
Algorithm Design Methods

• Greedy method.

• Divide and conquer.

• Dynamic Programming.

• Backtracking.

• Branch and bound.

Some Methods Not Covered

• Linear Programming.

• Integer Programming.

• Simulated Annealing.

• Neural Networks.

• Genetic Algorithms.

• Tabu Search.

Optimization Problem

A problem in which some function (called the
optimization or objective function) is to be
optimized (usually minimized or
maximized) subject to some constraints.

Machine Scheduling

Find a schedule that minimizes the finish time.
• optimization function … finish time

• constraints
� each job is scheduled continuously on a single machine

for an amount of time equal to its processing requirement

� no machine processes more than one job at a time

Bin Packing

Pack items into bins using the fewest number of
bins.
• optimization function … number of bins

• constraints
� each item is packed into a single bin

� the capacity of no bin is exceeded

Min Cost Spanning Tree

Find a spanning tree that has minimum cost.
• optimization function … sum of edge costs

• constraints
� must select n-1edges of the given n vertex graph

� the selected edges must form a tree

Feasible And Optimal Solutions

A feasible solutionis a solution that satisfies
the constraints.

An optimal solutionis a feasible solution that
optimizes the objective/optimization
function.

Greedy Method

• Solve problem by making a sequence of
decisions.

• Decisions are made one by one in some
order.

• Each decision is made using a greedy
criterion.

• A decision, once made, is (usually) not
changed later.

Machine Scheduling

LPT Scheduling.
• Schedule jobs one by one and in decreasing order

of processing time.

• Each job is scheduled on the machine on which it
finishes earliest.

• Scheduling decisions are made serially using a
greedy criterion (minimize finish time of this job).

• LPT scheduling is an application of the greedy
method.

LPT Schedule

• LPT rule does not guarantee minimum finish
time schedules.

• (LPT Finish Time)/(Minimum Finish Time) <= 4/3 - 1/(3m)

where m is number of machines

• Minimum finish time scheduling is NP-hard.

• In this case, the greedy method does not work.

• The greedy method does, however, give us a
good heuristic for machine scheduling.

Container Loading

• Ship has capacity c.

• m containers are available for loading.

• Weight of container i is wi.

• Each weight is a positive number.

• Sum of container weights > c.

• Load as many containers as is possible
without sinking the ship.

Greedy Solution

• Load containers in increasing order of
weight until we get to a container that
doesn’t fit.

• Does this greedy algorithm always load the
maximum number of containers?

• Yes. May be proved using a proof by
induction (see text).

Container Loading With 2 Ships

Can all containers be loaded into 2 ships whose
capacity is c (each)?

• Same as bin packing with 2 bins.
� Are 2 bins sufficient for all items?

• Same as machine scheduling with 2 machines.
� Can all jobs be completed by 2 machines in c time

units?

• NP-hard.

0/1 Knapsack Problem

0/1 Knapsack Problem

• Hiker wishes to take n items on a trip.

• The weight of item i is wi.

• The items are to be carried in a knapsack whose
weight capacity is c.

• When sum of item weights <= c, all n items can
be carried in the knapsack.

• When sum of item weights > c, some items must
be left behind.

• Which items should be taken/left?

0/1 Knapsack Problem
• Hiker assigns a profit/value pi to item i.
• All weights and profits are positive numbers.
• Hiker wants to select a subset of the n items to take.

� The weight of the subset should not exceed the
capacity of the knapsack.(constraint)

� Cannot select a fraction of an item. (constraint)
� The profit/value of the subset is the sum of the

profits of the selected items. (optimization function)
� The profit/value of the selected subset should be

maximum. (optimization criterion)

0/1 Knapsack Problem

Let xi = 1 when item i is selected and letxi = 0
when item i is not selected.

i = 1

n
pi ximaximize

i = 1

n
wi xi <= csubject to

andxi = 0 or 1 for all i

Greedy Attempt 1
Be greedy on capacity utilization.

� Select items in increasing order of weight.

n = 2, c = 7

w = [3, 6]

p = [2, 10]

only item 1 is selected

profit (value) of selection is 2

not best selection!

Greedy Attempt 2
Be greedy on profit earned.

� Select items in decreasing order of profit.

n = 3, c = 7

w = [7, 3, 2]

p = [10, 8, 6]

only item 1 is selected

profit (value) of selection is 10

not best selection!

Greedy Attempt 3
Be greedy on profit density (p/w).

� Select items in decreasing order of profit density.

n = 2, c = 7

w = [1, 7]

p = [10, 20]

only item 1 is selected

profit (value) of selection is 10

not best selection!

Greedy Attempt 3
Be greedy on profit density (p/w).

� Works when selecting a fraction of an item is
permitted

� Select items in decreasing order of profit density, if
next item doesn’t fit take a fraction so as to fill
knapsack.

n = 2, c = 7
w = [1, 7]
p = [10, 20]
item 1 and6/7 of item2 are selected

0/1 Knapsack Greedy Heuristics

• Select a subset with<= k items.
• If the weight of this subset is > c, discard

the subset.
• If the subset weight is <= c, fill as much of

the remaining capacity as possible by being
greedy on profit density.

• Try all subsets with <= k items and select
the one that yields maximum profit.

0/1 Knapsack Greedy Heuristics

• (best value - greedy value)/(best value) <=
1/(k+1)

k 0% 1% 5% 10% 25%

0 239 390 528 583 600

1 360 527 598 600

2 483 581 600

Number of solutions (out of 600) within x% of best.Number of solutions (out of 600) within x% of best.

0/1 Knapsack Greedy Heuristics

• First sort into decreasing order of profit density.

• There are O(nk) subsets with at most k items.

• Trying a subset takes O(n) time.

• Total time is O(nk+1) when k > 0.

• (best value - greedy value)/(best value) <=
1/(k+1)

