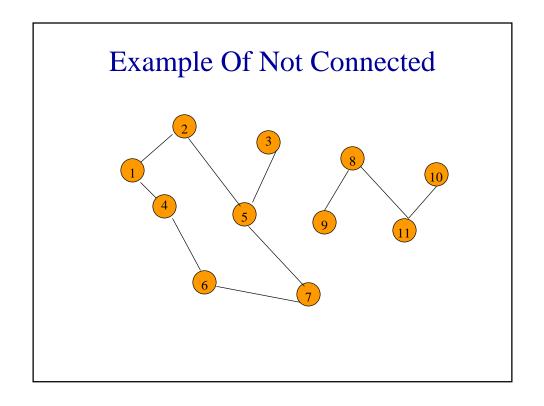
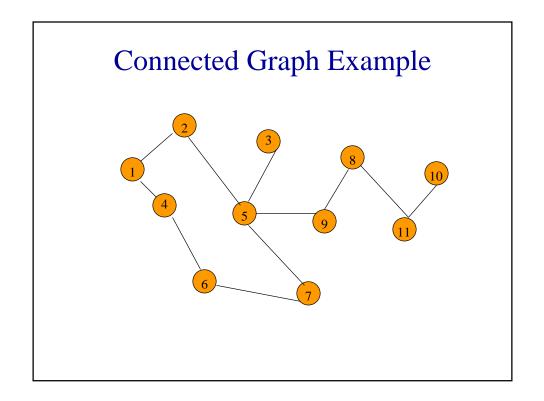

Sample Graph Problems

- Path problems.
- Connectedness problems.
- Spanning tree problems.

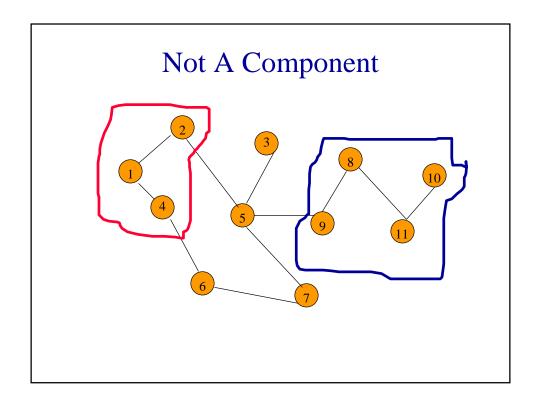


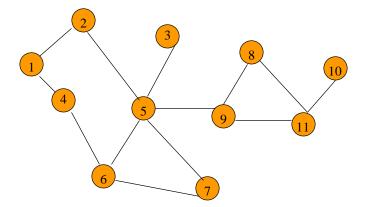


No path between 2 and 9.

Connected Graph

- Undirected graph.
- There is a path between every pair of vertices.

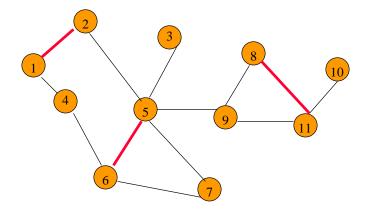




Connected Component

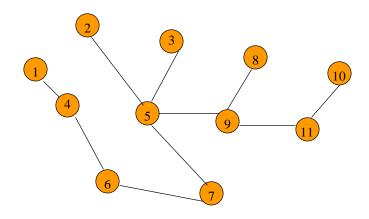
- A maximal subgraph that is connected.
 - Cannot add vertices and edges from original graph and retain connectedness.
- A connected graph has exactly 1 component.

Communication Network



Each edge is a link that can be constructed (i.e., a feasible link).

Communication Network Problems


- Is the network connected?
 - Can we communicate between every pair of cities?
- Find the components.
- Want to construct smallest number of feasible links so that resulting network is connected.

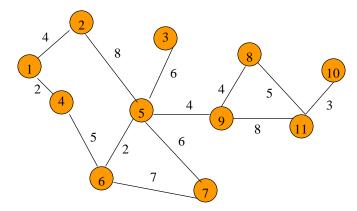
Cycles And Connectedness

Removal of an edge that is on a cycle does not affect connectedness.

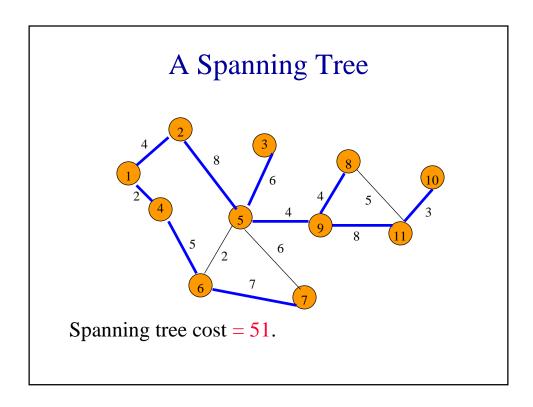
Cycles And Connectedness

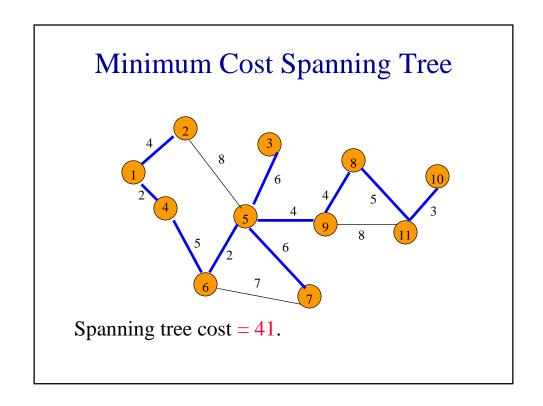
Connected subgraph with all vertices and minimum number of edges has no cycles.

