

Dynamic Programming

- Sequence of decisions.
- Problem state.
- Principle of optimality.
- Dynamic Programming Recurrence Equations.
- Solution of recurrence equations.

Sequence Of Decisions

- As in the greedy method, the solution to a problem is viewed as the result of a sequence of decisions.
- Unlike the greedy method, decisions are not made in a greedy and binding manner.

0/1 Knapsack Problem

Let $x_i = 1$ when item i is selected and let $x_i = 0$ when item i is not selected.

$$\begin{aligned} & \text{maximize } \sum_{i=1}^{n} \ p_i \, x_i \\ & \text{subject to } \sum_{i=1}^{n} \ w_i \, x_i \! < = c \\ & \text{and } x_i \! = \! 0 \text{ or } 1 \text{ for all } i \end{aligned}$$

All profits and weights are positive.

Sequence Of Decisions 9

- Decide the x_1 values in the order $x_1, x_2, x_3, ..., x_n$.
- Decide the x_i values in the order $x_n, x_{n-1}, x_{n-2}, ...,$
- Decide the x_i values in the order $x_1, x_n, x_2, x_{n-1}, \dots$
- Or any other order.

Problem State

- The state of the 0/1 knapsack problem is given by
 - the weights and profits of the available items
 - the capacity of the knapsack
- When a decision on one of the x_i values is made, the problem state changes.
 - item i is no longer available
 - the remaining knapsack capacity may be less

Problem State

- Suppose that decisions are made in the order x₁, x₂, x₃,
 ..., x...
- The initial state of the problem is described by the pair (1, c).
 - Items 1 through n are available (the weights, profits and n are implicit).
 - The available knapsack capacity is c.
- Following the first decision the state becomes one of the following:
 - (2, c) ... when the decision is to set $x_1 = 0$.
 - $(2, c-w_1)$... when the decision is to set $x_1 = 1$.

Problem State

- Suppose that decisions are made in the order $x_n, x_{n-1}, x_{n-2}, \dots, x_1$.
- The initial state of the problem is described by the pair (n, c).
 - Items 1 through n are available (the weights, profits and first item index are implicit).
 - The available knapsack capacity is c.
- Following the first decision the state becomes one of the following:
 - (n-1, c) ... when the decision is to set $x_n = 0$.
 - $(n-1, c-w_n)$... when the decision is to set $x_n = 1$.

Principle Of Optimality

- An optimal solution satisfies the following property:
 - No matter what the first decision, the remaining decisions are optimal with respect to the state that results from this decision.
- Dynamic programming may be used only when the principle of optimality holds.

0/1 Knapsack Problem

- Problem
- Suppose that decisions are made in the order x₁, x₂, x₃, ..., x_n.
- Let $x_1 = a_1$, $x_2 = a_2$, $x_3 = a_3$, ..., $x_n = a_n$ be an optimal solution.
- If a₁ = 0, then following the first decision the state is (2, c).
- a₂, a₃, ..., a_n must be an optimal solution to the knapsack instance given by the state (2,c).

$$\mathbf{x}_1 = \mathbf{a}_1 = \mathbf{0}$$

•

maximize
$$\sum_{i=2}^{n} p_i x_i$$

subject to
$$\sum_{i=2}^{n} w_i x_i \le c$$

and
$$x_i = 0$$
 or 1 for all i

• If not, this instance has a better solution b₂, b₃,

$$\sum_{i = 2}^{n} p_i b_i > \sum_{i = 2}^{n} p_i a_i$$

$$x_1 = a_1 = 0$$

- $\mathbf{x}_1 = \mathbf{a}_1$, $\mathbf{x}_2 = \mathbf{b}_2$, $\mathbf{x}_3 = \mathbf{b}_3$, ..., $\mathbf{x}_n = \mathbf{b}_n$ is a better solution to the original instance than is $\mathbf{x}_1 = \mathbf{a}_1$, $\mathbf{x}_2 = \mathbf{a}_2$, $\mathbf{x}_3 = \mathbf{a}_3$, ..., $\mathbf{x}_n = \mathbf{a}_n$.
- So $x_1 = a_1$, $x_2 = a_2$, $x_3 = a_3$, ..., $x_n = a_n$ cannot be an optimal solution ... a contradiction with the assumption that it is optimal.

$$x_1 = a_1 = 1$$

- Next, consider the case a₁ = 1. Following the first decision the state is (2, c-w₁).
- a₂, a₃, ..., a_n must be an optimal solution to the knapsack instance given by the state (2,c -w₁).

$$x_1 = a_1 = 1$$

$$\max i = 2$$

$$\sum_{i=2}^{n} p_i x_i$$

$$\text{subject to } \sum_{i=2}^{n} w_i x_i <= c - w_1$$

$$\text{and } x_i = 0 \text{ or } 1 \text{ for all } i$$

• If not, this instance has a better solution b₂, b₃,

$$\sum_{i=2}^{n} p_i b_i > \sum_{i=2}^{n} p_i a_i$$

$$x_1 = a_1 = 1$$

- $x_1 = a_1$, $x_2 = b_2$, $x_3 = b_3$, ..., $x_n = b_n$ is a better solution to the original instance than is $x_1 = a_1$, $x_2 = a_2$, $x_3 = a_3$, ..., $x_n = a_n$.
- So $x_1 = a_1$, $x_2 = a_2$, $x_3 = a_3$, ..., $x_n = a_n$ cannot be an optimal solution ... a contradiction with the assumption that it is optimal.

