

Find a home for 2.

Find home for 1.

Find home for 1.

Complexity
Time for level j subtrees is $<=2^{\mathrm{j}-1}(\mathrm{~h}-\mathrm{j}+1)=\mathrm{t}(\mathrm{j})$.
Total time is $\mathrm{t}(1)+\mathrm{t}(2)+\ldots+\mathrm{t}(\mathrm{h}-1)=\mathrm{O}(\mathrm{n})$.

Leftist Trees

Linked binary tree.
Can do everything a heap can do and in the same asymptotic complexity.
Can meld two leftist tree priority queues in $\mathrm{O}(\log \mathrm{n})$ time.

Extended Binary Trees

Start with any binary tree and add an external node wherever there is an empty subtree.
Result is an extended binary tree.

The Function s()

For any node x in an extended binary tree, let $\mathrm{s}(\mathrm{x})$ be the length of a shortest path from x to an external node in the subtree rooted at x .

Properties Of $s()$

If x is an external node, then $\mathrm{s}(\mathrm{x})=0$.

Otherwise,
$\mathrm{s}(\mathrm{x})=\min \{\mathrm{s}(\operatorname{left} \operatorname{Child}(\mathrm{x}))$,

$$
\text { s(rightChild(x)) \} + } 1
$$

Height Biased Leftist Trees

A binary tree is a (height biased) leftist tree iff for every internal node x, $\mathrm{s}($ leftChild $(\mathrm{x}))>=\mathrm{s}($ rightChild(x$)$)

Leftist Trees--Property 1

In a leftist tree, the rightmost path is a shortest root to external node path and the length of this path is $s($ root $)$.

Leftist Trees—Property 2

The number of internal nodes is at least $2^{s \text { sroot) }}-1$
Because levels 1 through s (root) have no external nodes.
So, $s($ root $)<=\log (n+1)$

Leftist Trees—Property 3

Length of rightmost path is $\mathrm{O}(\log \mathrm{n})$, where n is the number of nodes in a leftist tree.

Follows from Properties 1 and 2.

Leftist Trees As Priority Queues

Min leftist tree ... leftist tree that is a min tree. Used as a min priority queue.

Max leftist tree ... leftist tree that is a max tree. Used as a max priority queue.

```
    Some Min Leftist Tree Operations
put()
remove()
meld()
initialize()
put() and remove() use meld().
```


Meld right subtree of tree with smaller root and all of other tree.

Right subtree of 6 is empty. So, result of melding right subtree of tree with smaller root and other tree is the other tree.

Meld Two Min Leftist Trees

Meld Two Min Leftist Trees

Make melded subtree right subtree of smaller root.

Swap left and right subtree if $s(l e f t)<s(r i g h t)$.

Make melded subtree right subtree of smaller root.

Swap left and right subtree if $s(l e f t)<s(r i g h t)$.

Meld Two Min Leftist Trees

Meld Two Min Leftist Trees

Make melded subtree right subtree of smaller root.
Swap left and right subtree if $\mathrm{s}($ left $)<\mathrm{s}($ right $)$.

Initializing In $\mathrm{O}(\mathrm{n})$ Time

- create n single node min leftist trees and place them in a FIFO queue
- repeatedly remove two min leftist trees from the FIFO queue, meld them, and put the resulting min leftist tree into the FIFO queue
- the process terminates when only 1 min leftist tree remains in the FIFO queue
- analysis is the same as for heap initialization

