
Divide And Conquer

• Distinguish between small and large instances.

• Small instances solved differently from large ones.

Small And Large Instance

• Small instance.
� Sort a list that has n <= 10 elements. 

� Find the minimum of n <= 2 elements.

• Large instance.
� Sort a list that has n > 10 elements. 

� Find the minimum of n > 2 elements.



Solving A Small Instance
• A small instance is solved using some 

direct/simple strategy.
� Sort a list that has n <= 10 elements.

• Use count, insertion, bubble, or selection sort.

� Find the minimum of n <= 2 elements.

• When n = 0, there is no minimum element.

• When n = 1, the single element is the minimum.

• When n = 2, compare the two elements and 
determine which is smaller.

Solving A Large Instance

• A large instance is solved as follows:
� Divide the large instance into k >= 2smaller instances.

� Solve the smaller instances somehow.

� Combine the results of the smaller instances to obtain 
the result for the original large instance.



Sort A Large List

• Sort a list that has n > 10elements.
� Sort 15 elements by dividing them into 2 smaller lists.

¾One list has 7 elements and the other has 8.

� Sort these two lists using the method for small lists.

� Merge the two sorted lists into a single sorted list.

Find The Min Of A Large List

• Find the  minimum of 20 elements.
� Divide into two groups of 10 elements each.

� Find the minimum element in each group somehow.

� Compare the minimums of each group to determine 
the overall minimum.



Recursion In Divide And Conquer

• Often the smaller instances that result from the 
divide step are instances of the original problem 
(true for our sort and min problems). In this case,
� If the new instance is a small instance, it is solved 

using the method for small instances.

� If the new instance is a largeinstance, it is solved using 
the divide-and-conquer method recursively.

• Generally, performance is best when the smaller 
instances that result from the divide step are of 
approximately the same size.

Recursive Find Min

• Find the  minimum of 20 elements.
� Divide into two groups of 10 elements each.

� Find the minimum element in each group 
recursively. The recursion terminates when the
number of elements is<= 2. At this time the 
minimum is found using the method for small 
instances.

� Compare the minimums of the two groups to 
determine the overall minimum.



Tiling A Defective Chessboard

Our Definition Of A Chessboard

A chessboard is an n x n grid, where n is a 
power of 2.

1x1 2x2 4x4 8x8



A defective chessboardis a chessboard that 
has one unavailable (defective) position.

1x1 2x2 4x4 8x8

A Triomino

A triomino is anL shaped object that can 
cover three squares of a chessboard.

A triomino has four orientations.



Tiling A Defective Chessboard
Place (n2 - 1)/3 triominoes on an n x n 

defective chessboard so that all n2 - 1
nondefective positions are covered.

1x1 2x2 4x4 8x8

Tiling A Defective Chessboard

Divide into four smaller chessboards. 4 x 4

One of these is a defective 4 x 4 chessboard.



Tiling A Defective Chessboard

Make the other three4 x 4 chessboards defective 
by placing a triomino at their common corner.

Recursively tile the four defective4 x 4 
chessboards.

Tiling A Defective Chessboard



Complexity

• Let n = 2k.

• Let t(k) be the time taken to tile a 2k x 2k

defective chessboard.

• t(0) = d, where d is a constant.

• t(k) = 4t(k-1) + c, when k > 0. Here c is a 
constant.

• Recurrence equation for t().

Substitution Method
t(k) = 4t(k-1) + c

= 4[4t(k-2) + c] + c

= 42 t(k-2) + 4c + c

= 42[4t(k-3) + c] + 4c + c

= 43 t(k-3) + 42c + 4c + c

= …

= 4k t(0) + 4k-1c + 4k-2c + ... + 42c + 4c + c

= 4k d + 4k-1c + 4k-2c + ... + 42c + 4c + c

= Theta(4k)

= Theta(number of triominoes placed)



Min And Max

Find the lightest and heaviest of n elements 
using a balance that allows you to compare 
the weight of 2 elements.

Minimize the number of comparisons.

Max Element
• Find element with max weight from

w[0:n-1].

maxElement = 0;

for (int i = 1; i < n; i++)

if (w[maxElement] < w[i]) maxElement = i;

• Number of comparisons of w values is n-1.



Min And Max

• Find the max of n elements making n-1 
comparisons.

• Find the min of the remaining n-1 elements 
making n-2 comparisons.

• Total number of comparisons is 2n-3.

