-\mathrm{w}_{\mathrm{i}}\right)+\mathrm{p}_{\mathrm{i}}\right\}, \mathrm{y}>=\mathrm{w}_{\mathrm{i}}\)
```


Compute f[2][*]

- $\mathrm{n}=5, \mathrm{c}=8, \mathrm{w}=[4,3,5,6,2], \mathrm{p}=[9,8,10,9,3]$
f[i][y]

$\mathrm{f}(\mathrm{i}, \mathrm{y})=\max \left\{\mathrm{f}(\mathrm{i}+1, \mathrm{y}), \mathrm{f}\left(\mathrm{i}+1, \mathrm{y}-\mathrm{w}_{\mathrm{i}}\right)+\mathrm{p}_{\mathrm{i}}\right\}, \mathrm{y}>=\mathrm{w}_{\mathrm{i}}$

Compute f[1][c]

- $\mathrm{n}=5, \mathrm{c}=8, \mathrm{w}=[4,3,5,6,2], \mathrm{p}=[9,8,10,9,3]$

$$
\begin{aligned}
& \text { f[i][y] }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{y} \longrightarrow \\
& \mathrm{f}(\mathrm{i}, \mathrm{y})=\max \left\{\mathrm{f}(\mathrm{i}+1, \mathrm{y}), \mathrm{f}\left(\mathrm{i}+1, \mathrm{y}-\mathrm{w}_{\mathrm{i}}\right)+\mathrm{p}_{\mathrm{i}}\right\}, \mathrm{y}>=\mathrm{w}_{\mathrm{i}}
\end{aligned}
$$

Iterative Implementation

// initialize f[n][]
int $\mathrm{yMax}=\operatorname{Math} \cdot \min (\mathrm{w}[\mathrm{n}]-1, \mathrm{c})$;
for (int $\mathrm{y}=0 ; \mathrm{y}$ <= $\mathrm{yMax} ; \mathrm{y}++$)
$\mathrm{f}[\mathrm{n}][\mathrm{y}]=0$;
for (int $\mathrm{y}=\mathrm{w}[\mathrm{n}] ; \mathrm{y}<=\mathrm{c} ; \mathrm{y}++$)
$\mathrm{f}[\mathrm{n}][\mathrm{y}]=\mathrm{p}[\mathrm{n}]$;

Iterative Implementation```// compute f[i][y], 1<i < n for (inti=n-1; i> 1; i--) { yMax = Math.min(w[i] - 1, c); for (int y = 0; y <= yMax; y++) f[i][y] = f[i + 1][y]; for (int y = w[i]; y <= c; y++) f[i][y] = Math.max(f[i+1][y], f[i+1][y-w[i]] + p[i]); }```

Iterative Implementation

// compute $\mathrm{f}[1][\mathrm{c}]$
$\mathrm{f}[1][\mathrm{c}]=\mathrm{f}[2][\mathrm{c}]$;
if ($c>=w[1]$)
$\mathrm{f}[1][\mathrm{c}]=$ Math.max $(\mathrm{f}[1][\mathrm{c}]$,

$$
\mathrm{f}[2][\mathrm{c}-\mathrm{w}[1]]+\mathrm{p}[1]) ;
$$

\}

- $\mathrm{n}=5, \mathrm{c}=8, \mathrm{w}=[4,3,5,6,2], \mathrm{p}=[9,8,10,9,3]$
f[i][y]

Traceback

- $\mathrm{n}=5, \mathrm{c}=8, \mathrm{w}=[4,3,5,6,2], \mathrm{p}=[9,8,10,9,3]$

$$
\begin{aligned}
& \mathrm{y} \longrightarrow \\
& \mathrm{f}[2][8]!=\mathrm{f}[3][8]=>\mathrm{x}_{2}=1
\end{aligned}
$$

Traceback

- $\mathrm{n}=5, \mathrm{c}=8, \mathrm{w}=[4,3,5,6,2], \mathrm{p}=[9,8,10,9,3]$

$$
\begin{aligned}
& \text { f[i][y] } \\
& \mathbf{1} \\
& \mathrm{y} \longrightarrow \\
& \mathrm{f}[3][5]!=\mathrm{f}[4][5] \Rightarrow \mathrm{x}_{3}=1
\end{aligned}
$$

Traceback

- $\mathrm{n}=5, \mathrm{c}=8, \mathrm{w}=[4,3,5,6,2], \mathrm{p}=[9,8,10,2,3]$

Traceback

- $\mathrm{n}=5, \mathrm{c}=8, \mathrm{w}=[4,3,5,6,2], \mathrm{p}=[9,8,10,9,3]$
f[i][y]

Complexity Of Traceback

- $\mathrm{O}(\mathrm{n})$

Matrix Multiplication Chains

- Suppose that we are to compute the product $\mathrm{X}^{*} \mathrm{Y} * \mathrm{Z}$ of three matrices X, Y and Z .