0/1 Knapsack Problem

- Therefore, no matter what the first decision, the remaining decisions are optimal with respect to the state that results from this decision.
- The principle of optimality holds and dynamic programming may be applied.

Dynamic Programming Recurrence

- Let f(i,y) be the profit value of the optimal solution to the knapsack instance defined by the state (i,y).
 - Items i through n are available.
 - Available capacity is y.
- For the time being assume that we wish to determine only the value of the best solution.
 - Later we will worry about determining the x_is that yield this maximum value.
- Under this assumption, our task is to determine f(1,c).

Dynamic Programming Recurrence

- f(n,y) is the value of the optimal solution to the knapsack instance defined by the state (n,y).
 - Only item n is available.
 - Available capacity is y.
- If $w_n \le y$, $f(n,y) = p_n$.
- If $w_n > y$, f(n,y) = 0.

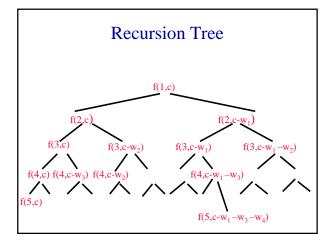
Dynamic Programming Recurrence

- Suppose that i < n.
- f(i,y) is the value of the optimal solution to the knapsack instance defined by the state (i,y).
 - Items i through n are available.
 - Available capacity is y.
- Suppose that in the optimal solution for the state (i,y), the first decision is to set x_i= 0.
- From the principle of optimality (we have shown that this principle holds for the knapsack problem), it follows that f(i,y) = f(i+1,y).

Dynamic Programming Recurrence

- The only other possibility for the first decision is $x_i = 1$.
- The case $x_i = 1$ can arise only when $y \ge w_i$.
- From the principle of optimality, it follows that $f(i,y) = f(i+1,y-w_i) + p_i$.
- Combining the two cases, we get
 - f(i,y) = f(i+1,y) whenever $y < w_i$.
 - $f(i,y) = \max\{f(i+1,y), f(i+1,y-w_i) + p_i\}, y >= w_i$.

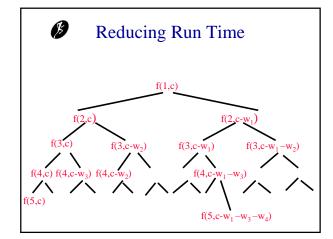
Recursive Code



Time Complexity

- Let t(n) be the time required when n items are available.
- t(0) = t(1) = a, where a is a constant.
- When t > 1, $t(n) \le 2t(n-1) + b$, where b is a constant.
- $t(n) = O(2^n)$.

Solving dynamic programming recurrences recursively can be hazardous to run time.



Time Complexity

- Level i of the recursion tree has up to 2i-1 nodes.
- At each such node an f(i,y) is computed.
- Several nodes may compute the same f(i,y).
- We can save time by not recomputing already computed f(i,y)s.
- Save computed f(i,y)s in a dictionary.
 - Key is (i, y) value.
 - f(i, y) is computed recursively only when (i,y) is not in the dictionary.
 - Otherwise, the dictionary value is used.

Integer Weights

- · Assume that each weight is an integer.
- The knapsack capacity c may also be assumed to be an integer.
- Only f(i,y)s with $1 \le i \le n$ and $0 \le y \le c$ are of interest.
- Even though level i of the recursion tree has up to 2ⁱ⁻¹ nodes, at most c+1 represent different f(i,y)s.

Integer Weights Dictionary

- Use an array fArray[][] as the dictionary.
- fArray[1:n][0:c]
- fArray[i][y] = -1 iff f(i,y) not yet computed.
- This initialization is done before the recursive method is invoked.
- The initialization takes O(cn) time.

No Recomputation Code


```
private static int f(int i, int y)  \{ \\ & \text{if } (fArray[i][y] >= 0) \text{ return } fArray[i][y]; \\ & \text{if } (i == n) \text{ } \{fArray[i][y] = (y < w[n]) ? 0 : p[n]; \\ & \text{return } fArray[i][y]; \} \\ & \text{if } (y < w[i]) \text{ } fArray[i][y] = f(i+1,y); \\ & \text{else } fArray[i][y] = Math.max(f(i+1,y), \\ & f(i+1,y-w[i]) + p[i]); \\ & \text{return } fArray[i][y]; \\ \end{cases}
```

Time Complexity

- t(n) = O(cn).
- Analysis done in text.
- Good when cn is small relative to 2^n .

```
    n = 3, c = 1010101
    w = [100102, 1000321, 6327]
    p = [102, 505, 5]
    2<sup>n</sup> = 8
    cn = 3030303
```