Divide And Conquer

• Small instance.
� n <= 2.

� Find the  min and max element making at most 
one comparison.



Large Instance Min And Max

� n > 2.

� Divide the n elements into 2 groups A and B
with floor(n/2)and ceil(n/2)elements, 
respectively.

� Find the min and max of each group 
recursively.

� Overall min is min{min(A), min(B)} .

� Overall max is max{max(A), max(B)}.

Min And Max Example

• Find the min and max of {3,5,6,2,4,9,3,1}.

• Large instance.

• A = {3,5,6,2} and B = {4,9,3,1}.

• min(A) = 2, min(B) = 1. 

• max(A) = 6, max(B) = 9.

• min{min(A),min(B)} = 1.

• max{max(A), max(B)} = 9.



Dividing Into Smaller Instances
{8,2,6,3,9,1,7,5,4,2,8}

{8,2,6,3,9} {1,7,5,4,2,8}

{8,2} {6,3,9}

{6} {3,9}

{1,7,5} {4,2,8}

{1} {7,5} {4} {2,8}

Solve Small Instances And Combine

{8,2}

{6} {3,9} {1} {7,5} {4} {2,8}{2,8}

{6,6} {3,9}

{3,9}

{2,9}

{1,1} {5,7}

{1,7}

{4,4} {2,8}

{2,8}

{1,8}

{1,9}



Time Complexity
• Let c(n) be the number of comparisons made 

when finding the min and max of n elements.

• c(0) = c(1) = 0.

• c(2) = 1.

• When n > 2, 

c(n) = c(floor(n/2)) + c(ceil(n/2)) + 2

• To solve the recurrence, assume n is a power of 2
and use repeated substitution.

• c(n) = ceil(3n/2) - 2.

Interpretation Of Recursive Version

• The working of a recursive divide-and-conquer algorithm 
can be described by a tree—recursion tree.

• The algorithm moves down the recursion tree dividing large 
instances into smaller ones.

• Leaves represent small instances.
• The recursive algorithm moves back up the tree combining 

the results from the subtrees.
• The combining finds the min of the mins computed at 

leaves and the max of the leaf maxs.



Downward Pass Divides Into Smaller 
Instances

{8,2,6,3,9,1,7,5,4,2,8}

{8,2,6,3,9} {1,7,5,4,2,8}

{8,2} {6,3,9}

{6} {3,9}

{1,7,5} {4,2,8}

{1} {7,5} {4} {2,8}

Upward Pass Combines Results From
Subtrees

{8,2}

{6} {3,9} {1} {7,5} {4} {2,8}{2,8}

{6,6} {3,9}

{3,9}

{2,9}

{1,1} {5,7}

{1,7}

{4,4} {2,8}

{2,8}

{1,8}

{1,9}



Iterative Version

• Start with n/2 groups with 2 elements each 
and possibly 1 group that has just 1element.

• Find the min and max in each group.

• Find the min of the mins.

• Find the max of the maxs.

Iterative Version Example

• {2,8,3,6,9,1,7,5,4,2,8 }

• {2,8} , {3,6}, {9,1}, {7,5}, {4,2}, {8}

• mins = {2,3,1,5,2,8}

• maxs = {8,6,9,7,4,8}

• minOfMins = 1

• maxOfMaxs = 9



Comparison Count
• Start with n/2 groups with 2 elements each 

and possibly 1 group that has just 1element.
� No compares.

• Find the min and max in each group.
� floor(n/2) compares.

• Find the min of the mins.
� ceil(n/2) - 1compares.

• Find the max of the maxs.
� ceil(n/2) - 1compares.

• Total is ceil(3n/2) - 2 compares.

Initialize A Heap

• n > 1:
� Initialize left subtree and right subtree recursively. 

� Then do a trickle down operation at the root.

• t(n) = c, n <= 1.

• t(n) = 2t(n/2) + d * height, n > 1.

• c and d are constants.

• Solve to get t(n) = O(n).

• Implemented iteratively in Chapter 13.



Initialize A Loser Tree
• n > 1: 

� Initialize left subtree.

� Initialize right subtree. 

� Compare winners from left and right subtrees. 

� Loser is saved in root and winner is returned. 

• t(n) = c, n <= 1.

• t(n) = 2t(n/2) + d, n > 1.

• c and d are constants.

• Solve to get t(n) = O(n).

• Implemented iteratively in Chapter 14.


