

- height is $\mathrm{O}(\log \mathrm{n})$, where n is the number of elements in the tree
- AVL (Adelson-Velsky and Landis) trees
- red-black trees
- get, put, and remove take $\mathrm{O}(\log \mathrm{n})$ time

Balanced Binary Search Trees

- Indexed AVL trees
- Indexed red-black trees
- Indexed operations also take $\mathrm{O}(\log \mathrm{n})$ time

Balanced Search Trees

- weight balanced binary search trees
- 2-3 \& 2-3-4 trees
- AA trees
- B-trees
- BBST
- etc.

AVL Tree

- binary tree
- for every node x, define its balance factor balance factor of $x=$ height of left subtree of x - height of right subtree of x
- balance factor of every node x is $-1,0$, or 1

Balance Factors

This is an AVL tree.

Height

The height of an AVL tree that has n nodes is at most $1.44 \log _{2}(\mathrm{n}+2)$.

The height of every n node binary tree is at least $\log _{2}(\mathrm{n}+1)$.

AVL Search Tree

put(29)

$R R$ imbalance $=>$ new node is in right subtree of right subtree of blue node (node with $\mathrm{bf}=-2$)

AVL Rotations

- RR
- LL
- RL
- LR

Red Black Trees

Colored Nodes Definition

- Binary search tree.
- Each node is colored red or black.
- Root and all external nodes are black.
- No root-to-external-node path has two consecutive red nodes.
- All root-to-external-node paths have the same number of black nodes

Red Black Trees

Colored Edges Definition

- Binary search tree.
- Child pointers are colored red or black.
- Pointer to an external node is black.
- No root to external node path has two consecutive red pointers.
- Every root to external node path has the same number of black pointers.

Red Black Tree

- The height of a red black tree that has n (internal) nodes is between $\log _{2}(\mathrm{n}+1$) and $2 \log _{2}(\mathrm{n}+1)$.
- java.util.TreeMap => red black tree

Graphs

- $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- V is the vertex set.
- Vertices are also called nodes and points.
- E is the edge set.
- Each edge connects two different vertices.
- Edges are also called arcs and lines.
- Directed edge has an orientation (u,v).

Graphs

- Undirected edge has no orientation (u,v).

$$
u \longrightarrow v
$$

- Undirected graph => no oriented edge.
- Directed graph => every edge has an orientation.

Undirected Graph

Directed Graph (Digraph)

Applications-Communication Network

- Vertex $=$ city, edge $=$ communication link.

Driving Distance/Time Map

- Vertex = city, edge weight $=$ driving distance/time.

Street Map

- Some streets are one way.

Complete Undirected Graph

Has all possible edges.

Number Of Edges-Undirected Graph

- Each edge is of the form $(\mathrm{u}, \mathrm{v}), \mathrm{u}!=\mathrm{v}$.
- Number of such pairs in an n vertex graph is $\mathrm{n}(\mathrm{n}-1)$.
- Since edge (u, v) is the same as edge (v, u), the number of edges in a complete undirected graph is $\mathrm{n}(\mathrm{n}-1) / 2$.
- Number of edges in an undirected graph is $<=n(n-1) / 2$.

Number Of Edges-Directed Graph

- Each edge is of the form $(\mathrm{u}, \mathrm{v}), \mathrm{u}!=\mathrm{v}$.
- Number of such pairs in an n vertex graph is n(n-1).
- Since edge (u, v) is not the same as edge (v, u), the number of edges in a complete directed graph is $n(n-1)$.
- Number of edges in a directed graph is <= $\mathrm{n}(\mathrm{n}-1)$.

Vertex Degree

Number of edges incident to vertex.
degree $(2)=2$, degree $(5)=3$, degree $(3)=1$

Sum Of Vertex Degrees

Sum of degrees $=2 \mathrm{e}(\mathrm{e}$ is number of edges $)$

In-Degree Of A Vertex

in-degree is number of incoming edges indegree $(2)=1$, indegree $(8)=0$

Out-Degree Of A Vertex

out-degree is number of outbound edges outdegree $(2)=1$, outdegree $(8)=2$

Sum Of In- And Out-Degrees

each edge contributes 1 to the in-degree of some vertex and 1 to the out-degree of some other vertex
sum of in-degrees $=$ sum of out-degrees $=e$, where e is the number of edges in the digraph

