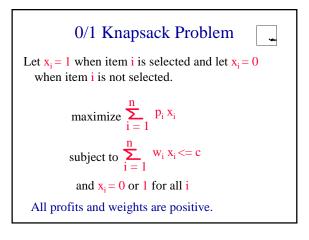


- Dynamic Programming Recurrence Equations.
- Solution of recurrence equations.

Sequence Of Decisions

- As in the greedy method, the solution to a problem is viewed as the result of a sequence of decisions.
- Unlike the greedy method, decisions are not made in a greedy and binding manner.



Sequence Of Decisions 💡

- Decide the x_i values in the order x₁, x₂, x₃, ..., x_n.
- Decide the x_i values in the order $x_n, x_{n-1}, x_{n-2}, ..., x_1$.
- Decide the x_i values in the order $x_1, x_n, x_2, x_{n-1}, \dots$
- Or any other order.

Problem State

- The state of the 0/1 knapsack problem is given by
 - the weights and profits of the available items
 - the capacity of the knapsack
- When a decision on one of the x_i values is made, the problem state changes.
 - item i is no longer available
 - the remaining knapsack capacity may be less

Problem State

- Suppose that decisions are made in the order $x_1,\,x_2,\,x_3,\,\ldots,\,x_n$
- The initial state of the problem is described by the pair (1, c).
 - Items 1 through n are available (the weights, profits and n are implicit).
 - The available knapsack capacity is c.
- Following the first decision the state becomes one of the following:
 - (2, c) ... when the decision is to set $x_1 = 0$.
 - (2, c-w₁) ... when the decision is to set $x_1 = 1$.

Problem State

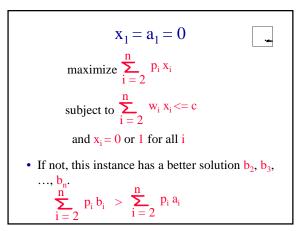
- Suppose that decisions are made in the order $x_n,\,x_{n-1},\,x_{n-2},\,\ldots,\,x_1.$
- The initial state of the problem is described by the pair (n, c).
 - Items 1 through n are available (the weights, profits and first item index are implicit).
 - The available knapsack capacity is c.
- Following the first decision the state becomes one of the following:
 - (n-1, c) ... when the decision is to set $x_n = 0$.
 - $(n-1, c-w_n) \dots$ when the decision is to set $x_n = 1$.

Principle Of Optimality

- An optimal solution satisfies the following property:
 - No matter what the first decision, the remaining decisions are optimal with respect to the state that results from this decision.
- Dynamic programming may be used only when the principle of optimality holds.

0/1 Knapsack Problem

- Suppose that decisions are made in the order x₁, x₂, x₃, ..., x_n.
- Let $\mathbf{x}_1 = \mathbf{a}_1$, $\mathbf{x}_2 = \mathbf{a}_2$, $\mathbf{x}_3 = \mathbf{a}_3$, ..., $\mathbf{x}_n = \mathbf{a}_n$ be an optimal solution.
- If $a_1 = 0$, then following the first decision the state is (2, c).
- a₂, a₃, ..., a_n must be an optimal solution to the knapsack instance given by the state (2,c).



$$x_1 = a_1 = 0$$

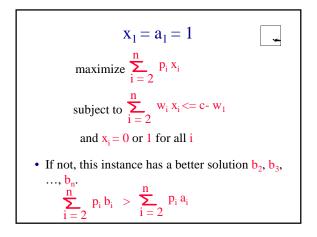
4

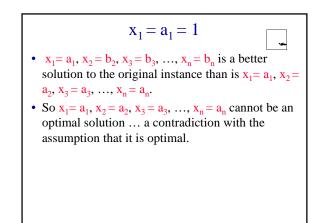
- $x_1 = a_1, x_2 = b_2, x_3 = b_3, \dots, x_n = b_n$ is a better solution to the original instance than is $x_1 = a_1, x_2 = a_2, x_3 = a_3, \dots, x_n = a_n$.
- So $x_1 = a_1, x_2 = a_2, x_3 = a_3, ..., x_n = a_n$ cannot be an optimal solution ... a contradiction with the assumption that it is optimal.

$$x_1 = a_1 = 1$$

*

- Next, consider the case $a_1 = 1$. Following the first decision the state is (2, c-w₁).
- a₂, a₃, ..., a_n must be an optimal solution to the knapsack instance given by the state (2,c
 -w₁).