Tree



- Connected graph that has no cycles.
- n vertex connected graph with n-1 edges.


Spanning Tree


- Subgraph that includes all vertices of the original graph.
- Subgraph is a tree.
 - If original graph has n vertices, the spanning tree has n vertices and n-1 edges.

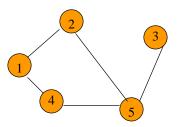
Minimum Cost Spanning Tree



• Tree cost is sum of edge weights/costs.

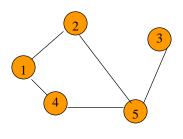
A Wireless Broadcast Tree

Source = 1, weights = needed power.


$$Cost = 4 + 8 + 5 + 6 + 7 + 8 + 3 = 41.$$

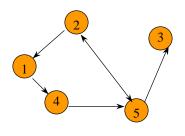
Graph Representation

- Adjacency Matrix
- Adjacency Lists
 - Linked Adjacency Lists
 - Array Adjacency Lists


Adjacency Matrix

- 0/1 n x n matrix, where n = # of vertices
- A(i,j) = 1 iff (i,j) is an edge

	1	2	3	4	5
1	0	1 0 0 0	0	1	0
2	1	0	0	0	1
3	0	0	0	0	1
4	1	0	0	0	1
5	0	1	1	1	0

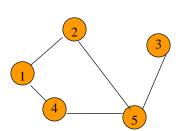

Adjacency Matrix Properties

	1	2	3	4	5
1	0	1 0 0 0	0	1	0
2	1	0	0	0	1
3	0	0	0	0	1
4	1	0	0	6	1
5	0	1	1	1	9

- •Diagonal entries are zero.
- •Adjacency matrix of an undirected graph is symmetric.
 - -A(i,j) = A(j,i) for all i and j.

Adjacency Matrix (Digraph)

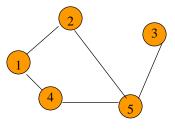
	1	2	3	4	5
1	0	0	0	1 0 0 0 0	0
2	1	0	0	0	1
3	0	0	0	0	0
4	0	0	0	0	1
5	0	1	1	0	0

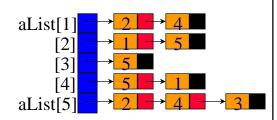

- •Diagonal entries are zero.
- •Adjacency matrix of a digraph need not be symmetric.

Adjacency Matrix

- n² bits of space
- For an undirected graph, may store only lower or upper triangle (exclude diagonal).
 - (n-1)n/2 bits
- O(n) time to find vertex degree and/or vertices adjacent to a given vertex.

Adjacency Lists

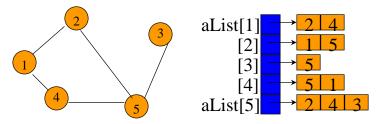

- Adjacency list for vertex i is a linear list of vertices adjacent from vertex i.
- An array of n adjacency lists.



- aList[1] = (2,4)
- aList[2] = (1,5)
- aList[3] = (5)
- aList[4] = (5,1)
- aList[5] = (2,4,3)

Linked Adjacency Lists

• Each adjacency list is a chain.


Array Length = n

of chain nodes = 2e (undirected graph)

of chain nodes = e (digraph)

Array Adjacency Lists

• Each adjacency list is an array list.

Array Length = n

of list elements = 2e (undirected graph)

of list elements = e (digraph)

Weighted Graphs

- Cost adjacency matrix.
 - C(i,j) = cost of edge(i,j)
- Adjacency lists => each list element is a pair (adjacent vertex, edge weight)

Number Of Java Classes Needed

- Graph representations
 - Adjacency Matrix
 - Adjacency Lists
 - Linked Adjacency Lists
 - ➤ Array Adjacency Lists
 - 3 representations
- Graph types
 - Directed and undirected.
 - Weighted and unweighted.
 - $2 \times 2 = 4$ graph types
- $3 \times 4 = 12$ Java classes

Abstract Class Graph

```
package dataStructures;
import java.util.*;
public abstract class Graph
{
    // ADT methods come here

    // create an iterator for vertex i
    public abstract Iterator iterator(int i);

    // implementation independent methods come here
}
```

Abstract Methods Of Graph

```
// ADT methods

public abstract int vertices();

public abstract int edges();

public abstract boolean existsEdge(int i, int j);

public abstract void putEdge(Object theEdge);

public abstract void removeEdge(int i, int j);

public abstract int degree(int i);

public abstract int inDegree(int i);

public abstract int outDegree(int i);
```