

Some Methods Not Covered

- Linear Programming.
- Integer Programming.
- Simulated Annealing.
- Neural Networks.
- Genetic Algorithms.
- Tabu Search.

Optimization Problem

A problem in which some function (called the optimization or objective function) is to be optimized (usually minimized or maximized) subject to some constraints.

Machine Scheduling

Find a schedule that minimizes the finish time.

- optimization function ... finish time
- constraints
- each job is scheduled continuously on a single machine for an amount of time equal to its processing requirement
- no machine processes more than one job at a time

Bin Packing

Pack items into bins using the fewest number of bins.

- optimization function ... number of bins
- constraints
- each item is packed into a single bin
- the capacity of no bin is exceeded

Min Cost Spanning Tree

Find a spanning tree that has minimum cost.

- optimization function ... sum of edge costs
- constraints
- must select n -1edges of the given n vertex graph
- the selected edges must form a tree

Feasible And Optimal Solutions

A feasible solution is a solution that satisfies the constraints.

An optimal solution is a feasible solution that optimizes the objective/optimization function.

Greedy Method

- Solve problem by making a sequence of decisions.
- Decisions are made one by one in some order.
- Each decision is made using a greedy criterion.
- A decision, once made, is (usually) not changed later.

Machine Scheduling

LPT Scheduling.

- Schedule jobs one by one and in decreasing order of processing time.
- Each job is scheduled on the machine on which it finishes earliest.
- Scheduling decisions are made serially using a greedy criterion (minimize finish time of this job).
- LPT scheduling is an application of the greedy method.

LPT Schedule

- LPT rule does not guarantee minimum finish time schedules.
- (LPT Finish Time)/(Minimum Finish Time) $<=4 / 3-1 /(3 \mathrm{~m})$ where m is number of machines
- Minimum finish time scheduling is NP-hard.
- In this case, the greedy method does not work.
- The greedy method does, however, give us a good heuristic for machine scheduling.

Container Loading
 98898989898989889888988日

- Ship has capacity c.
- m containers are available for loading.
- Weight of container i is w_{i}.
- Each weight is a positive number.
- Sum of container weights >c.
- Load as many containers as is possible without sinking the ship.

Greedy Solution

- Load containers in increasing order of weight until we get to a container that doesn't fit.
- Does this greedy algorithm always load the maximum number of containers?
- Yes. May be proved using a proof by induction (see text).

Container Loading With 2 Ships

Can all containers be loaded into 2 ships whose capacity is c (each)?

- Same as bin packing with 2 bins.
- Are 2 bins sufficient for all items?
- Same as machine scheduling with 2 machines.
- Can all jobs be completed by 2 machines in c time units?
- NP-hard.

0/1 Knapsack Problem

\square

0/1 Knapsack Problem

\square

- Hiker assigns a profit/value p_{i} to item i.
- All weights and profits are positive numbers.
- Hiker wants to select a subset of the n items to take.
- The weight of the subset should not exceed the capacity of the knapsack. (constraint)
- Cannot select a fraction of an item. (constraint)
- The profit/value of the subset is the sum of the profits of the selected items. (optimization function)
- The profit/value of the selected subset should be maximum. (optimization criterion)

0/1 Knapsack Problem

Let $x_{i}=1$ when item i is selected and let $x_{i}=0$ when item i is not selected.

$$
\begin{aligned}
& \operatorname{maximize} \sum_{i=1}^{n} \mathrm{p}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \\
& \text { subject to } \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}<=\mathrm{c} \\
& \text { and } \mathrm{x}_{\mathrm{i}}=0 \text { or } 1 \text { for all } \mathrm{i}
\end{aligned}
$$

Greedy Attempt 1

Be greedy on capacity utilization.

- Select items in increasing order of weight.
$\mathrm{n}=2, \mathrm{c}=7$
$\mathrm{w}=[3,6]$
$\mathrm{p}=[2,10]$
only item 1 is selected
profit (value) of selection is 2
not best selection!

Greedy Attempt 2

Be greedy on profit earned.

- Select items in decreasing order of profit.
$\mathrm{n}=3, \mathrm{c}=7$
$\mathrm{w}=[7,3,2]$
$\mathrm{p}=[10,8,6]$
only item 1 is selected
profit (value) of selection is 10
not best selection!

Greedy Attempt 3

Be greedy on profit density (p / w).

- Select items in decreasing order of profit density.
$\mathrm{n}=2, \mathrm{c}=7$
$\mathrm{w}=[1,7]$
$p=[10,20]$
only item 1 is selected
profit (value) of selection is 10
not best selection!

Greedy Attempt 3

Be greedy on profit density (p / w).

- Works when selecting a fraction of an item is permitted
- Select items in decreasing order of profit density, if next item doesn't fit take a fraction so as to fill knapsack.
$\mathrm{n}=2, \mathrm{c}=7$
$\mathrm{w}=[1,7]$
$p=[10,20]$
item 1 and $6 / 7$ of item 2 are selected

0/1 Knapsack Greedy Heuristics

- Select a subset with <= k items.
- If the weight of this subset is >c, discard the subset.
- If the subset weight is <= c, fill as much of the remaining capacity as possible by being greedy on profit density.
- Try all subsets with <= k items and select the one that yields maximum profit.

0/1 Knapsack Greedy Heuristics

- (best value - greedy value)/(best value) <= 1/(k+1)

\boldsymbol{k}	$\mathbf{0 \%}$	$\mathbf{1 \%}$	$\mathbf{5 \%}$	$\mathbf{1 0 \%}$	$\mathbf{2 5 \%}$		
$\mathbf{0}$	239	390	528	583	600		
$\mathbf{1}$	360	527	598	600			
$\mathbf{2}$	483	581	600				Number of solutions (out of 600)
:---							

0/1 Knapsack Greedy Heuristics

- First sort into decreasing order of profit density.
- There are $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$ subsets with at most k items.
- Trying a subset takes $\mathrm{O}(\mathrm{n})$ time.
- Total time is $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}+1}\right)$ when $\mathrm{k}>0$.
- (best value - greedy value)/(best value) <= 1/(k+1)

