Dynamic Programming
 H_{ar}

- Sequence of decisions.
- Problem state.
- Principle of optimality.
- Dynamic Programming Recurrence Equations.
- Solution of recurrence equations.

Sequence Of Decisions

- As in the greedy method, the solution to a problem is viewed as the result of a sequence of decisions.
- Unlike the greedy method, decisions are not made in a greedy and binding manner.
0/1 Knapsack Problem
Let $x_{i}=1$ when item i is selected and let $\mathrm{x}_{\mathrm{i}}=0$
when item i is not selected.
maximize $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$
subject to $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}<=\mathrm{c}$
and $\mathrm{x}_{\mathrm{i}}=0$ or 1 for all i
All profits and weights are positive.

Problem State

- The state of the $0 / 1$ knapsack problem is given by
- the weights and profits of the available items
- the capacity of the knapsack
- When a decision on one of the x_{i} values is made, the problem state changes.
- item i is no longer available
- the remaining knapsack capacity may be less

Sequence Of Decisions

- Decide the x_{i} values in the order $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{n}}$.
- Decide the x_{i} values in the order $\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}-2}, \ldots$, X_{1}.
- Decide the x_{i} values in the order $\mathrm{x}_{1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{2}, \mathrm{x}_{\mathrm{n}-1}, \ldots$
- Or any other order.

Problem State

- Suppose that decisions are made in the order $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$, \ldots, x_{n}.
- The initial state of the problem is described by the pair (1, c).
- Items 1 through n are available (the weights, profits and n are implicit).
- The available knapsack capacity is c.
- Following the first decision the state becomes one of the following:
- $(2, c) \ldots$ when the decision is to set $x_{1}=0$.
- $\left(2, c-w_{1}\right) \ldots$ when the decision is to set $x_{1}=1$.

Problem State

- Suppose that decisions are made in the order $\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}-2}$, \ldots, x_{1}.
- The initial state of the problem is described by the pair (n, c).
- Items 1 through n are available (the weights, profits and first item index are implicit).
- The available knapsack capacity is c.
- Following the first decision the state becomes one of the following:
- ($\mathrm{n}-1, \mathrm{c}$) \ldots when the decision is to set $\mathrm{x}_{\mathrm{n}}=0$.
- $\left(\mathrm{n}-1, \mathrm{c}-\mathrm{w}_{\mathrm{n}}\right) \ldots$ when the decision is to set $\mathrm{x}_{\mathrm{n}}=1$.

0/1 Knapsack Problem

- Suppose that decisions are made in the order x_{1}, $\mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{n}}$.
- Let $\mathrm{x}_{1}=\mathrm{a}_{1}, \mathrm{x}_{2}=\mathrm{a}_{2}, \mathrm{x}_{3}=\mathrm{a}_{3}, \ldots, \mathrm{x}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}}$ be an optimal solution.
- If $\mathrm{a}_{1}=0$, then following the first decision the state is $(2, \mathrm{c})$.
- $a_{2}, a_{3}, \ldots, a_{n}$ must be an optimal solution to the knapsack instance given by the state ($2, \mathrm{c}$).

$$
\mathrm{x}_{1}=\mathrm{a}_{1}=0
$$

$$
\mathrm{x}_{1}=\mathrm{a}_{1}=1
$$

- Next, consider the case $a_{1}=1$. Following the first decision the state is $\left(2, \mathrm{c}-\mathrm{w}_{1}\right)$.
- $a_{2}, a_{3}, \ldots, a_{n}$ must be an optimal solution to the knapsack instance given by the state (2,c $-W_{1}$).

$$
\begin{gathered}
\mathrm{x}_{1}=\mathrm{a}_{1}=1 \\
\operatorname{maximize} \sum_{\mathrm{i}=2}^{\mathrm{n}} \mathrm{p}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \\
\text { subject to } \sum_{\mathrm{i}=2}^{\mathrm{n}} \mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}<=\mathrm{c}-\mathrm{w}_{1} \\
\text { and } \mathrm{x}_{\mathrm{i}}=0 \text { or } 1 \text { for all } \mathrm{i}
\end{gathered}
$$

- If not, this instance has a better solution b_{2}, b_{3}, ..., b_{n}.

$$
\sum_{i=2}^{n} p_{i} b_{i}>\sum_{i=2}^{n} p_{i} a_{i}
$$

0/1 Knapsack Problem

- Therefore, no matter what the first decision, the remaining decisions are optimal with respect to the state that results from this decision.
- The principle of optimality holds and dynamic programming may be applied.

Dynamic Programming Recurrence

- $f(n, y)$ is the value of the optimal solution to the knapsack instance defined by the state (n, y).
- Only item n is available.
- Available capacity is y.
- If $\mathrm{w}_{\mathrm{n}}<=\mathrm{y}, \mathrm{f}(\mathrm{n}, \mathrm{y})=\mathrm{p}_{\mathrm{n}}$.
- If $w_{n}>y, f(n, y)=0$.

$$
x_{1}=a_{1}=1
$$

- $x_{1}=a_{1}, x_{2}=b_{2}, x_{3}=b_{3}, \ldots, x_{n}=b_{n}$ is a better solution to the original instance than is $x_{1}=a_{1}, x_{2}=$ $a_{2}, x_{3}=a_{3}, \ldots, x_{n}=a_{n}$.
- So $\mathrm{x}_{1}=\mathrm{a}_{1}, \mathrm{x}_{2}=\mathrm{a}_{2}, \mathrm{x}_{3}=\mathrm{a}_{3}, \ldots, \mathrm{x}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}}$ cannot be an optimal solution ... a contradiction with the assumption that it is optimal.

