

Small And Large Instance

- Distinguish between small and large instances.
- Small instances solved differently from large ones.

Solving A Small Instance

- A small instance is solved using some direct/simple strategy.
- Sort a list that has $\mathrm{n}<=10$ elements.
- Use count, insertion, bubble, or selection sort.
- Find the minimum of $\mathrm{n}<=2$ elements.
- When $\mathrm{n}=0$, there is no minimum element.
- When $\mathrm{n}=1$, the single element is the minimum.
- When $\mathrm{n}=2$, compare the two elements and determine which is smaller.

Sort A Large List

- Sort a list that has $\mathrm{n}>10$ elements.
- Sort 15 elements by dividing them into 2 smaller lists. $>$ One list has 7 elements and the other has 8 .
- Sort these two lists using the method for small lists.
- Merge the two sorted lists into a single sorted list.

Solving A Large Instance

- A large instance is solved as follows:
- Divide the large instance into $\mathrm{k}>=2$ smaller instances.
- Solve the smaller instances somehow.
- Combine the results of the smaller instances to obtain the result for the original large instance.

Sort A Large List
- Sort a list that has $\mathrm{n}>10$ elements.
- Sort 15 elements by dividing them into 2 smaller lists.
> One list has 7 elements and the other has 8 .
- Sort these two lists using the method for small lists.
- Merge the two sorted lists into a single sorted list.

Find The Min Of A Large List

- Find the minimum of 20 elements.
- Divide into two groups of 10 elements each.
- Find the minimum element in each group somehow.
- Compare the minimums of each group to determine the overall minimum.

Recursion In Divide And Conquer

- Often the smaller instances that result from the divide step are instances of the original problem (true for our sort and min problems). In this case,
- If the new instance is a small instance, it is solved using the method for small instances.
- If the new instance is a large instance, it is solved using the divide-and-conquer method recursively.
- Generally, performance is best when the smaller instances that result from the divide step are of approximately the same size.

Recursive Find Min

- Find the minimum of 20 elements.
- Divide into two groups of 10 elements each.
- Find the minimum element in each group recursively. The recursion terminates when the number of elements is $<=2$. At this time the minimum is found using the method for small instances.
- Compare the minimums of the two groups to determine the overall minimum.

Tiling A Defective Chessboard

3. Our Definition Of A Chessboard $\mathbf{1}$

A chessboard is an $\mathrm{n} \times \mathrm{n}$ grid, where n is a power of 2 .

$\square \quad$ A Triomino

A triomino is an L shaped object that can cover three squares of a chessboard.

A triomino has four orientations.

Tiling A Defective Chessboard

Place $\left(n^{2}-1\right) / 3$ triominoes on an $n \times n$ defective chessboard so that all $n^{2}-1$ nondefective positions are covered.

Tiling A Defective Chessboard

Make the other three 4×4 chessboards defective by placing a triomino at their common corner.
Recursively tile the four defective 4×4 chessboards.

Tiling A Defective Chessboard

Divide into four smaller chessboards. 4×4

One of these is a defective 4×4 chessboard.

Tiling A Defective Chessboard

Complexity

- Let $\mathrm{n}=2^{\mathrm{k}}$.
- Let $\mathrm{t}(\mathrm{k})$ be the time taken to tile a $2^{\mathrm{k}} \mathrm{x} 2^{\mathrm{k}}$ defective chessboard.
- $\mathrm{t}(0)=\mathrm{d}$, where d is a constant.
- $\mathrm{t}(\mathrm{k})=4 \mathrm{t}(\mathrm{k}-1)+\mathrm{c}$, when $\mathrm{k}>0$. Here c is a constant.
- Recurrence equation for $t()$.

$$
\begin{aligned}
& \text { Substitution Method } \\
t(\mathrm{k})= & 4 \mathrm{t}(\mathrm{k}-1)+\mathrm{c} \\
= & 4[4 \mathrm{t}(\mathrm{k}-2)+\mathrm{c}]+\mathrm{c} \\
= & 4^{2} \mathrm{t}(\mathrm{k}-2)+4 \mathrm{c}+\mathrm{c} \\
= & 4^{2}[4 \mathrm{t}(\mathrm{k}-3)+\mathrm{c}]+4 \mathrm{c}+\mathrm{c} \\
= & 4^{3} \mathrm{t}(\mathrm{k}-3)+4^{2} \mathrm{c}+4 \mathrm{c}+\mathrm{c} \\
= & \ldots \\
= & 4^{\mathrm{k}} \mathrm{t}(0)+4^{\mathrm{k}-1} \mathrm{c}+4^{\mathrm{k}-2} \mathrm{c}+\ldots+4^{2} \mathrm{c}+4 \mathrm{c}+\mathrm{c} \\
= & 4^{\mathrm{k}} \mathrm{~d}+4^{\mathrm{k}-1} \mathrm{c}+4^{\mathrm{k}-2} \mathrm{c}+\ldots+4^{2} \mathrm{c}+4 \mathrm{c}+\mathrm{c} \\
= & \text { Theta }\left(4^{\mathrm{k}}\right) \\
= & \text { Theta(number of triominoes placed })
\end{aligned}
$$

Min And Max

Find the lightest and heaviest of n elements using a balance that allows you to compare the weight of 2 elements.

