Rank

Rank of an element is its position in ascending key order.
[2,6,7,8,10,15,18,20,25,30,35,40]
$\operatorname{rank}(2)=0$
$\operatorname{rank}(15)=5$
$\operatorname{rank}(20)=7$

Selection Problem

- Given n unsorted elements, determine the k 'th smallest element. That is, determine the element whose rank is $\mathrm{k}-1$.
- Applications
- Median score on a test.
- $\mathrm{k}=\operatorname{ceil}(\mathrm{n} / 2)$.
- Median salary of Computer Scientists.
- Identify people whose salary is in the bottom 10%. First find salary at the 10% rank.

Selection By Sorting

- Sort the n elements.
- Pick up the element with desired rank.
- O(n $\log \mathrm{n})$ time.

Divide-And-Conquer Selection

- Small instance has $n<=1$. Selection is easy.
- When $\mathrm{n}>1$, select a pivot element from out of the n elements.
- Partition the n elements into 3 groups left, middle and right as is done in quick sort.
- The rank of the pivot is the location of the pivot following the partitioning.
- If $\mathrm{k}-1=\operatorname{rank}($ pivot $)$, pivot is the desired element.
- If $\mathrm{k}-1<\operatorname{rank}\left(\right.$ pivot), determine the k^{\prime} th smallest element in left.
- If $\mathrm{k}-1>\operatorname{rank}($ pivot $)$, determine the (k -rank(pivot)-1)'th smallest element in right.

D\&C Selection Example

Find kth element of:

a \quad| 3 | 2 | 8 | 0 | 11 | 10 | 1 | 2 | 9 | 7 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Use 3 as the pivot and partition.

$\operatorname{rank}($ pivot $)=5$. So pivot is the 6^{\prime} th smallest element.

D\&C Selection Example

a

- If $k=6(k-1=\operatorname{rank}($ pivot $)$), pivot is the element we seek.
- If $k<6$ ($k-1<\operatorname{rank}($ pivot) $)$, find k^{\prime} th smallest element in left partition.
- If $k>6$ ($k-1>\operatorname{rank}($ pivot $)$), find ($k-$ $\operatorname{rank}($ pivot $)-1$)'th smallest element in right partition.

Time Complexity

- Worst case arises when the partition to be searched always has all but the pivot. - O(n^{2})
- Expected performance is $\mathrm{O}(\mathrm{n})$.
- Worst case becomes $\mathrm{O}(\mathrm{n})$ when the pivot is chosen carefully.
- Partition into $\mathrm{n} / 9$ groups with 9 elements each (last group may have a few more)
- Find the median element in each group.
- pivot is the median of the group medians.
- This median is found using select recursively.

- We plan to drill holes in a metal sheet.
- If the holes are too close, the sheet will tear during drilling.
- Verify that no two holes are closer than a threshold distance (e.g., holes are at least 1 inch apart).

Closest Pair Of Points

- Given n points in 2D, find the pair that are closest.

- 3D -- Locations of airplanes flying in the neighborhood of a busy airport are known.
- Want to be sure that no two planes get closer than a given threshold distance.

Simple Solution

- For each of the $n(n-1) / 2$ pairs of points, determine the distance between the points in the pair.
- Determine the pair with the minimum distance.
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time.

Divide-And-Conquer Solution

- When n is small, use simple solution.
- When n is large
- Divide the point set into two roughly equal parts A and B.
- Determine the closest pair of points in A.
- Determine the closest pair of points in B.
- Determine the closest pair of points such that one point is in A and the other in B.
- From the three closest pairs computed, select the one with least distance.

- Divide so that points in A have x-coordinate <= that of points in B.

- Find closest pair in A.
- Let d_{1} be the distance between the points in this pair.

- Find closest pair in B.
- Let d_{2} be the distance between the points in this pair.

- Let $\mathrm{d}=\min \left\{\mathrm{d}_{1}, \mathrm{~d}_{2}\right\}$.
- Is there a pair with one point in A , the other in B and distance $<\mathrm{d}$?

- Points that are to be paired with q are in a d x 2 d rectangle of R_{B} (comparing region of q).
- Points in this rectangle are at least d apart.

- So the comparing region of q has at most 6 points.
- So number of pairs to check is $<=6\left|R_{A}\right|=O(n)$.

Time Complexity

- Let $\mathrm{t}(\mathrm{n})$ be the time to find the closest pair (excluding the time to create the two sorted lists).
- $t(n)=c, n<4$, where c is a constant.
- When $n>=4$,
$\mathrm{t}(\mathrm{n})=\mathrm{t}(\operatorname{ceil}(\mathrm{n} / 2))+\mathrm{t}($ floor $(\mathrm{n} / 2))+$ an,
where a is a constant.
- To solve the recurrence, assume n is a power of 2 and use repeated substitution.
- $\mathrm{t}(\mathrm{n})=\mathrm{O}(\mathrm{n} \log \mathrm{n})$.