Dynamic Programming Recurrence

- Let $f(i, y)$ be the profit value of the optimal solution to the knapsack instance defined by the state (i,y).
- Items i through n are available.
- Available capacity is y.
- For the time being assume that we wish to determine only the value of the best solution.
- Later we will worry about determining the x_{i} that yield this maximum value.
- Under this assumption, our task is to determine $\mathrm{f}(1, \mathrm{c})$.

Dynamic Programming Recurrence

- Suppose that $\mathrm{i}<\mathrm{n}$.
- $f(i, y)$ is the value of the optimal solution to the knapsack instance defined by the state (i,y).
- Items i through n are available.
- Available capacity is y.
- Suppose that in the optimal solution for the state (i,y), the first decision is to set $\mathrm{x}_{\mathrm{i}}=0$.
- From the principle of optimality (we have shown that this principle holds for the knapsack problem), it follows that $\mathrm{f}(\mathrm{i}, \mathrm{y})=\mathrm{f}(\mathrm{i}+1, \mathrm{y})$.

Dynamic Programming Recurrence

- The only other possibility for the first decision is $x_{i}=1$.
- The case $x_{i}=1$ can arise only when $y>=w_{i}$.
- From the principle of optimality, it follows that $f(i, y)=f\left(i+1, y-w_{i}\right)+p_{i}$.
- Combining the two cases, we get
- $f(i, y)=f(i+1, y)$ whenever $y<w_{i}$.
- $\left.f(i, y)=\max \left\{f(i+1, y), f\left(i+1, y-w_{i}\right)+p_{i}\right\}, y\right\rangle=w_{i}$.

Recursive Code

```
/** @return f(i,y) */
private static int f(int i, int y)
{
    if (i == n) return (y< w[n]) ? 0:p[n];
    if (y<w[i]) return f(i+1,y);
    return Math.max(f(i+1, y),
        f(i+1,y-w[i]) + p[i]);
}
```


Time Complexity

- Let $\mathrm{t}(\mathrm{n})$ be the time required when n items are available.
- $\mathrm{t}(0)=\mathrm{t}(1)=\mathrm{a}$, where a is a constant.
- When $\mathrm{t}>1$,
$\mathrm{t}(\mathrm{n})<=2 \mathrm{t}(\mathrm{n}-1)+\mathrm{b}$,
where b is a constant.
- $\mathrm{t}(\mathrm{n})=\mathrm{O}\left(2^{\mathrm{n}}\right)$.

Solving dynamic programming recurrences recursively can be hazardous to run time.

Time Complexity

- Level i of the recursion tree has up to $2^{\mathrm{i}-1}$ nodes.
- At each such node an $f(i, y)$ is computed.
- Several nodes may compute the same $f(i, y)$.
- We can save time by not recomputing already computed $\mathrm{f}(\mathrm{i}, \mathrm{y}) \mathrm{s}$.
- Save computed $f(i, y)$ s in a dictionary.
- Key is (i, y) value.
- $f(i, y)$ is computed recursively only when (i,y) is not in the dictionary.
- Otherwise, the dictionary value is used.

Integer Weights

- Assume that each weight is an integer.
- The knapsack capacity c may also be assumed to be an integer.
- Only $\mathrm{f}(\mathrm{i}, \mathrm{y})$ s with $1<=\mathrm{i}<=\mathrm{n}$ and $0<=\mathrm{y}<=\mathrm{c}$ are of interest.
- Even though level i of the recursion tree has up to $2^{\mathrm{i}-1}$ nodes, at most $\mathrm{c}+1$ represent different f(i,y)s.

Integer Weights Dictionary

- Use an array fArray[][] as the dictionary.
- fArray[1:n][0:c]
- fArray[i][y] =-1 iff $f(i, y)$ not yet computed.
- This initialization is done before the recursive method is invoked.
- The initialization takes $\mathrm{O}(\mathrm{cn})$ time.

No Recomputation Code```private static int f(int i, int y) { if (fArray[i][y] >= 0) return fArray[i][y]; if (i == n) {fArray[i][y] = (y < w[n]) ? 0 : p[n]; return fArray[i][y];} if (y< w[i]) fArray[i][y] = f(i + 1, y); else fArray[i][y] = Math.max(f(i + 1, y), f(i + 1, y - w[i]) + p[i]); return fArray[i][y]; }```

Time Complexity

- $\mathrm{t}(\mathrm{n})=\mathrm{O}(\mathrm{cn})$.
- Analysis done in text.
- Good when cn is small relative to 2^{n}.
- $\mathrm{n}=3, \mathrm{c}=1010101$
$\mathrm{w}=[100102,1000321,6327]$
$\mathrm{p}=[102,505,5]$
- $2^{\mathrm{n}}=8$
- $\mathrm{cn}=3030303$