Minimize the number of comparisons.

Max Element

- Find element with max weight from w[0:n-1].
maxElement $=0$;
for (int $\mathrm{i}=1 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$)
if $(\mathrm{w}[$ maxElement $]$ < $\mathrm{w}[\mathrm{i}])$ maxElement $=\mathrm{i}$;
- Number of comparisons of w values is $n-1$.

Min And Max

- Find the max of n elements making $\mathrm{n}-1$ comparisons.
- Find the min of the remaining n-1 elements making n-2 comparisons.
- Total number of comparisons is $2 \mathrm{n}-3$.

Divide And Conquer

- Small instance.
- $\mathrm{n}<=2$.
- Find the min and max element making at most one comparison.

Large Instance Min And Max

- $\mathrm{n}>2$.
- Divide the n elements into 2 groups A and B with floor($\mathrm{n} / 2$) and ceil(n/2) elements, respectively.
- Find the min and max of each group recursively.
- Overall min is $\min \{\min (A), \min (B)\}$.
- Overall \max is $\max \{\max (A), \max (B)\}$.

Min And Max Example

- Find the min and max of $\{3,5,6,2,4,9,3,1\}$.
- Large instance.
- $A=\{3,5,6,2\}$ and $B=\{4,9,3,1\}$.
- $\min (A)=2, \min (B)=1$.
- $\max (A)=6, \max (B)=9$.
- $\min \{\min (A), \min (B)\}=1$.
- $\max \{\max (\mathrm{A}), \max (\mathrm{B})\}=9$.

Time Complexity

- Let $\mathrm{c}(\mathrm{n})$ be the number of comparisons made when finding the min and max of n elements.
- $c(0)=c(1)=0$.
- $c(2)=1$.
- When $\mathrm{n}>2$,

$$
\mathrm{c}(\mathrm{n})=\mathrm{c}(\text { floor }(\mathrm{n} / 2))+\mathrm{c}(\operatorname{ceil}(\mathrm{n} / 2))+2
$$

- To solve the recurrence, assume n is a power of 2 and use repeated substitution.
- $c(n)=\operatorname{ceil}(3 n / 2)-2$.

Solve Small Instances And Combine

Interpretation Of Recursive Version

- The working of a recursive divide-and-conquer algorithm can be described by a tree-recursion tree.
- The algorithm moves down the recursion tree dividing large instances into smaller ones.
- Leaves represent small instances.
- The recursive algorithm moves back up the tree combining the results from the subtrees.
- The combining finds the min of the mins computed at leaves and the max of the leaf maxs.

Iterative Version

- Start with $n / 2$ groups with 2 elements each and possibly 1 group that has just 1element.
- Find the min and max in each group.
- Find the min of the mins.
- Find the max of the maxs.

Iterative Version Example

- $\{2,8,3,6,9,1,7,5,4,2,8\}$
- $\{2,8\},\{3,6\},\{9,1\},\{7,5\},\{4,2\},\{8\}$
- mins $=\{2,3,1,5,2,8\}$
- maxs $=\{8,6,9,7,4,8\}$
- minOfMins = 1
- maxOfMaxs $=9$

Comparison Count

- Start with n/2 groups with 2 elements each and possibly 1 group that has just 1element. - No compares.
- Find the min and max in each group.
- floor(n/2) compares.
- Find the min of the mins.
- ceil(n/2)-1 compares.
- Find the max of the maxs.

Initialize A Heap

- $\mathrm{n}>1$:
- Initialize left subtree and right subtree recursively.
- Then do a trickle down operation at the root.
- $\mathrm{t}(\mathrm{n})=\mathrm{c}, \mathrm{n}<=1$.
- $\mathrm{t}(\mathrm{n})=2 \mathrm{t}(\mathrm{n} / 2)+\mathrm{d}$ * height, $\mathrm{n}>1$.
- c and d are constants.
- Solve to get $\mathrm{t}(\mathrm{n})=\mathrm{O}(\mathrm{n})$.
- Implemented iteratively in Chapter 13.

Initialize A Loser Tree

- $\mathrm{n}>1$:
- Initialize left subtree.
- Initialize right subtree.
- Compare winners from left and right subtrees.
- Loser is saved in root and winner is returned.
- $\mathrm{t}(\mathrm{n})=\mathrm{c}, \mathrm{n}<=1$.
- $\mathrm{t}(\mathrm{n})=2 \mathrm{t}(\mathrm{n} / 2)+\mathrm{d}, \mathrm{n}>1$.
- c and d are constants.
- Solve to get $\mathrm{t}(\mathrm{n})=\mathrm{O}(\mathrm{n})$.
- Implemented iteratively in Chapter 14.

