Shortest Path Problems

- Directed weighted graph.
- Path length is sum of weights of edges on path.
- The vertex at which the path begins is the source vertex.
- The vertex at which the path ends is the destination vertex.

Another path from 1 to 7.
Path length is 11.

Shortest Path Problems

- Single source single destination.
- Single source all destinations.
- All pairs (every vertex is a source and destination).

Single Source Single Destination

Possible greedy algorithm:

- Leave source vertex using cheapest/shortest edge.
- Leave new vertex using cheapest edge subject to the constraint that a new vertex is reached.
- Continue until destination is reached.

Greedy Shortest 1 To 7 Path

Path length is 12 .
Not shortest path. Algorithm doesn't work!

Single Source All Destinations

Need to generate up to n (n is number of vertices) paths (including path from source to itself).
Greedy method:

- Construct these up to n paths in order of increasing length.
- Assume edge costs (lengths) are $>=0$.
- So, no path has length <0.
- First shortest path is from the source vertex to itself. The length of this path is 0 .

Single Source Single Destination

Terminate single source all destinations greedy algorithm as soon as shortest path to desired vertex has been generated.

Data Structures For Dijkstra's Algorithm

- The greedy single source all destinations algorithm is known as Dijkstra's algorithm.
- Implement $d()$ and $p()$ as 1D arrays.
- Keep a linear list L of reachable vertices to which shortest path is yet to be generated.
- Select and remove vertex v in L that has smallest d() value.
- Update d() and p() values of vertices adjacent to v.

Complexity

O

- $\mathrm{O}(\mathrm{n})$ to select next destination vertex.
- O(out-degree) to update $d()$ and $p()$ values when adjacency lists are used.
- $O(n)$ to update $d()$ and $p()$ values when adjacency matrix is used.
- Selection and update done once for each vertex to which a shortest path is found.
- Total time is $\mathrm{O}\left(\mathrm{n}^{2}+\mathrm{e}\right)=\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Complexity

- When a min heap of $d()$ values is used in place of the linear list L of reachable vertices, total time is $\mathrm{O}((\mathrm{n}+\mathrm{e}) \log \mathrm{n})$, because $O(n)$ remove min operations and $\mathrm{O}(\mathrm{e})$ change key (d() value) operations are done.
- When e is $O\left(n^{2}\right)$, using a min heap is worse than using a linear list.
- When a Fibonacci heap is used, the total time is $\mathrm{O}(\mathrm{n} \log \mathrm{n}+\mathrm{e})$.