- The matrix dimensions are:
- X:(100 x 1), Y:(1 x 100), Z:(100 x 1)
- Multiply X and Y to get a 100×100 matrix T. - $100 * 1 * 100=10,000$ multiplications.
- Multiply T and Z to get the 100×1 answer.
- $100 * 100 * 1=10,000$ multiplications.
- Total cost is 20,000 multiplications.
- 10,000 units of space are needed for T.

Product Of 5 Matrices

- Some of the ways in which the product of 5 matrices may be computed.
- $A^{*}\left(B^{*}\left(C^{*}\left(D^{*} \mathrm{E}\right)\right)\right)$ right to left
- $(((\mathrm{A} * \mathrm{~B}) * \mathrm{C}) * \mathrm{D}) * \mathrm{E}$ left to right
- $(\mathrm{A} * \mathrm{~B})^{*}((\mathrm{C} * \mathrm{D}) * \mathrm{E})$
- $(\mathrm{A} * \mathrm{~B}) *(\mathrm{C} *(\mathrm{D} * \mathrm{E}))$
- $\left(\mathrm{A}^{*}(\mathrm{~B} * \mathrm{C})\right)^{*}(\mathrm{D} * \mathrm{E})$
- $((\mathrm{A} * \mathrm{~B}) * \mathrm{C}) *(\mathrm{D} * \mathrm{E})$

Matrix Multiplication Chains

- Multiply an $\mathrm{m} \times \mathrm{n}$ matrix A and an n x p matrix B to get an $m \mathrm{xp}$ matrix C .

$$
C(i, j)=\sum_{k=1}^{n} A(i, k) * B(k, j)
$$

- We shall use the number of multiplications as our complexity measure.
- n multiplications are needed to compute one $\mathrm{C}(\mathrm{i}, \mathrm{j})$.
- mnp multiplicatons are needed to compute all mp terms of C.

Matrix Multiplication Chains

- The matrix dimensions are:
- X:(100 x 1)
- Y:(1 x 100)
- Z:(100 x 1)
- Multiply Y and Z to get a 1×1 matrix T .
- $1 * 100 * 1=100$ multiplications.
- Multiply X and T to get the 100×1 answer.
- $100 * 1 * 1=100$ multiplications.
- Total cost is 200 multiplications.
- 1 unit of space is needed for T.

Find Best Multiplication Order

- Number of ways to compute the product of q matrices is $\mathrm{O}\left(4^{9} / \mathrm{q}^{1.5}\right)$.
- Evaluating all ways to compute the product takes $\mathrm{O}\left(4^{q} / \mathrm{q}^{0.5}\right)$ time.

An Application

- Registration of pre- and post-operative 3D brain MRI images to determine volume of removed tumor.

3D Registration

- Each image has $256 \times 256 \times 256$ voxels.
- In each iteration of the registration algorithm, the product of three matrices is computed at each voxel $\ldots(12 \times 3) *(3 \times 3) *(3 \times 1)$
- Left to right computation $=>12 * 3 * 3+12 * 3 * 1$ $=144$ multiplications per voxel per iteration.
- 100 iterations to converge.

3D Registration

3D Registration

- Total number of multiplications is about 2.4 * 10^{11}.
- Right to left computation $=>3 * 3 * 1+12 * 3 * 1$ $=45$ multiplications per voxel per iteration.
- Total number of multiplications is about 7.5 * 10^{10}.
- With 10^{8} multiplications per second, time is 40 \min vs 12.5 min .

