Tournament Trees

Winner trees.
Loser Trees.

Winner Trees

Complete binary tree with n external nodes and $\mathrm{n}-1$ internal nodes.

External nodes represent tournament players.
Each internal node represents a match played between its two children; the winner of the match is stored at the internal node.

Root has overall winner.

Complexity Of Initialize

- $\mathrm{O}(1)$ time to play match at each match node.
- n - 1 match nodes.
- $\mathrm{O}(\mathrm{n})$ time to initialize n player winner tree.

Applications

Sorting.

Put elements to be sorted into a winner tree.

Repeatedly extract the winner and replace by a large value.

Time To Sort

- Initialize winner tree.
- O(n) time
- Remove winner and replay.
- O(log n) time
- Remove winner and replay n times.
- O(n $\log n)$ time
- Total sort time is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$.
- Actually Theta($\mathrm{n} \log \mathrm{n}$).

Winner Tree Operations

- Initialize
- O(n) time
- Get winner
- O(1) time
- Remove/replace winner and replay
- O(log n) time
- more precisely Theta($\log \mathrm{n})$

Replace Winner And Replay

Replace winner with 6.

Replay matches on path to root.

Opponent is player who lost last match played at this node.

Replay matches on path to root.

Loser Tree

Each match node stores the match loser rather than the match winner.

Complexity Of Loser Tree Initialize

- One match at each match node.
- One store of a left child winner.
- Total time is $\mathrm{O}(\mathrm{n})$.
- More precisely Theta(n).

Complexity Of Replay

More Tournament Tree Applications

- k-way merging of runs during an external merge sort
- Truck loading

Truck Loading

$\mathrm{n}=5$ packages
weights [2, 5, 6, 3, 4]
truck capacity $\mathrm{c}=10$

Load packages from left to right. If a package doesn't fit into current truck, start loading a new truck.

Truck Loading

$\mathrm{n}=5$ packages
weights $[2,5,6,3,4]$
truck capacity $\mathrm{c}=10$
truck1 $=[2,5]$
truck2 $=[6,3]$
truck3 $=[4]$
uses 3 trucks when 2 trucks suffice

Truck Loading

$\mathrm{n}=5$ packages
weights [2, 5, 6, 3, 4]
truck capacity $\mathrm{c}=10$
truck1 $=[2,5,3]$
truck2 $=[6,4]$

Bin Packing

- n items to be packed into bins
- each item has a size
- each bin has a capacity of c
- minimize number of bins

Bin Packing

Truck loading is same as bin packing. Truck is a bin that is to be packed (loaded). Package is an item/element.
Bin packing to minimize number of bins is NP-hard.
Several fast heuristics have been proposed.

Bin Packing Heuristics

- First Fit.
- Bins are arranged in left to right order.
- Items are packed one at a time in given order.
- Current item is packed into leftmost bin into which it fits.
- If there is no bin into which current item fits, start a new bin.

First Fit

$$
\mathrm{n}=4
$$

weights $=[4,7,3,6]$
capacity $=10$

Pack red item into first bin.

First Fit

$\mathrm{n}=4$
weights $=[4,7,3,6]$
capacity $=10$

Pack blue item next.
Doesn't fit, so start a new bin.

First Fit

$$
\mathrm{n}=4
$$

weights $=[4,7,3,6]$
capacity $=10$

First Fit

$\mathrm{n}=4$
weights $=[4,7,3,6]$
capacity $=10$

First Fit

$$
\mathrm{n}=4
$$

weights $=[4,7,3,6]$
capacity $=10$

Pack green item.
Need a new bin.

First Fit

```
n}=
weights =[4, 7, 3, 6]
capacity = 10
```


Not optimal.
2 bins suffice.

Bin Packing Heuristics

- First Fit Decreasing.
- Items are sorted into decreasing order.
- Then first fit is applied.

Bin Packing Heuristics

- Items are packed one at a time in given order.
- To determine the bin for an item, first determine set S of bins into which the item fits.
- If S is empty, then start a new bin and put item
into this new bin.
- Otherwise, pack into bin of S that has least available capacity.

- Best Fit.

Bin Packing Heuristics

- Best Fit Decreasing.
- Items are sorted into decreasing order.
- Then best fit is applied.

- For first fit and best fit:

Heuristic Bins <= (17/10)(Minimum Bins) + 2

- For first fit decreasing and best fit decreasing:
Heuristic Bins <= (11/9)(Minimum Bins) +4

Complexity Of First Fit

Use a max tournament tree in which the players are n bins and the value of a player is the available capacity in the bin.
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$, where n is the number of items.