0/1 Knapsack Problem

- Therefore, no matter what the first decision, the remaining decisions are optimal with respect to the state that results from this decision.
- The principle of optimality holds and dynamic programming may be applied.

Dynamic Programming Recurrence

- Let f(i,y) be the profit value of the optimal solution to the knapsack instance defined by the state (i,y).
 - Items i through n are available.
 - Available capacity is y.
- For the time being assume that we wish to determine only the value of the best solution.
 - Later we will worry about determining the x_is that yield this maximum value.
- Under this assumption, our task is to determine f(1,c).

Dynamic Programming Recurrence

- f(n,y) is the value of the optimal solution to the knapsack instance defined by the state (n,y).
 - Only item **n** is available.
 - Available capacity is y.

• If
$$w_n \le y$$
, $f(n,y) = p_n$.

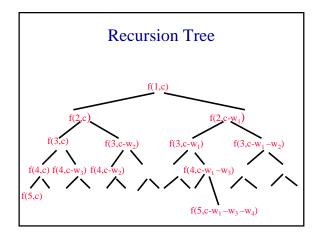
• If $w_n > y$, f(n,y) = 0.

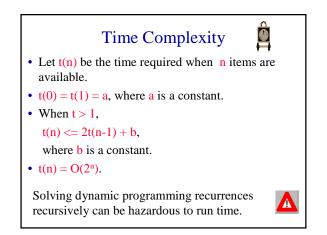
Dynamic Programming Recurrence

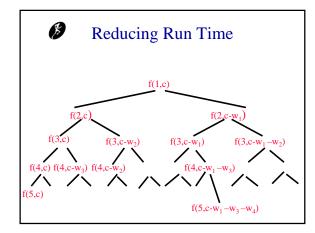
- Suppose that i < n.
- f(i,y) is the value of the optimal solution to the knapsack instance defined by the state (i,y).
 - Items i through n are available.
 - Available capacity is y.
- Suppose that in the optimal solution for the state (i,y), the first decision is to set $x_i=0$.
- From the principle of optimality (we have shown that this principle holds for the knapsack problem), it follows that f(i,y) = f(i+1,y).

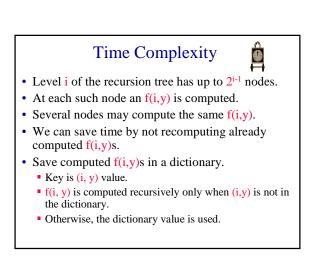
Dynamic Programming Recurrence

- The only other possibility for the first decision is $x_i=1$.
- The case $x_i = 1$ can arise only when $y \ge w_i$.
- From the principle of optimality, it follows that $f(i,y) = f(i+1,y-w_i) + p_i$.
- Combining the two cases, we get
 - f(i,y) = f(i+1,y) whenever $y < w_i$.
 - $f(i,y) = \max{f(i+1,y), f(i+1,y-w_i) + p_i}, y \ge w_i.$









Integer Weights

- Assume that each weight is an integer.
- The knapsack capacity c may also be assumed to be an integer.
- Only f(i,y)s with 1 <= i <= n and 0 <= y <= c are of interest.
- Even though level i of the recursion tree has up to 2ⁱ⁻¹ nodes, at most c+1 represent different f(i,y)s.

Integer Weights Dictionary

- Use an array fArray[][] as the dictionary.
- fArray[1:n][0:c]
- fArray[i][y] = -1 iff f(i,y) not yet computed.
- This initialization is done before the recursive method is invoked.
- The initialization takes O(cn) time.

